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ABSTRACT 
 
Accurate spatial yield estimation is crucial for optimizing agricultural management and 
ensuring food security. This study integrates Sentinel-1A SAR remote sensing data and the 
DSSAT crop simulation model to predict Bengal gram (chickpea) yield in Nagaur district, 
Rajasthan, India. Sentinel-1A backscatter data were processed for crop area mapping, 
achieving an overall classification accuracy of 85.1% and a kappa index of 0.70, 
demonstrating the reliability of SAR for agricultural monitoring under diverse weather 
conditions. Leaf Area Index (LAI) was derived from SAR backscatter values and linked to 
DSSAT-simulated yields, generating spatial yield predictions. Validation using Crop Cutting 
Experiment (CCE) data showed a high agreement of 91.3% between predicted and 
observed yields, with low root mean square error (RMSE), confirming model accuracy. This 
research highlights the synergistic potential of SAR-based remote sensing and simulation 
models for large-scale yield forecasting, advancing precision agriculture. Future efforts may 
incorporate additional sensors and machine learning to further enhance prediction accuracy 
and adaptability to climate variability. 
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1. INTRODUCTION 
 
Agricultural productivity plays a vital role in ensuring global food security. Estimating crop 
yield accurately across diverse spatial and temporal scales is essential for effective 
agricultural planning and management. Traditional yield estimation techniques rely heavily 
on ground-based surveys, which, although accurate, are time-consuming, labor-intensive, 
and limited in spatial coverage. In recent years, advancements in remote sensing 
technologies and crop simulation models have transformed agricultural yield estimation by 
providing scalable, timely, and cost-effective solutions. 
 
Remote sensing offers a wealth of geospatial data from various satellite platforms, enabling 
continuous monitoring of crop growth conditions. Sentinel-2, Landsat, and MODIS satellites, 
for example, provide high-resolution optical imagery that captures critical vegetation indices 
such as the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water 
Index (NDWI), and Green Normalized Difference Vegetation Index (GNDVI). These indices 
are strongly correlated with crop health, biomass, and potential yield (Bendiget al., 2015; 
Thenkabailet al., 2018). However, optical sensors are affected by cloud cover, making 



 

 

synthetic aperture radar (SAR) data invaluable for all-weather monitoring. Sentinel-1, a SAR 
satellite, provides backscatter information sensitive to surface roughness and moisture 
content, making it highly effective for agricultural area mapping and crop monitoring (Veloso 
et al., 2017). 
 
Crop simulation models, on the other hand, integrate biophysical processes governing crop 
growth and development to predict yield outcomes. Models such as the Decision Support 
System for Agrotechnology Transfer (DSSAT) and the Agricultural Production Systems 
sIMulator (APSIM) simulate yield based on inputs including weather conditions, soil 
properties, and crop management practices (Jones et al., 2003; Keating et al., 2003). 
Despite their strengths, these models often require precise, spatially explicit inputs that are 
challenging to obtain. 
 
The integration of remote sensing data with crop simulation models addresses key 
limitations in both approaches. Remote sensing provides real-time, spatially explicit 
observations that can calibrate and validate simulation models, enhancing yield predictions 
at fine spatial resolutions. This combined approach enables the generation of spatially 
detailed yield maps, supporting precision agriculture and resource optimization (Hoque 
&Padhiary 2024; Lobell et al., 2015; Padhiary& Kumar2024). 
 
In this research, we develop a framework for spatial yield estimation that integrates Sentinel-
1 SAR data for area estimation with a crop simulation model for yield prediction. Our study 
focuses on Bengal gram (Cicer arietinum) cultivation in Nagaur district, Rajasthan, India - a 
region characterized by semi-arid climatic conditions and significant agricultural activity. 
Sentinel-1 backscatter data is used to map crop area, while the crop simulation model 
incorporates biophysical parameters to predict yield. By integrating these data, we generate 
spatially explicit yield maps that provide actionable insights for agricultural management and 
policy planning. 
 
2. MATERIAL AND METHODS 
 
2.1 Study Area 
Nagaur district, located in the central part of Rajasthan state, India, covers an area of 
approximately 17,718 square kilometers. It lies between latitudes 26°25′N and 27°40′N and 
longitudes 73°37′E and 75°22′E (Fig. 1). The district is known for its predominantly semi-arid 
climate, characterized by hot summers and mild winters. The average annual rainfall ranges 
from 300 to 500 mm, with most precipitation occurring during the monsoon season from July 
to September. Temperatures in the region can vary significantly, reaching up to 45°C in 
summer and dropping to around 5°C in winter. 
 
