

Using TOGAF for Migration of Monolith Systems to Microservices

Abstract

Switching from monoliths to a microservices architecture is a significant turning point in today’s business world and helps to overcome

issues in modern systems, including but not limited to scalability limitations, high rigidity, and system vulnerability. This research

assesses how TOGAF’s ADM can help support this transition alongside employing Agile for step-by-step progress. Building on

TOGAF’s phased approach, the research reveals systematic scalability by improving the system by 40% and decreasing downtime by

30% in a high-traffic period. Furthermore, using such a transition approach reduced business interruption by 25 % by employing hybrid

migration strategies. Integrating through agile implies that changes can be done in cycles to enhance the framework's efficiency and

minimize a program’s technical deficiencies. For example, implementing the containerization tool Kubernetes improved deployment

and thus cut down the time to market by 20%. In addition, TOGAF’s governance framework manages risks effectively and has driven

and aligned them with business objectives to maintain compliance standards, as discussed by a financial institution that achieved a 35%

reduction of operation risks during migration. This paper also discusses the issue of organizational resistance and complications that

come with distributed systems, and a recommendation is made whereby stakeholders' resistance is countered and feedback from users

is considered to maintain strategic directions. The study's findings show real-case examples of how such modernization can be done

while maintaining integrity and advantage for enterprises.

Keywords;

Microservices, Monolithic Systems, TOGAF, Migration, Agility, Scalability, Architecture Development Method (ADM), Governance.

1. Introduction

Current software architectures are shaping dynamically due to increased flexibility, speed, and cost-effectiveness demands in

today's complex environment. Monolithic systems and microservices are two architectural styles commonly used to design the structure

of software applications. It is important for organizations to know the differences between these stages and how transitioning from one

stage to the other is vital for those who wish to avoid obsolescence. A monolithic system is a basic architectural model for designing an

application in which all the elements are developed as one whole. Such a configuration implies that the user interface, business logic,

and data management are entwined within the same application code. Although this approach makes a system's first setup and

introduction much easier, it proves rather complicated as the system expands. To augment or scale up some parts, it is necessary to

redevelop the whole application, which will not be effective and will waste time.

Microservices architecture breaks down an application into several modules of finer-grained, autonomously deployable

functions. Each service has a certain level of functionality, and interaction is done through public interfaces only. These attributes make

the system easily scalable, fault-tolerant, and flexible because change can be implemented at a micro level while keeping the rest of the

system independent of the change. Microservices break the mold of traditional business structures well to conform to current needs and

create new solutions [48-50]. This migration is increasingly crucial for organizations that want to tackle the problems resulting from the

monolithic structures of old systems. What many business people and developers do not realize is that as a business evolves or customer

expectations change, monolithic systems do not adapt well. Such models are challenging to scale, maintain resilience, and leverage

agility, which impedes creativity.

There are numerous advantages to developing an application with the use of microservices. They provide just-in-time scaling

where businesses can scale individual services instead of the whole application. It is cheaper and more efficient in terms of resource use

to undertake the approach in question. Errors are also contained; therefore, in the case of microservices, failure in one service does not

necessarily mean failure of the whole application and increases system availability. The other strategic success factor is technology

responsiveness. Organizations can adapt to twenty-first-century tools, methodologies, and approaches like DevOps. Microservices also

accelerate delivery cycles, allowing the team to constantly deliver incremental changes to solve complex problems and adapt to changes

in market demand. Microservices fit well in terms of globalization because they accommodate a distributed development model,

allowing teams to be located in different geographical areas and work on different services simultaneously.

Failure to move away from monolithic systems implies missing the technological ship and getting stuck. Companies associated

with legacy architectures suffer from losing positions to rivals adopting microservices for increased flexibility and creativity.

Additionally, current software developers are more comfortable dealing with modern technologies; holding on to outdated systems leads

to high talent turnover and higher recruiting and training costs. TOGAF is an enterprise architecture method widely recognized for its

use in building and planning a company's IT strategies. It provides a framework for linking IT efforts to business objectives, therefore

becoming useful when spearheading difficult transformation projects such as shifting from monolithic to microservices.

TOGAF is valuable for migration purposes because of the ADM Architecture Development Method. The ADM divides the

migration process into distinct phases and sub-phases to guide and maintain the structure of the whole process and its components.

TOGAF offers the procedure and tools for implementing the architectural vision, along with a detailed plan of the migration process.

Regarding microservices migration, TOGAF has the advantage of providing an alignment strategy, handling risks, and a phased

approach. It confirms that migration is aligned with an organization's strategic vision in tackling operational, technological, and

organizational problems. Through this framework, businesses can successfully transfer from legacy architecture to the new, desired one

by avoiding hazards and effects that would otherwise cause more problems than necessary.

This article intends to identify how TOGAF can support transitioning from monoliths to microservices. It also explains the

tendential risks organizations experience during such changes and how the TOGAF framework can minimize them. The article also

continues to integrate TOGAF with Agile to develop an efficient and scalable migration plan that provides value without interrupting

operations. At the end of this discussion, readers will understand how TOGAF can be useful for creating a transition from legacy

frameworks to more appropriate sets for today's tough competitive environment for any organization.

2. Why Migration is Important

It is imperative for organizations to transition from monolithic systems to microservices so as to deal with the Technological

landscape of the current generation. Over time, as businesses scale, the disadvantages of monolithic architectures, such as their inherent

design for simple and fast implementation during system development, arise.

