
 

 

Drought Assessment in Kalaburgi District, North-

Eastern Dry Zone of Karnataka, India, Using Remote 

Sensing and Google Earth Engine 

Abstract 

Drought is a significant natural disaster exacerbated by global warming, leading to 

severe environmental, economic and societal impacts. As one of the most complex 

phenomena, drought requires advanced methods for effective monitoring and assessment. 

Remote sensing indices have proven effective in analyzing drought's geographical and 

temporal distribution. In this study, the semi-arid nature of the North-Eastern Dry Zone of 

Karnataka, characterized by low rainfall and high temperature, was examined for its 

vulnerability to drought. The Google Earth Engine (GEE) platform was utilized, which 

provides cloud-based access to advanced computational resources for processing multi-

temporal satellite data. This approach minimizes the need for extensive data downloads and 

complex software operations, enabling efficient drought monitoring. In this study, GEE was 

applied to create and execute customized scripts for drought assessment, thereby 

accelerating the procedure and minimizing the need for extensive data downloads and 

complex software operations. The study focused on the North Eastern Dry Zone of 

Karnataka, particularly Kalaburgi district, employing the Normalized Difference Vegetation 

Index (NDVI) and Vegetation Condition Index (VCI) derived from MODIS data. The analysis 

revealed severe drought conditions, particularly in 2001, with NDVI values as low as 0.07 at 

Afzalpur station and 0.06 at Chitapur station, indicating significant vegetation stress. The VCI 

analysis further supported these findings, with values as low as 0.05 at Afzalpur station and 

0.03 at Chitapur station, highlighting the drought's intensity. This integrated approach 

provides a reliable evaluation of agricultural drought, essential for enhancing drought 

management and mitigation strategies in the region.  
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I. Introduction  

In recent years, climate change has been a main cause of global warming, resulting to less 

rainfall and aggravating drought conditions. This has had a severe influence on agriculture, 

manifesting in reduced crop production, diminished cultivated areas, and less yields, notably in food 

crops. The semi-arid nature of the North-Eastern Dry Zone of Karnataka makes it particularly 



 

 

vulnerable to drought, as it is predominantly rainfed, with limited irrigation facilities. Understanding the 

extent and severity of drought is crucial for developing effective stratergies to mitigate its effects on 

agricultural sustainability. 

Drought can occur over multiple timescales, often becoming evident dry seasons 

characterized by low precipitation and high temperature (Wilhite, 2000). These conditions frequently 

affect vast regions, promoting scientists to study the possibilities of remote sensing data for effective 

drought monitoring. Remote sensing technology offers a comprehensive perspective of the Earth’s 

surface, with the advantage of continuous, global imaging data that provides specific insights into 

different locations. Recent advancements in remote sensing technologies and their applications for 

drought monitoring have been extensively reviewed by Jiao et al., (2022), highlighting both their 

strengths and existing challenges in operational drought assessment. This approach is particularly 

beneficial in region with spares meteorological station, where conventional monitoring is limited. 

Relevant studies, such as Analysis and modeling of drought effects based on drought indicators in the 

eastern region of Missan, underscore the importance of satellite-based drought assessment in semi-

arid regions. Freely available. The use of remote sensing data to construct drought maps offers an 

overview of drought-prone areas, particularly in regions with inadequate meteorological stations. 

Additionally, freely available satellite imagery from sources like MODIS and Landsat has shown 

suitable for evaluating drought conditions. 

Among the different drought indicators produced from remote sensing data, the Normalized 

Difference Vegetation Index (NDVI) paired with Land Surface Temperature (LST) has demonstrated a 

good connection, providing valuable insights for understanding agricultural drought (Sruthi et al., 

2015). A multi-sensor approach combining vegetation indices and LST has been shown to enhance 

drought monitoring capabilities, as noted by Rossi et al., (2021). Several drought indices based on the 

NDVI-LST relationship, such as the Temperature-Vegetation Dryness Index (TVDI), Vegetation 

Health Index (VHI), and Water Supplying Vegetation Index (WSVI), have been successfully tested in 

multiple countries (Alshaikh, 2015; Schirmbeck et al., 2017; Sholihah et al., 2016). The vegetation 

condition index (VCI), derived from NDVI, and the temperature condition index (TCI), reflecting LST 

variations, are widely recognized for estimating drought severity. These indices have been employed 

in numerous studies, using data from MODIS and Landsat, to characterize drought intensity (Masitoh 

et al., 2019; Sreekesh et al., 2019).  