Agriculture is the primary livelihood in Nagaur district, with a significant portion of the 
population engaged in farming activities. The district's major crops include wheat, mustard, 
and pulses, with Bengal gram (Cicer arietinum) being one of the most important pulse crops. 
The region's soils are predominantly sandy, with varying levels of fertility. Due to the arid 
conditions, groundwater and canal irrigation are critical for sustaining agricultural 
productivity. The combination of challenging climatic conditions and reliance on irrigation 
makes the region suitable for applying advanced remote sensing and crop simulation 
technologies to enhance yield estimation and agricultural management. 



 

 

 
Fig. 1. Location of Study Area 

 
2.2 Satellite Data 
 
This study utilizes Sentinel-1A SAR satellite data from the European Space Agency (ESA) 
for crop area estimation in Nagaur district, Rajasthan, India. Sentinel-1A operates in the C-
band microwave frequency range, enabling all-weather, day-and-night data acquisition. It 
offers dual polarization (VH and VV) and provide data 12-days interval. The satellite 
operates in four standard modes: Strip Map (SM), Extra Wide Swath (EW), Interferometric 
Wide Swath (IW), and Wave Mode (WV). For this research, Interferometric Wide Swath (IW) 
Ground Range Detected (GRD) products were used. 
 
Sentinel-1A data from August 2022 to March 2023 was acquired at 12-day intervals from the 
Copernicus Open Access Hub. This time-series SAR data supports robust crop area 
mapping and yield estimation by integrating with the crop simulation model for the Rabi 
season. Table 1 provide details about Sentinel 1A satellite.  
 
Table 1. Details of Sentinel-1A (IW-GRD) data 

S.No Parameters Characteristics 

1. Pixel value Magnitude detected 

2. Coordinate system Ground range 



 

 

3. Polarization options Single (VV or HH) or Dual 
(HH+HV or VV+VH) 

4. Look overlap (range, azimuth) 0.250, 0.000 

5. Resolution (range x azimuth in meters) 20.4 x 21.7 

6. Bits per pixel 16 

7. Pixel spacing (range x azimuth in meters) 10 x 10 

8. Radiometric resolution 1.7 dB 

9. Incidence angle (degree) 32.9 

10. Ground range coverage (km) 251.8 

11. Equivalent Number of Looks (ENL) 4.4 

12. Absolute location accuracy (m) 7 

13. Number of looks (range x azimuth) 5 x 1 

14. Azimuth look bandwidth (Hz) 327 

15. Range look bandwidth (Hz) 14.1 

Source: (De Zan and Guarnieri, 2006) 
 
2.3 Bengal gram area mapping 
 
2.3.1 SAR Data Preprocessing 
 
The Sentinel-1A SAR data from the European Space Agency (ESA) were preprocessed 
using MAPscape software developed by sarmap (Switzerland). The software incorporated 
an automated processing chain based on the methodology proposed by Holeczet al. (2013). 
The main processing steps involved are: 

 Strip Mosaicking: Individual SAR image frames from the same orbit and acquisition 
date were mosaicked to generate continuous strips, facilitating seamless data 
management and processing. 

 Co-registration: Multi-temporal images were geometrically aligned using co-
registration, which is a prerequisite for effective time-series analysis and speckle 
filtering (Raman et al., 2019). 

 Time-Series Speckle Filtering: A multi-temporal filter by De Grandiet al. (1997) 
was applied to reduce speckle noise while preserving the reflectivity of stable 
objects. 

 Terrain Geocoding and Radiometric Calibration: Digital Elevation Model (DEM) 
data were used to convert the SAR data into geocoded σ° values in a cartographic 
reference system. Radiometric normalization was applied to correct for range and 
angle dependencies (Ramalingam et al., 2019; Venkatesan et al., 2019; 
Karthikkumaret al., 2019) 

 ANLD Filtering and Atmospheric Correction: Adaptive Non-Local Means filtering 
(ANLD) was employed to smooth homogeneous areas and enhance feature 
boundaries. Corrections for atmospheric attenuation due to water vapor and heavy 



 

 

rainfall were applied using temporal signature anomaly detection techniques 
(Aspertet al., 2007). 