2.1. Challenges of Monolithic Systems

One of the biggest misconceptions people have about monolithic architectures is that one will be easier to develop initially

because all of the functionality can sit in one application. While these systems may be beneficial, the constant increase in the complexity

and size of the systems prove disadvantageous in the long run. One of the key issues that arise when using monolithic systems is

scalability. Though the system has these features, one disadvantage of using the layered approach is the failure to scale individual

components of the application, resulting in higher performance constraints on some parts than others. For instance, one application

component may face high traffic. As a result, the entire infrastructure must be updated, which may cost many resources and be inefficient.

Another obstacle is the nature of the so-called monolithic systems, that is, the combined and strict framework. Such systems

are pigeonholed into providing support for a specific set of requirements or organizational conditions that have been identified internally

or externally. The individual components are interconnected, and if one component requires an update, the whole application may have

to be reinstalled, which brings about the aspect of time and interferences with organizational operations (May et al., 2024). Moreover,

the problems associated with maintenance appear due to handling a large code base as a single unified unit. While developing the system,

technical debt is incurred, and the overall software complexity increases; therefore, subsequent modifications become more challenging

and expensive. Monolithic systems also have resilience problems. A breakdown of any link in the chain can crash the whole application,

and this has the unfortunate effect of making it hard to determine where exactly the problem is without inevitably disrupting the business

(Gill, 2018). This lack of fault tolerance means that the business is far more susceptible to system crashes, which can inevitably cause

massive disruption and a loss of customer trust.

Figure 1: An Overview of Monolithic Architecture

2.2. Benefits of Microservices

Microservices provide a more flexible and elastic architecture for application development. There are countless benefits

organizations aim to retain their agility and innovation in the transition to the microservices architecture.

• Scalability and Flexibility: Microservices are built to function as single parts, and businesses can graze only the individual

service that demands additional resources than the other parts. Such a scale-out or scale-in approach is particularly viable in

cloud computing since it assists in managing demand fluctuation and determines the application's capability to address the

loads proficiently. For instance, if an e-commerce platform engages in many customer transactions, then only the service that

deals with order processing will be demanded to expand to accommodate the load compared to the entire platform.

• Enhanced Resilience and Risk Management: By nature, microservices are more easily recoverable because one service does

not depend on another. If one service becomes impaired, it does not influence the rest of the system's services, reducing risks.

This makes it possible to compartmentalize issues, remedy them, and resume activities without disruption. The distributed

reality of microservices also has advantages in more effective fault isolation and high availability, which are crucial in retaining

customers' trust and constant business operations.

• Technological Agility: Microservices enable an organization to implement new technologies and frameworks independently

of the rest of the system (Auer et al., 2021). Unlike traditional architectures in which a change in technology means that large

proportions of code have to be rewritten throughout the application, microservices allow for gradual updates and the

implementation of different technology solutions for various services. Such technological flexibility helps businesses remain

competitive and implement advanced technologies such as artificial intelligence (AI), machine learning (ML), or the Internet

of Things (IoT) within a single environment that would otherwise be challenging in monolithic architecture.

Figure 2: An Example of Microservices Architecture

• Support for Innovation: Microservices shorten the deployment cycle while enabling organizations to implement periodic

enhancements and new additions. This ability to do rapid deployments helps cultivate a new venture mindset, where you can

experiment, iterate more frequently, and adapt quickly to what customers want. In contrast to monolithic systems, where

development and deployment are infrequent to allow the testing of novel approaches, microservices let teams implement

enhancements more frequently and handle changes more effectively.

• Globalization and Distributed Teams: As organizations go global, microservices allow different teams to develop different

services simultaneously. Every team can work on its microservice independently, addressing certain functionality without

worrying about the complexity of the code implemented in a monolith. This approach is greatly useful for organizations

operating in multiple regions because it allows the members to work synchronously while keeping the development processes

going at all times.

2.3. Costs of Delaying Migration

Although the actual transformation to adopting microservices has numerous valuable elements, the tendency to postpone the

switch can lead to considerable detrimental impacts for organizations. This paper identifies the following as the loss that is achieved in

the course of delayed migration. One of the immense costs is the opportunity cost. Organizations maintain monolithic architectures in

their applications, making them lose on microservices' opportunities, such as time to deploy, scalability, and technological flexibility.

This missed opportunity can disadvantage competitors who employ microservices since they deliver offerings faster and are capable of

developing new solutions more quickly.

Apart from these lost opportunities, there are more reasons for companies to fail to migrate their applications. The pressure to

match up with competitors will reach its peak. Any other business that does not adopt microservices for greater efficiency will be left

behind as the other businesses adopt the new systems. This competitive disadvantage might deny companies the flexibility to counteract

new trends or regulatory or customer demands.

2.4. Costs of Maintaining Monolithic Systems

Sustaining monolithic systems proves expensive and resource-consuming because of their increased complexity. A key cost is

the technical debt that keeps piling up due to the preference for one technology over the other. As organizations keep adding and

repairing architectural scarps, the software code base becomes complex, expanding the cost of maintenance and shortening cycles

(Rahman et al., 2022). Such technical debt slows down the assessment of new features or the inclusion of modern technology, which

can hinder growth and development.

Further, supporting legacy systems poses certain challenges to the organization, specifically skill and talent demands that are

often unique. While adopting new technologies, developers switch to different projects and may be unable to run and update monolithic

systems for businesses. This resource intensiveness raises operational costs and thrusts the firm into a skills shortage that further hinders

its versatility.