The advent of Google Earth Engine (GEE), a cloud-based geospatial platform, has 

revolutionized the processing of multi-temporal satellite data by providing access to high-performance 

computing resources (Gorelick et al., 2017). Since its introduction in 2010, GEE has been used for 

diverse applications, including vegetation mapping, land cover analysis, and flood monitoring 

(Mutanga et al., 2019; Midekisa et al., 2017; Sidhu et al., 2018; DeVries et al., 2020). Its vast 

repository of freely available satellite imagery and robust image processing capabilities make GEE an 

ideal tool for drought studies (Khan et al., 2019). The platform supports flexible geographic and 

temporal analyses and enables rapid drought assessments through global soil moisture data (Sazib et 

al., 2018). For instance, Aksoy et al., (2019) used GEE to analyze drought conditions over two 

decades in Turkey, employing indices such as the Vegetation Health Index (VHI) and the Normalized 



 

 

Difference Drought Index (NDDI). Studies like these demonstrate the effectiveness of MODIS-derived 

indices and GEE’s capability for large-scale drought assessments. 

In India, research using GEE is gaining traction. Applications have generally focused on forest 

land monitoring, riverbank alterations and flood monitoring. However, there has been minimal 

research on drought assessment utilizing data, such as MODIS, within the GEE framework in the 

North Eastern Dry Zone of Karnataka of Kalaburgi districts. Therefore, this work seeks to generate 

satellite-based drought indicators, including NDVI and VCI, utilizing GEE algorithms at a local level to 

assess drought conditions during the study period. The results are expected to provide critical insights 

into drought patterns, assisting policymakers and planners in implementing effective drought 

management and mitigation strategies. 

II. Materials and Methods 

2.1 Study area 

This study focuses on the Kalaburgi district of Karnataka, which includes five key stations: 

Afzalpur, Chitapur, Jevargi, Kalaburgi and Sedam. Geographically, the region is situated between 

17°00' to 17°33' N latitude and 76°21' to 77°17' E longitude (Fig. 1). The region experiences hot dry 

climate. April and may being the hottest period in summer and coldest month being December. Peak 

summer temperature rises to 45˚C. Mean monthly temperature ranges from 22 to 25˚C in the month 

of January and 33-38˚C in May and June. Relative humidity is 26% in summer and 62% in winter. 

Rain fall is 630mm to 800mm. South west monsoon sets in the second week of June and ends by 

September. 75% of rain fall is during this period. majority of the area is covered by deep black soil 

and medium black soil and shallow soil (Patil, 2013). Agriculture in this semi-arid zone is 

predominantly rainfed, with major crops including red gram, sorghum and bajra. The total agricultural 

area is substantial, and both Kharif (rainy season) and Rabi (dry season) crops are cultivated. 

Farming activities in the district are predominantly driven by monsoonal rains, with the prime cropping 

period occurring from June to October. Sowing normally begins with the onset of the southwest 

monsoon, while harvesting is done between November and January. Given its semi-arid nature, this 

region is particularly sensitive to agricultural droughts, highlighting the need for a comprehensive 

comprehension of drought patterns to design effective mitigation strategies.  



 

 

 

Fig. 1. Locality map of North Eastern Dry Zone of Karnataka 

2.2 Data collection 

 Google Earth Engine (GEE) provides access to anextensiverepository of satellite data, hosted 

and maintained by Google. Each datasetis organized into an Image Collection, defined by a unique 

ID. These datasets can be accessed through the GEE Data Cata-log 

(https://earthengine.google.com/datasets/). 