 
2.3.2 Parameterized Classification 
 
Based on the temporal signature in the monitoring fields, parameters viz., (i) minima and (ii) 
maxima of those mean σ° values across monitoring fields; the (iii) maxima of the minimum 
σ° values; the (iv) minima of the maximum σ° values across fields; and the (v) minimum and 
(vi) maximum of the range of σ° values across fields will be generated. The value of the six 
temporal features from the monitoring locations will be used to guide the choice of the six 
parameter values (Table 2). 
 
Table 2. Site-specific parameters for rule-based classification and the criteria 
employed to select them based on temporal features 
 

Parameter Relationship between Parameter and Temporal Feature 

a = lowest mean a < (i) minima of the mean σ° across all signatures 

b = highest mean b > (ii) maxima of the mean σ° across all signatures 

c = maximum variation c > (vi) maxima of the range in σ° across all signatures 

d = max value at SoS d > (iii) highest minima in σ° across all signatures 

e = min value at the peak e < (iv) lowest maxima in σ° across all signatures 

f = minimum variation f < (v) minima of the range in σ° across all rice signatures 
 
The process of crop area estimation involving multi-temporal feature extraction and 
parameterized classification from MAPscape software is presented in Fig. 2. 
 

 
Fig. 2. Schematic representation of the processing of SAR data and estimation of crop 

area 



 

 

2.3.3 Accuracy Assessment 
 
The accuracy of the crop area map was evaluated using ground truth data. A standard 
confusion matrix was constructed, with validation points categorized as crop or non-crop. 
Accuracy metrics included: 

 Overall Accuracy: The percentage of correctly classified points. 
 Kappa Coefficient: A statistical measure of classification reliability accounting for 

chance agreement. 
 

2.4 Yield Estimation 
 
2.4.1 Crop Yield Simulation using the DSSAT Model 
 
The Decision Support System for Agro-technology Transfer (DSSAT) was developed 
through international collaboration under IBSNAT, USA (Jones et al., 2003). It integrates 
crop, soil, and weather data for evaluating crop management practices across different 
locations and years. In this study, the DSSAT model was used for yield simulation. 
 
2.4.2 CROPGRO-Bengal gram 
 
Crop growth and development were simulated daily using the CROPGRO-Bengal gram 
modules within DSSAT v4.8 (Fig. 3). The model calculates daily changes in soil water 
content by accounting for processes like infiltration, irrigation, drainage, evaporation, 
transpiration, and root water uptake. Cultivar coefficients served as key input parameters. 

 
Fig. 3. Schematic representation of methodology of DSSAT CROPGRO-Bengal gram 

crop simulation model 
 

a) Weather Data: Daily maximum and minimum temperatures, solar radiation, and 
rainfall were processed using the DSSAT Weather Man tool. 

b) Soil Data: Soil profiles were sourced from the Harvard Dataverse for Nagaur district. 
c) Cultivar Data: Genetic coefficients for Bengal gram varieties were specified. 
d) Crop Management: Data on planting geometry, irrigation, fertilization, and tillage 

were input using the DSSAT X Build tool. 



 

 

Model calibration was performed using observed field data, and validation was achieved by 
comparing simulated and observed yields. 
 
2.4.3 LAI Estimation from SAR Data 
 
Leaf Area Index (LAI) was estimated from backscatter (dB) values of Sentinel-1A SAR 
images. Using QGIS, backscatter values from field plots were sampled and regressed 
against DSSAT-simulated LAI. The resulting regression model enabled spatial LAI 
extraction. 
 
2.4.4 Yield estimation using remote sensing techniques 
 
The DSSAT simulated yield was integrated with the remote sensing data using LAI values 
extracted from dB images of the SAR data. A linear regression equation was created to 
calculate crop yield for the research area using the DSSAT simulated yield and spatially 
simulated LAI values (Fig. 4). 
 

 
 

 
Fig. 4. Schematic representation of the crop yield estimation by integrating SAR 

satellite products and the DSSAT crop simulation model 
 
2.4.5 Statistical evaluation and validation of products 
 
Spatial yield estimated from remote sensing products integrated with DSSAT model were 
validated with actual yield observed in the farmer's field. In addition, the extracted yields 
were validated with CCE data. 
An analysis of the degree of coincidence between estimated and observed values was 
carried out using R2, Root Mean Square Error (RMSE), Normalized Root Mean Square Error 
(NRMSE) and agreement per cent. 



 

 

NRMSE =100 x (RMSE / Oi) 

Agreement (%) =100 x (1- (RMSE / Oi)) 

 
Pi and Oi are the predicted and observed values for the observation, and N is the number of 
observations within each treatment. RMSE is a measure of the deviation of the simulated 
from the measured values and is always positive. A zero value is ideal. The lower the value 
of RMSE, the higher the accuracy of the model prediction. 
 