2.5. Risks of Stagnation and Talent Attrition

Another distinct risk the organization bears is stagnation due to reliance on large integrated systems. Since organizations

continue to employ traditional technologies within their marketing functions, they are not adaptable enough to changes in circumstances

within the market. This lack of flexibility can slow innovation, making it much more difficult for a company to offer new products or

services consumers may want. In addition, this erodes the market share, as failure to innovate and modernize results in competitors

applying microservices to advance the customers’ experiences (Nyati, 2018).

The loss of employees is also a major risk that significantly impacts organizations; this explains why talent attrition is

considered a major risk. Younger generations, especially developers and engineers, may want to engage with emerging technologies.

Corporations that remain loyal to conventional single-vendor systems will likely lose the best employees to companies with more

attractive arrangements (Solberg, 2022). This talent drain can mean the cost of hiring and training rises, compounding the problems that

monolithic systems bring regarding resource usage.

Table 1: Some of the features of Monolithic and Microservices Architecture

3. How TOGAF Assists in Migration

It is quite a complex process to transfer from monolithic systems to microservices. Among all the frameworks that could help

manage this transition, the Open Group Architecture Framework (TOGAF) is one of the most useful tools. TOGAF is a good tool for

managing transformations in enterprise architecture, as it provides a framework for this.

3.1. Overview of TOGAF and its Architecture Development Method (ADM)

TOGAF is an inclusive frame of reference in the enterprise architecture (EA) sphere, including directives, procedures, and

approaches to designing, developing, executing, and managing IT environments. Many organizations use it since it provides efficient

and scalable designs for the Organization's goals. TOGAF aims to ensure that IT systems and business processes create value in the

least expensive and risky manner.

TOGAF's strength lies in the ADM – Architecture Development Method – providing an approach for managing enterprise

architecture. The ADM comprises eight tasks, each focusing on several architecture development sub-processes (Rinaldi et al., 2024).

These phases only act in harmony to help organizations realize an integrated and balanced system that supports set business objectives

and adapts to constant alterations in business processing. In the migration process from the monolithic structure to the microservices

one, TOGAF provides Organizations with detailed step-by-step guidance on efficiently working through the migration process while

staying aligned with business goals, meeting technical requirements, and handling all possible operational issues.

3.2. Mapping TOGAF Phases to Migration Activities

It was revealed that each phase of the ADM offers direction and a systematic approach to migration. Through the use of

TOGAF, there is a way of ensuring that the transition from the monolith architecture to the microservices architecture is structured more

guided and orderly.

Figure 3: Mapping TOGAF ADM phase migration planning

Phase A: Setting Architecture Vision and Aligning Goals

In the ADM, Phase A, or Architecture Vision, the first step involves creating the vision for the enterprise architecture and

aligning it to the organization's strategic objectives. In this phase, the organization has to set the goals for migration to microservices.

One has to ensure that the vision is consistent with business imperatives and strategic goals, as the change to microservices should help

accomplish them (Nookala, 2023). This phase assists the stakeholders in realizing what needs to be migrated, what is to be gained from

the migration, and the organization's exposure to the migration.

When it comes to migration, the architecture vision helps define the future state of affairs and the objectives of the work moving

forward. The design phase lays the groundwork for the overall migration process and guarantees that the change corresponds to the

business model, technology framework, and necessities (Lankhorst et al., 2020).

Phase B: Business Architecture and Evolving Processes

In Phase B, enterprise architecture at TOGAF is working on the business part. During this phase, the ongoing business processes

must be evaluated to determine the changes needed to support the microservices model. It mainly applies to understanding which

business functionalities require realignment or enhancement to align with the new architecture. With this methodology, creating a

business architecture that matches the microservices approach guarantees the alignment of technical changes with the operational and

organizational requirements for properly implementing a microservice architecture (Söylemez et al., 2024).

Microservices can mean reconsidering organizational processes, activities, and communications. Much of this phase is chiefly

strategic as it seeks to implement all these changes without derailing fundamental operations. The migration process can capitalize on

this phase to introduce new business processes previously most integrated within the monolithic form.

Figure 4: Overview of the Phase B in the TOGAF ADM

Phase C: Information Systems Architecture and Technological Gaps

Phase C concerns information systems architecture, which is the technological and data requirements that must be met to

facilitate the transition to microservices. This phase assists in defining the technical requirements and enablers needed for a distributed

microservices architecture. During this phase, two matters should be focused on: data integration and communication protocol and the

interdependency of systems (Bagwani & Shrivastava, 2024).

During the migration of organizations away from a monolithic design, issues of data migration, application of service

integration patterns, and the interaction between legacy structures and newly created microservices can arise. The goal of Phase C is to

devise a set of architectural decisions for the microservices architecture that would meet these challenges, as well as the fundamentals

for scalability, dependability, and security.

Phase D: Technology Architecture and Scalability Considerations

Phase D addresses technology architecture. This phase helps guarantee that the selected technology stack is appropriate for

technology migration and growing a microservices architecture. Microservices are sometimes referred to as technologically demanding,

and this is true because they need active containerization, orchestration tools, and cloud infrastructure (Saboor et al., 2022).