 For this investigation, we employed data from the Moderate Resolution Imaging 

Spectroradiometer (MODIS), specifically the MOD13Q1 product. The MOD13Q1 dataset is part of the 

MODIS Collection and is an Image Collection within GEE, identifiable by the ID 

MODIS/061/MOD13Q1. This package gives a 16-day composite of the Normalized Difference 

Vegetation Index (NDVI) with a spatial resolution of 250 m. The MOD13Q1 product also includes 

Quality Assurance (QA) information, allowing for the selection of high-quality pixels and ensuring the 

reliability of the NDVI data used for this research.  

The selected MODIS NDVI data for this study covers the entire region of interest for the year 

2000-2022, allowing for a comprehensive investigation of vegetation conditions and drought 

assessment. The data were processed and analyzed directly on the GEE platform, employing the 

cloud-based capabilities to quickly handle big datasets and execute geographical analyses. By 

integrating the MODIS NDVI product in GEE, this study was able to efficiently monitor and assess 

drought conditions at a regional scale, offering useful information for drought management and 

mitigation methods. 

https://earthengine.google.com/datasets/


 

 

2.2.1 Google Earth Engine  

 Google Earth Engine (GEE) is a cloud-based platform built for large-scale environmental data 

analysis, accessible via a web-based JavaScript Application Program Interface (API) called the Code 

Editor. The Code Editor is structured into several components: a central panel where users write and 

edit JavaScript code, a bottom panel that visually displays the map with layers added by the script, 

and a left panel that houses various tabs including the Scripts tab for saved scripts and code 

examples, the Docs tab for method documentation, and the Assets tab for managing uploaded data 

assets. GEE enables many actions, including calling methods attached to objects, executing pre-built 

algorithms, using Code Editor-specific functions, and setting custom rules. This versatility, paired with 

a comprehensive library of operations, makes GEE a strong tool for geographic data processing and 

analysis. The ability to distribute scripts via encoded URLs further promotes collaboration and 

reproducibility, which is particularly helpful for completing complicated environmental assessments, 

such as the drought analysis in this work (https://developers.google.com/earth-engine). 

2.3 Methodology  

Use of satellite-based indices are very popular for characterizing the agricultural drought. In 

the present study, agricultural drought was characterized by using two types of remote sensing-based 

indices i.e. Normalized Difference Vegetation Index (NDVI) and Vegetation Condition Index (VCI) 

which measures the greenness of vegetation in the vegetation canopies. 

Utilizing the Google Earth Engine (GEE) platform, we constructed algorithms and functions to 

develop and execute scripts for computing essential drought assessment indices, notably the 

Normalized Difference Vegetation Index (NDVI) and Vegetation Condition Index (VCI). The NDVI was 

produced from the red and near-infrared bands (Band-1 and Band-2, respectively) of the MODIS 

satellite data, whereas the VCI was calculated based on the NDVI values over time. These indexes 

gave vital insights into the geographical and temporal patterns of drought, enabling a detailed 

assessment of drought conditions across the study area (Fig. 2). 

2.3.1 GEE analysis for drought assessment 

 The processing for generating the NDVI and VCI index for drought assessment. Our 

processing workflow consists of some steps using coding by the JavaScript (JS) API:  

1. Loading input data  

       Load the collections of MODIS/006/MOD13Q1: using function ee. Image ();  

Load the study area with shapefile format: the component files of your shapefile (.shp, .shx, .dbf, prj, 

etc.) 

2. Filter images by date range and the region of interest: using filter Date () and filter Bounds ().  

3. Clip images according to the boundary of the study area: using the clip (geometry).  

https://developers.google.com/earth-engine


 

 

4. NDVI was calculated with the existing image processing function in GEE: Normalized Difference 

(Band names).  