3. RESULTS AND DISCUSSION 
 
3.1 Area mapping 
 
The classified Bengal gram area in the Nagaurdistrict was assessed to be 1,41,336 ha. 
Among 13 blocks in Nagaur district, the highest Bengal gram area was recorded in Merta 
block followed by Kuchaman block with an area of 22,333 and 20,518 ha, respectively. 
Riyan Badi and Degana blocks recorded 16,116 and 14,508 ha of Bengal gram area, 
respectively. The Didwana block, it accounted for 11,664 ha of Bengal gram area (Table 3 
&Fig. 5). The substantial variation in Bengal gram cultivation areas among different blocks 
can be attributed to several factors, including soil fertility, water availability, and agricultural 
practices (Pazhanivelanet al, 2022). 
 
Table 3. Block-wise Bengal gram area for Nagaurdistrict during Rabi season 2022 
 

S.No Block Name Area (ha) 
1.  Degana 14508 
2.  Didwana 11664 
3.  Jayal 8953 
4.  Kheenvsar 9852 
5.  Kuchaman 20518 
6.  Ladnu 5545 
7.  Makrana 3373 
8.  Merta 22333 
9.  Mundwa 9888 
10.  Nagaur 1944 
11.  Nawa 9870 
12.  Parbatsar 6773 
13.  Riyan Badi 16116 

Total Area 141336 
 



 

 

 
 

Fig. 5. Bengal gram area for Nagaur district 
 
3.2 Assessment of accuracy 
 
The assessment of accuracy for the Bengal gram area map was steered with the Bengal 
gram and non-Bengal gram class-based ground truth points. In the study area using the 
random stratified sampling method, 200 Bengal gram and 61 non-Bengal gram points were 
collected and considered for validation. The overall map accuracy for the Bengal gram area 
was 85.1 per cent with average reliability of 79.3 per cent. A measure of excellence of 
classification i.e., The kappa index was identified to be 0.70 indicating the estimation with 
good accuracy in the Nagaur district during Rabi season 2022 (Table 4). 
 
Table 4. Accuracy assessment of Bengal gram classification from SAR data 
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Class Bengal gram Non-Bengal 
gram Accuracy (%) 

Bengal gram 169 31 84.5 
Non-Bengal gram 8 53 86.9 
Reliability 95.5 63.1% 85.1 

Average accuracy 85.7%  Average reliability 79.3%  Overall accuracy 85.1% Good Accuracy 
Kappa index 0.70 Good Accuracy 

 
 



 

 

4.3.3 LAI of Bengal gram at spatial level  
 
LAI values were spatially developed for the study area by integrating the dB values along 
with DSSAT-simulated LAI values in the monitoring locations of the study area (Fig. 6). 
These results align with previous studies showing the efficacy of remote sensing and the 
DSSAT model for accurate LAI predictions (Baret&Buis, 2008; Zhao et al., 2010; Kang et al., 
2021; Hoogenboomet al., 2019). Both methods exhibited low RMSE and NRMSE values, 
indicating precise estimates close to observed values. The consistent high agreement 
percentages across different LAI ranges suggest that both RS and DSSAT models perform 
well under various conditions, enhancing their applicability in diverse agricultural settings. 
Accurate LAI predictions are crucial for effective crop management, as LAI is a key indicator 
of photosynthetic capacity and overall plant health (Cheng et al., 2022). 
 

 
 

Fig. 6. Spatial LAI map of Nagaur district 
3.4 Spatial Bengal gram yield estimation  
 
Depending on the spatially developed LAI for the study area, the regression model was used 
to generate the Bengal gram yield spatially (Fig. 7). Estimates of Bengal gram end-of season 
yields produced by integrating remote sensing tools with the DSSAT-CERES model. The 
DSSAT Bengal gram yields in the Nagaur area ranged from 952 kg/hato 1983 kg/ha (Table 
5). The mean agreement between observed yields in monitoring locations and DSSAT 
spatial yields derived from satellites was found 91.3 per cent. Overall, both DSSAT and 
integrated remote sensing methods are effective for crop yield prediction. While DSSAT is 
valuable for detailed agronomic modeling, integrating remote sensing tools with crop 
simulation models offers an efficient alternative for rapid and large-scale yield estimation 
(Akumagaet al., 2023; Pazhanivelanet al., 2022). These tools significantly advance precision 
agriculture by facilitating better crop monitoring and management strategies. 
 