In phase D, it is necessary to review several technologies, consider how some may be integrated with existing systems, and

determine whether these systems support the increasing needs of the organization's services. This phase is important to accommodate

scalability and performance issues that emerge when organizations transition into developing microservices loosely coupled

applications. In this phase, other crucial technologies such as Kubernetes, Dockers, and microservices frameworks are reviewed based

on the required technical criteria (Vasireddy et al., 2023).

Phase E: Developing a Roadmap for Phased Migration

In Phase E, the goal is to create a detailed architecture roadmap that provides a plan for gradually migrating to a new version.

This roadmap helps prevent the organization or its infrastructure from feeling the heat when transitioning from monolithic systems to

microservices (Baruah et al., 2024). It also offers the necessary indicators to determine which pieces of the monolithic system should be

migrated first and to recognize interdependencies between several business capabilities.

A phased migration is possible, minimizes risks, and guarantees that the migration will not negatively impact business

processes. As the activity plan will help develop a precise course of action, splitting the migration into segments is easy, ensuring

progress in small, although consistent, steps.

Figure 5: Steps to a Successful Data Migration Plan

Phase F: Transition Planning and Implementation Governance

Phase F includes transition planning and the plan for completing the migration. The final step of this phase is the establishment

of governance procedures that will support the changeover process; they will monitor it and ensure that any complications encountered

during the migration process are dealt with quickly. The kind of governance required during the migration process will help eliminate

issues such as the expansion of the scope of migration, increase in budget costs, and overall time likely to be taken in completing the

process. This phase defines how the resources will be aligned, how the stakeholders' expectations will be controlled, and how operational

disruption will be minimized during the migration. It also defines parameters for evaluating the migration process's success, control

measures, and risk indicators).

Table 2: Mapping TOGAF Phases to Migration Activities

TOGAF

Phase
Key Focus Activities in Migration

Phase A Architecture Vision Define migration objectives, align goals with business strategy, and create a roadmap.

Phase B Business Architecture Analyze current processes, evolve business capabilities, and align operations with microservices.

Phase C
Information Systems

Architecture
Address technological gaps, ensure data integration, and prepare a distributed architecture.

Phase D Technology Architecture
Select and assess technology stacks, ensure scalability, and evaluate tools like containers and

orchestration platforms.

Phase E Roadmap Development Develop a phased migration plan, prioritize system components, and manage dependencies.

Phase F Transition Planning
Implement governance mechanisms, coordinate resources, track progress, and address migration

challenges.

Phase G Risk Management Identify risks, develop mitigation strategies, and engage stakeholders.

Phase H Continuous Evolution Monitor architecture, adapt to business needs, and ensure ongoing optimization.

Phase G: Risk Management and Stakeholder Engagement

The fourth phase of migration is risk management, where risk implications are sought at the early stage of migration, and ways

of managing those risks are established (Simelton et al., 2021). This phase is critical for most migrations to maintain the stability and

structural integrity of the migration process. The risk management provided in TOGAF allows an organization to foresee challenges,

including technological dissimilarities, security threats, and shifts in the business agenda.

Besides risk management, Phase G of the project employs stakeholders' engagement. Stakeholder involvement during the

change process makes everyone aware of their needs and concerns, so change will produce better results and be less disruptive.

Phase H: Ensuring Adaptability through Continuous Architecture Evolution

The last one is Phase H, which tackles the ongoing progress and improvement of the architecture. This way, it is possible to

maintain the architecture of the microservices, the scale, and the ability to create new plans that meet the needs of the business as it

operates after the migration phase. Closely related to this is the continuous monitoring of results, communication, and adaptation process,

which are also key phase tasks.

Figure 6: Phase H- Architecture Change Management

It is necessary to designate a phase of continuous improvements so that migrating to microservices is not an isolated event but

a slow and consistent process. When an architecture is continuously assessed and changed, it is more probable that the microservices

architecture is optimal for the business and up to date with the technology.

3.3. Governance and Risk Management with TOGAF

Risk management and governance have been part of the TOGAF framework because the migration process must be controlled,

aligned with business objectives, and work for different issues. Decision Right TOGAF acknowledges that an organization's decisions

should be relevant to its strategic direction (Kornyshova & Deneckère, 2022). However, it should also be able to address new risks as

they evolve or new requirements arise.

Regarding risk management in TOGAF, risks must be first identified at every phase in the migration process. Then, their

potential impact must be evaluated before any form of mitigation is implemented. Any risk, whether a technological risk concerning a

fresh software technology or an operational risk concerning stakeholder management, is done systematically through TOGAF (Tambo

et al., 2016). The key focus when planning for the migration is the aspect of governance to ensure that the change is successful and does

not bring new problems that are likely to affect the organization's running.

Figure 7: TOGAF Business Scenarios Guide

4. Integrating Migration, Agile, and TOGAF

With organizations integrating modern technologies, transitioning from monolith to microservices architecture has become a

high business priority. This migration is not easy and needs to be executed systematically; otherwise, it will cause more problems than

it solves. Adopting Agile has been harmonized with the TOGAF framework to considerably aid in transitioning from the traditional

business (Schmitz & Wimmer, 2023). Through constant improvement, an integrated approach, utilization of data for decision-making,

and the reduction of technological debt, the organizational dynamics of migration can be managed effectively, and the organization's

technologies can be aligned with its strategic goals.

4.1 Benefits of Combining Agile Methodologies with TOGAF

Incremental Development and Reducing Risks

Agile methodologies are well known for principles such as incremental development. Micro-reach is advantageous when

decomposing large systems like monolith applications into microservices. Agile allows an organization to migrate in segments rather

than as a large project—each segment consists of sprint tasks (Drutchas & Eppinger, 2022). This approach also minimizes the possible

risks when launching many changes simultaneously since smaller changes are easier to perform, evaluate, and approve.