5. VCI were computed by creating expression () with operators as Add, Subtract, Multiply, Divide. 

 

Fig. 2. Components of the Google Earth Engine 

2.3.2 Calculation of NDVI and VCI 

NDVI estimates vegetation by measuring the difference between near-infrared (which 

vegetation strongly reflects) and red light (which vegetation absorbs). The range of NDVI ranges from 

−1 to +1. Higher NDVI values imply healthy and thick vegetation, while lower values signal sparse or 

stressed vegetation. The NDVI is determined using the following formula (Tucker, 1979): 

                                        NDVI =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
                                                              (1)  

Where, NIR = Reflectance in the near-infrared band, RED = Reflectance in the red band 

 

VCI (Vegetation Condition Index) is produced from NDVI readings and represents the relative 

condition of vegetation in a specific area compared to its historical range. VCI is calculated as follows: 

                                  VIC =
NDVI − NDVI min 

NDVImax  − NDVImin 
× 100                                                (2) 

Where, the NDVI is the value for the pixel and month, and NDVImin and NDVImax are the 

minimum and maximum values of the NDVI over the whole period, respectively, for the considered 

pixel and month. Band 1 of MOD13Q1 (MODIS product) gives NDVI imageries which were used to 

compute VCI by following equation. In this study, NDVI and VCI was calculated on a monthly. The 

NDVI and VCI threshold ranges that were used to define drought conditions are presented in Table 1 

and 2, ranging from extreme wet to extreme drought.  

 

 

 



 

 

Table 1. Drought classification based on NDVI index (Lalmuanzuala et al., 2023) 

Drought classes NDVI values 

Extreme drought < 0.00 

Severe drought 0.00 - 0.20 

Moderate drought 0.20 - 0.40  

Good Condition 0.40 - 0.60 

Very Good Condition > 0.60 

 

Table 2. Drought classification based on VCI index (Xie and Fan, 2021) 

Drought classes VCI values 

Normal 0.40 -1.00 

Mild drought 0.30 - 0.40 

Moderate drought  0.20 - 0.30 

Severe drought  0.10 - 0.20 

Extreme drought  0.0 - 0.10 

III. Results and Discussions  

Agricultural drought analysis using NDVI and VCI provides valuable impact of drought on 

vegetation and crop health. These indicators are collected from satellite images, presenting a 

comprehensive perspective on how drought affects crop growth over time. This study explores the 

regional and temporal variability in agricultural drought, providing insights into vegetation stress and 

production fluctuations. The study focuses on identifying severe drought events and their implications 

for regional agricultural sustainability.  

3.1 Historical drought analysis and characterization 

The NDVI analysis across the study area shows significant variations in vegetation health 

over different years, (Fig. 3). At Afzalpur station exhibited critical drought stress during 2001, with 

NDVI values of 0.07 (June), 0.16 (July), 0.19 (August) and 0.33 (September), indicating prolonged 

drought impact. Similarly, in 2009, severe drought conditions occurred with NDVI results of 0.23 in 

June, 0.14 in July and 0.20 in September. At Chitapur station, severe drought conditions in 2001 were 

reflected by NDVI values of 0.06, 0.17 and 0.32 for June, Julyand September, respectively. The year 

2000 also were having severe drought, with NDVI readings of 0.18 (June), 0.31 (July)and 0.17 

(August) (Fig.4). 



 

 

At Jawargi station, severe drought conditions occurred in 2001, with NDVI values of 0.06, 

0.18 and 0.17 for June through August, respectively. Moderate drought conditions were also recorded 

in 2000 and 2013 (Fig.5). Kalaburgi station followed a similar pattern, with NDVI values of 0.09 

(June), 0.17 (July) and 0.30 (August) during 2001, highlighting the pervasive drought stress in the 

region. Severe drought conditions were also recorded in 2000, with NDVI readings of 0.19 (June), 

0.34 (July) and 0.18 (August) (Fig. 6). Moderate drought conditions persisted at Sedam station during 

2000 and 2001, with NDVI values were 0.22 (June), 0.37 (July)and 0.23 (August) and 0.11 (June), 

0.23 (July) and 0.36 (August) in 2001 (Fig. 7). Mild and moderate drought events were consistently 

recorded across all stations during the study period, with recent trends observed in 2016 and 2020, 

emphasizing the recurrent nature of drought in the region.  

The NDVI analysis clearly demonstrates significant vegetative stress during severe drought 

years across several sites. For instance, at Afzalpur station, NDVI values were exceptionally low in 

2001, with 0.07 in June and 0.33 in September. Similarly, Chitapur station recorded NDVI values of 

0.06 in June and 0.32 in August during the same year, reinforcing the severity of drought. Jawargi 

station experienced severe drought in 2001, with NDVI values of 0.06 in June and 0.17 in August. 