 
 



 

 

Table 5.  Agreement between Observed & Remote sensing-based yield  
 

ID Lat Long DSSAT 
(kg/ha) 

CCE 
(kg/ha) 

RMSE 
(kg/ha) 

NRMSE 
(%) 

Agreement 
(%) 

1 26.77 74.43 989 1089 100 9.2 90.8 
2 26.74 74.41 1056 1234 178 14.4 85.6 
3 26.63 74.20 1497 1539 42 2.7 97.3 
4 26.75 74.18 1392 1482 90 6.1 93.9 
5 26.79 74.23 1023 1027 4 0.4 99.6 
6 26.74 74.41 1983 2064 81 3.9 96.1 
7 26.77 74.43 1684 1534 150 9.8 90.2 
8 26.80 74.24 1168 1098 70 6.4 93.6 
9 26.77 74.43 1287 1251 36 2.9 97.1 
10 26.77 74.43 1254 1146 108 9.4 90.6 
11 26.75 74.43 1456 1389 67 4.8 95.2 
12 26.78 74.43 1265 1183 82 6.9 93.1 
13 26.66 74.31 1687 1458 229 15.7 84.3 
14 26.65 74.28 1892 1632 260 15.9 84.1 
15 26.60 74.17 1326 1462 136 9.3 90.7 
16 26.62 74.16 1464 1657 193 11.6 88.4 
17 26.62 74.16 1455 1695 240 14.2 85.8 
18 26.63 74.16 1469 1536 67 4.4 95.6 
19 26.64 74.00 1686 1521 165 10.8 89.2 
20 26.64 74.00 1466 1687 221 13.1 86.9 
21 26.77 74.47 1352 1591 239 15.0 85.0 
22 26.77 74.45 1602 1634 32 2.0 98.0 
23 26.77 74.51 1562 1653 91 5.5 94.5 
24 26.82 74.65 1401 1526 125 8.2 91.8 
25 26.84 74.72 1628 1827 199 10.9 89.1 
26 26.87 74.76 1278 1462 184 12.6 87.4 
27 26.91 74.77 1102 1294 192 14.8 85.2 
28 26.99 74.77 1646 1548 98 6.3 93.7 
29 26.83 74.66 952 1068 116 10.9 89.1 
30 26.84 74.73 1326 1298 28 2.2 97.8 

Agreement 127 8.7 91.3 
 



 

 

 
 

Fig. 7. Spatial yield map of Nagaur district during Rabi 2022 
 

 
4. CONCLUSION 
 
This research demonstrates the successful integration of Sentinel-1 SAR remote sensing 
data and the DSSAT crop simulation model for spatial yield estimation of Bengal gram in 
Nagaur district, India. The SAR-based classification achieved an overall accuracy of 85.1%, 
demonstrating the effectiveness of synthetic aperture radar for precise crop area mapping 
under challenging weather conditions. By linking remotely sensed leaf area index (LAI) with 
DSSAT-simulated yields, the framework produced spatially explicit yield maps with a high 
level of agreement (91.3%) between predicted and observed yields. This integrated 
approach offers several advantages, including reduced dependency on exhaustive field data 
collection, scalable yield prediction, and enhanced decision-making for agricultural planning. 
 
The combined use of remote sensing and crop simulation models advances precision 
agriculture by enabling efficient monitoring of crop performance across large areas. This 
methodology can be adapted for other crops and regions, further supporting sustainable 
agricultural practices and food security. Future work can explore the integration of additional 
satellite sensors, advanced machine learning techniques, and refined parameterization of 
crop models to improve predictive accuracy and resilience against climate variability. The 
research underlines the transformative potential of geospatial technologies in modern 
agricultural systems, contributing to the optimization of resource use and improved 
agricultural productivity. 
 



 

 

 
ABBREVIATIONS 
 
CCE : Crop Cutting Experiment 
dB : Decibels 
DSSAT : Decision Support System for Agro-technology Transfer 
GIS : Geographic Information System 
ha. : Hectare 
VIZ., : Namely 
% : Percentage 
LAI : Leaf Area Index 
NRMSE : Normalized Root Mean Square Error  
RMSE : Root Mean Square Error  
SAR : Synthetic Aperture Radar 
S1 : Sentinel 1 
S2 : Sentinel 2 
VH : Vertically Transmitted, Horizontally Received 
VV : Vertically Transmitted, Vertically Received 
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