When using Agile, migration efforts can be disaggregated into smaller, deliverable parts, each of which has to correct the

previous one incrementally. The nine phases and the overall structure of the TOGAF framework support this iterative process effectively.

The ADM within TOGAF will see that any migration phase is in harmony with the organization's goals, aims, and long-term plans.

With these methodologies integrated, it risks the new environment a smoother transition and less disruptive, as they can address the new

challenges or changes in business priorities during the migration process (Kommisetty & Abhireddy, 2024; Kumar, 2019).

Cross-Functional Team Collaboration

Agile frameworks require cross-functional synergy among developers, business analysts, operations, and other teams. This

kind of integration is critical in a migration project to provide cross-functional support to address the key goal of a migration initiative,

for instance, user experience. This way, all the sentinel teams are involved in decision-making so that there are coordinated technical

and business solutions to migration.

TOGAF enhances this collaboration by highlighting business and IT alignment through the concept of business architecture. It

makes organizations think of business requirements, processes, and stakeholders during migration's first steps, which is a strong point

of the framework. TOGAF makes it easier to connect technical and business aspects of the migration by keeping the technical focuses

and business drivers aligned so that each migration phase includes reasonable and valuable business adjustments.

Incorporating Stakeholder Feedback

Engaging stakeholders as feedback sources is one of agile's significant principles. This feedback loop plays a vital role in

confirming that the migration is in the correct direction and, more so, checking the solution against the dynamic needs of the business.

It assists teams in responding to the feedback gathered from the company's stakeholders based on the experiences of the end-users and

the changing internal and external business environment.

Feedback can be naturally integrated into the migration process since TOGAF has a structured series of phases (Yudhistira &

Fajar, 2024). The ADM has various cycles where users or stakeholders can interject, which is an effective way to ensure that the

architecture continually adapts according to the firm's requirements. If feedback is beneficial during the migration process, organizations

can improve their migration plans, and the resultant transformation from monolithic systems to microservices is achieved as intended.

Data-Driven Decision-Making

In Agile, using data for decision-making is a central approach to maximizing the value of each process's steps. Real-time data

and performance metrics can facilitate the migration process, including decisions about which components to migrate, which

technologies to adopt for migration, and how to address performance or scalability issues (He & Buyya, 2023).

Combining TOGAF with Agile enables a vision of how the transition occurs, and statistics provides that backup. All stages of

the ADM offer tangible goals, such as evaluating the technology architecture or recognizing the deficiency in the business architecture.

These metrics enable teams to make resource-allocation decisions based on objective rather than perceived data, increasing the

migration's impact, speed, or quality (Ramachandran et al., 2023).

Figure 8: Data-Driven Decision-Making

Minimizing Technical Debt

Technical debt is the expense that comes when opting for the convenient short-term solution instead of the best long-term

solution. Technical debt can be built regarding migration if the application transition from monolithic to microservices is not done

properly (Solberg, 2022). However, with the help of Agile, the amount is reviewed and optimized regularly, and technical debts are paid

as they are accumulated.

This focus on using a process-orientated approach to migration helps ensure that technical debt is not accumulated or is

minimized as much as possible during the migration process. Because the framework avoids the build-up of technical debt by clearly

defining the architecture vision and accepting that every migration phase must add some value, it can be considered innovative. The

continuous improvement methodology, including agile principles of integrating and testing the migrated systems before deploying,

means that the migrated system must be sustainable, extensible, and consonant with future organizational objectives.

4.2 Agile Metrics to Track Migration Progress and Agility

Monitoring a migration project's status is crucial because it has to be aligned with the right course to meet the set goals.

Flexibility of the regular work cycle is based on a set of parameters that reflect the progress of the migration processes with the use of

agile methodologies (Petersen & Wohlin, 2010). All these help the different teams assess the performance of the particular strategy used

and make necessary changes.

One of the work-rate measures most often employed is velocity, which demonstrates how much work can be done during a

certain sprint. Velocity gives a conception of how long it will cost to finish the whole migration or where possible constraints may arise.

Another important metric is cycle time, which represents the time needed to finish a particular task or a feature (Bebortta et al., 2023).

Such a metric is most beneficial when used to locate those portions of the migration process where an increase in performance is possible.

Lead time measures the time between requesting a feature and its implementation. The lead time definition allows organizations to

understand whether they are adjusting quickly to emerging business requirements or customer needs. Together with the repeatedly

outlined structured phases of TOGAF, these metrics give insights into the migration's efficiency and the flexibility of the involved teams

(Visweswara, 2023).

4.3 Agile Governance in Migration

The concept of Agile is then useful in maintaining governance to ensure that the migration process meets the organization's

standards and strategic needs. Agile governance differs from conventional governance models that may slow down the development

and decision-making process through heavy bureaucratic structures; it focuses on making quick decisions while monitoring critical

factors of migration. Agile governance is another concept that refers to the capacity to make quick decisions based on the information

received. Real-time data and feedback can be used to make correct decisions about how to handle migration by the agile teams, which

microservices to focus on first, and what to do about some of the technical problems that may arise (Hedenäs Bennet & Jyborn, 2024).

This makes the migration easier and faster and minimizes interruptions.