Kalaburgi station exhibited a similar pattern, with NDVI values of 0.09 in June and 0.30 in August, 

further highlighting the vulnerability of vegetation to prolonged drought conditions. These findings 

align with established research by (Kogan (1995; Tucker et al., 2005; Jean et al., 2021; Zhang et al., 

2022), validating the use of NDVI as a reliable drought indicator.  

The VCI (Vegetation Condition Index) analysis highlights the severity of vegetative stress 

across various locations, correlating strongly with NDVI patterns. At Afzalpur station in 2001, severe 

drought conditions were evident, with VCI values of 0.05 in June, 0.17 in July, 0.20 in August and 

0.39 in September (Fig. 3). Similarly, at Chitapur station, severe droughts in 2001 were indicated by 

VCI values of 0.03 in June, 0.16 in July and 0.36 in August. The year 2000 also had severe drought at 

Chitapur, with VCI values of 0.16 (June), 0.31 (July), and 0.16 (August) (Fig.4). 

Severe drought were also recorded at Javargi station in 2001, with VCI values of 0.04 in 

June, 0.18 in July, and 0.15 in August. Additional drought events were observed in 2000 and 2013 

(Fig.5). At Kalaburgi station, severe drought in 2001 were evidenced by VCI values of 0.06 (June), 

0.17 (July) and 0.35 (August) (Fig.6).At Sedam station, moderate drought was indicated in 2001 by 

VCI values of 0.08 (June), 0.24 (July) and 0.39 (August) (Fig.7). Mild drought conditions were also 

noted at Sedam in subsequent years such as 2009, 2011, and 2013,demonstrated persistent drought 

stress during the study period. 

The VCI analysis further emphasizes the impact of sever drought years on vegetation health 

across the study area for instance, at Afzalpur station in 2001, VCI values ranged from 0.005 in June 

to 0.39 in September, demonstrating prolonged vegetation stress.   Similarly, Chitapur station 

recorded extreme and mild drought in 2001, with values as low as 0.03 in June and 0.36 in August. 

Kalaburgi station also experienced significant stress in 2001, with values of 0.06 in June and 0.035 in 

August, highlighting the widespread nature of drought during this period. These findings underscore 

the reliability of VCI as a complementary tool to NDVI assessing drought severity and its impact on 



 

 

vegetation. These results align with established research by (Kogan 1995; Tucker et al., 2005; Jean 

et al., 2021, validating the use of satellite-based indices in drought monitoring. The strong correlation 

between VCI and NDVI reinforces the applicability of these indices for regional drought assessment 

and long-term agricultural planning.  

 

Fig 3. Agricultural drought events as per NDVI and VCI at Afzalpur station 

 

Fig 4. Agricultural drought events as per NDVI and VCI at Chitapur station 



 

 

 

Fig 5. Agricultural drought events as per NDVI and VCI at Jawargi station 

 

Fig 6. Agricultural drought events as per NDVI and VCI at Kalaburgistation 

 

Fig 7. Agricultural drought events as per NDVI and VCI at Sedam station 



 

 

IV. Conclusions 

This study provides a detailed assessment of drought severity and its impact on vegetation 

health in the Kalaburgi district of North-Eastern Dry Zone of Karnataka, Utilizing NDVI and VCI within 

the Google Earth Engine (GEE) platform, the analysis reveals significant variability in drought 

conditions. Severe to moderate droughts during critical years adversely affected vegetation, while 

other years exhibited moderate and mild drought conditions. The strong correlation between NDVI 

and VCI confirms their effectiveness in monitoring vegetative stress due to drought. These indices 

offer valuable spatial and temporal insights, serving as effective tools for assessing agricultural 

drought impacts. The study highlights the importance of integrating remote sensing-based indices 

with advanced geospatial tools like GEE for efficient drought monitoring and mitigation strategies. 

This approach enhances drought resilience and supports sustainable agricultural practices, ensuring 

preparedness against climate variability in drought-prone regions. 
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