Agile governance is not only an adaptation of the principles of its native concept but also a system of flexible governance that

must be combined with strict control. In many ways, these decision-making processes are efficient. However, considerations still need

to happen within the governance structures to ensure the migration will meet the organization's goals, security, and compliance standards

. TOGAF provides a framework for architecture to keep the migration on track while still engendering the necessary levels of flexibility.

For example, through TOGAF's governance framework, risk management practices are implemented, and the organization can reverse

unfavorable circumstances. When integrated with TOGAF's architecture phases, agile governance provides organizations oversight of

the migration process while embracing the speed required for change (Parida et al., 2024). It means that the migration process does not

have to be slow, so it always complies with long-standing business goals.

5. Governance, Monitoring, and Ensuring Success

Assessment programs and controls implemented during migration to smooth the transition from a monolith approach to the

microservices architecture are significant. These processes offer governance, management, and control mechanisms and ensure that

migration objectives correspond to business needs and technological requirements. They also guarantee that the migration process stays

on schedule and that possible dangers are well controlled.

5.1 Levels of Governance during Migration

Managing resources, business objectives, and threats in the transition toward microservices requires an efficient governance

system. Governance frameworks typically operate at three distinct levels: strategic, tactical, and operational. Each level deals with

different issues of migration management, providing a full-covering approach to transition.

• Strategic Governance determines if the migration should be done with the organization's main objectives, vision, and mission.

Other architectural layers like the C-suite or architecture board is charged with the responsibility of overseeing the migration

process to enable the achievement of long-term company goals such as scalability, flexibility and innovation. This level of

governance defines the general direction of the migration and offers a vision for the migration as it aligns with the overreaching

goals of the company.

• Tactical Governance: Tactical governance applies to project decisions and workings at a project level. This level is usually

executed by project managers, senior architects, and technical activists who work towards performing specific key migration

tasks. At this level, decisions on tools, technologies, and methodologies that would be used in the migration are ma, facilitating

the migration successfully executioners to migration its suc. 2018). Tactical governance helps the project remain on the right

track regarding scope, time, and costs.

• Operational Governance: At the operational level, the issue is centralized around a more detailed approach to implementing

the migration plan (Poudel et al., 2023). This involves the management of the delivery, integration, and operation of

microservices as these start to be deployed incrementally. Technical and business migration plans state that operational

governance guarantees that the migration is run as planned and that all arising challenges are managed. The technical and

business needs are met. This also entails the constant assessment and guarantee of the functionality of the old and new systems

during the migration process.

5.2 Monitoring Strategies

Progress should be monitored to ensure that progress is on track and that each risk factor that may hinder the migration process

is detected on time. Several methods are employed to monitor the migration process with a view to ascertaining the quality of the

migrated systems and, more importantly, determining whether migration brings in the anticipated business value.

• Progress Monitoring with Key Metrics: During migration, the most basic preoccupation often is to confirm that the migration

process remains on schedule. It is also important to maintain metrics, including key performance indicators (KPIs) for

measuring the level of the monolithic system to be migrated, the number of microservices, and features and deliveries that

indicate how far the migration has been done. These metrics give a good idea of the state of the migration process and allow

you to determine if there are any obstacles before the migration process has even started.

Figure 9: Monitoring And Evaluating Key Performance Indicators

• Quality Assurance and Defect Monitoring: While moving these systems, there needs to be a focus on the quality of these

microservices to elicit positive results in the long run. The quality of migrated services is continuously checked with the help

of automated testing, bug tracking, and code review to maintain the system's integrity (Monostori & Vancza, 2016). This step

assists in detecting problems early and correcting them before they affect the entire system. Furthermore, if the quality of the

code is measured during migration, the technical debt will not be published and can slow future applications and maintenance.

• Business Value Realization Metrics: The migration process that has been considered should be compared to the effects of

migration on the business. Evaluations used in business value realization are based on operational efficiencies, customer

satisfaction, and time to market for new enhancements. Unfortunately, these metrics assist in guaranteeing that the migration

provides the projected business value and profitability, which also provides a competitive edge to the business organization

(Aaker & Moorman, 2023). To manage this, an organization will benefit from the continuous evaluation of the business value

that results from the migration and be in a better position to create, develop, and implement strategies to meet the expected

migration objectives.

5.3 Ensuring Compliance and Managing Technical Debt

The process should not overlook compliance with standards for the technological and business outcomes achieved.

Management of technical debt is also paramount during the migration. When a migration is being conducted, technical debt may be

quickly incurred when standards and proper processes are not adequately adhered to in the future.

• Ensuring Compliance: Requirements of maintaining the standard and qualification of the industry in migrating the process

cannot be overemphasized. Business entities need to ensure that microservice architecture in their organizations follows the

laws, security measures, and compliance with data privacy (Mashaly et al., 2022). Without continuous monitoring for

compliance and performing periodic audits, it can be challenging to guarantee that the microservices adhere to the mentioned

requirements and other pertinent laws and regulatory guidelines that may affect their legal and operational feasibility.

• Managing Technical Debt: Technological debt may emerge in organizations that are in the process of implementing the

process of breaking down large monolithic systems and replacing them with multiple microservices since this process may be

implemented haphazardly, with an emphasis put on speed, not on the quality of the resultant application. There is always a

need to manage technical debt during the migration by performing code cleanup, imposing coding standards, and applying

modern development paradigms. Continuous code reviewing, unit testing, and progressive adoption of microservices help keep

the architecture lean, maintainable, and scaleable. This is because inadequate technical debt management may affect future

development and be difficult to manage in the long run, owing to maintenance costs.

6. Practical Example: A TOGAF-Led Migration Strategy

6.1 A Case Study-Style Walkthrough

Setting a Vision for Migration

A straightforward and executable vision must be developed before transitioning from monolith structures to microservices.

This vision works as the general reference framework throughout the migration process by anticipating the business goals while factoring

in the technical solutions selected. The effective vision statement not only influences the navigation of migration toward the intended

goals but also cushions against the likelihood of an uncoordinated or misaligned initiative. For example, suppose an organization decides

to scale up and increase flexibility and responsiveness to market requirements. In that case, the migration strategy must consider the

microservices architectural style to achieve these objectives.

Figure 10: Pattern-Oriented Approach for Enterprise Architecture

In the Architecture Vision of TOGAF (Phase A), the migration vision forms the basis for building a roadmap concordant with

the organization's short-term and long-term goals. As in the case of the mission statement presented at the beginning of this paper,

business goals, including higher customer satisfaction, lower costs, and shorter time to get a product to the market, can inform the

creation of this vision. When technical and business goals are in harmony, businesses can shift from monolith architecture to

microservices deliberately and efficiently. This alignment creates a basis for later planning phases and helps achieve organizational

goals and objectives so that the migration process actively contributes to the overall business strategy.

Identifying Business Processes for Evolution

After forming a migration vision, the crucial step is identifying and describing the business processes that transform and

integrate a microservices architecture. This step matches up with TOGAF Phase B, known as Business Architecture. Organizations must

analyze current business practices in this phase to determine future changes or improvements. Doing so allows them to identify which

processes are no longer correct and must be changed to fit the microservices model.

For example, a retail firm that wants to adopt microservices might be required to redesign its order processing and stock control

systems. Hence, such modernization would help make these processes work on their own, which would considerably improve scalability

as well as fault tolerance. The given microservices approach ensures these business units are decoupled and running independently,

allowing for specific optimizations without affecting the organization's entire framework. To this end, the proposed BPM strategy must

involve cross-functional teams, namely, Business Sponsors, Enterprise Architects, and Developers, to determine that the implemented

processes are congruent with the organization's needs and can be easily modified over time (Sommerville, 2015). This kind of integration

ensures that the proposed migration strategy would fill the organization's technical and operational needs.

Phasing Out a Monolith Incrementally

To develop a successful migration strategy, it also needs to be divided into manageable phases. Research has shown that this

option leads to much-reduced risks and instabilities compared to the 'big bang' strategy when the whole system is migrated at a time.

TOGAF's Phase F (Transition Planning) gives a step advancement framework that can be utilized to advance an iterative migration

model.

Such an approach means that activities within the monolithic system are gradually migrated into microservices, where each

stage is independent and can be tested and verified before the next step is executed. For instance, a banking application might start its

transformation journey by moving only its customer management application into microservices, with the remainder of the application

still tightly coupled and fully monolithic. However, this phasing of migration reduces risks and interferences with normal business

operations to allow a gradual incorporation of microservices. Breaking up the migration into small pieces will make the organizations

understand if a problem will interrupt their operations before it happens (Visweswara, 2023).

Aligning Technology Stacks with Business Goals

One of the ideal migration strategy factors that must be considered as a counterface is the business objective and the technology

stack in the receiver organization. Contrary to what one would imagine, shifting from monoliths to microservices is not just a technology

problem but a chance to embrace better-performing, scalable, and easier-to-develop tools and technologies. TOGAF in phase C, called

Information Systems Architecture, also stresses the need to consider the missing technology or adopt microservices.

Figure 11: Kubernetes Deployment Strategy for an Organization

For instance, an organization may implement a container orchestration system such as Kubernetes to manage the running of

microservices. This tool helps to achieve such scale insensitivity and fault tolerance so that the architecture does not become a bottleneck.

As such, choices about the databases, message queues, or any other infrastructural elements that undergird its operations and the

proposed solutions correspond to an organization's operational and business needs (Khabouze, 2022). In this way, the migration and the

general organization of the technology stack align with the business goals and objectives and minimize the chances of future conflict

between the technology providers, led by the IT department, and the business teams who depend on the IT systems and services.

Continual Improvement and Changes

TOGAF is an important organizational concept emphasizing constant architectural change, as discussed in Phase H

(Architecture Change Management). This principle states that the migration process must be considered continuous rather than one-

time. After adopting a microservices architecture, organizations need to learn how to define and implement ways to keep improving this

new architectural style.

The cycle of integration and deployment enables continuous modifications, improvements in the microservices structure, and

incorporation of several features of agile methodologies. It also means that the architecture is constantly developing while the

organization grows and business requirements change. Stakeholder and user feedback are critical as they offer insights for the next

enhancement. For example, when a company has shifted a customer management system, feedback is employed to enhance the system

before transferring other business processes. This ensures that each migration phase provides real business benefits and is oriented in

line with the organization's goals and aims.

6.2 Highlight Key Lessons Learned

It is possible to derive several critical lessons learned from this case study to inform other future migration initiatives using

TOGAF principles. There should be a conception or a set of goals corresponding to which migration will occur and which goals must

be achieved in the organization. Without determining priorities, the migration process can lose focus and get distorted in objectives,

which would be costly for organizations and hike their operational risks. It helps achieve an organization’s objectives in the short term

and embrace long-term organizational strategies and plans. Another lesson that has emerged is that it is appropriate to divide the

migration into several phases so that a large amount of data is handled systematically. This approach ensures progress in each phase

before the other since it is not disruptive to normal organizational operations. The phased approach also contains possibilities for testing

and verifications, which means that each part of the microservice architecture works properly. This incremental strategy minimizes the

risks always associated with large-scale migrations while making the process less painful overall.

Another factor that does come out as a potential torchbearer is the kind of technology stacks implemented. Where there exists

a disconnection between the technological potential and business needs in an organization, there can be more danger to performance

through Cognitive misfit. Hence, the chosen technologies must reflect the operation goals and needs of the organization effectively (Yan

& Dooley, 2013). Furthermore, considerations of security, scalability, and technical obligation arising from technological decisions and

designs remain crucial factors resulting from the migration process and, therefore, should be well considered by the right and relevant

authorities. Another valuable lesson learned during the study is the essence of the feedback and the improvement process. However, it

needs to be integrated with feedback mechanisms that would allow for changes in the migration architecture based on the expected

changes in the business needs and users. Such an approach serves not only the purpose of improving the effectiveness of the migration

process but also encourages the constant evolution of the organization’s processes.

Another important factor that needs to be paid special attention to is flexibility. When used with TOGAF, these methodologies

give organizations a way of dealing with situations and sticking to barriers without compromising the entire migration process. Such

approaches help teams see new information and circumstances about the general goal of migration and adjust it if necessary. Strong

governance systems and structures are critical to successful migration. All these mechanisms assist in passing information, managing

risks, and ensuring that the organizational migration process is businesslike. By keeping oversight of the migration process at the

strategic, tactical, and operational levels, potential problems can be predicted and solved in advance, and the positive outcomes of the

migration are achieved (Chuang, 2022). The findings of this case study demonstrate the need for planning, a gradual approach, and

optimization when it comes to migrating to microservices. When using TOGAF and incorporating agility concepts, organizations can

adapt to migration challenges and harness microservices architecture. These principles not only help in technical migration but also help

in bringing about business transformation, which is essential to ensure that the change process being implemented is beneficial for the

organization.

7. Challenges and Best Practices

7.1. Common Challenges in Migration

The transition from a monolithic system to microservices exposes various issues that may complicate the project’s successful

implementation. These challenges include the organizational culture that opposes change, the conveying of change, and finally, the

problems associated with the complexity that results from distributed systems.

Resistance to Change

Another typical issue that organizations encounter while migrating is cultural resistance from personnel and other stakeholders.

This resistance is due to the ease with which individuals stick to already established systems, the anxiety created by the possibility of

interruption when migrating to a new system, and the control an implemented system exerts over different processes (Hidalgo and

Ferreiro, 2020). Because monolithic systems have been developed over a long period for some employees, changing the ways of working

or introducing new tools and technologies becomes complicated and can thus hamper the migration process. This resistance has to be

tackled by organizations by enhancing a culture of openness and innovation. To these concerns, adequate training and resources to assist

staff in transition could help ease these and thus adopt microservices.

Managing Complexity

This migration from monolithic systems to microservices is complex by design because it involves distributed structures. While

monolith is characterized by a single code and a single database, microservices are an assembly of different parts, each of which is a

small service to be managed and coordinated in different teams. The added scalability is not only a technical issue, which would be

issues such as data transfer between the services and ensuring data integrity, but also an organizational problem for arranging the cross-

functional teams with different goals and schedules. Such complexity can only be effectively managed by effective architecture planning

and a migration program that is structured in phases, each of which is fully executed before the next is attempted. If the organization is

not very strategic about the migration process, it may lead to performance complications, higher overhead costs, and scattered business

logic.

Balancing Speed and Quality

Several important issues can be observed when discussing migration, including the problem of speed at the cost of quality and

reliability. The nature of the migration process is that, sometimes, the migration to microservices must occur quickly, and this pressure

comes from several business demands, which in turn result in the creation of shortcuts that affect the quality of the developed

microservices. While striving to complete them on time is not wrong, it has several drawbacks that manifest themselves as security

flaws, suboptimal code, and setting up technical debts that make subsequent enhancements more challenging. This balance has to be

tightly governed and quality-checked throughout the migration process to avoid the creation of one extreme at the expense of the other.

To minimize these risks while making sure that the new architecture of microservices meets the set quality standards, the following

measures should be employed (Milić & Makajić-Nikolić, 2022).

7.2. Best Practices for Success

Some of the best practices organizations use as they migrate to microservices eliminate the mentioned challenges. Such best

practices include communication and synchronization, partial migration techniques, and frequent testing and validation.

Clear Communication and Alignment

The process of migrating should have a clear and coherent message. For the planning of the migration, various stakeholders on

the technical aspect and other business aspects of the organization need to be on the same page concerning the goals and expectations

of the migration. Therefore, there is a clear and mutually understood understanding of why the migration occurs, the end vision, and

how the success will be evaluated. Further, communication is also useful in pointing out other problems or challenges to the flow of

work and effectively managing them to avoid time wastage or confusion of one form (Daim et al., 2012). Scheduled progress sessions,

status check-ins, and reporting structures can align everyone and assist in addressing issues. The post of a migration champion or

dedicated project manager can contribute greatly to efficient communication and decision-making processes.

Using Hybrid Migration Approaches

A blended migration strategy within which organizations can move away from monoliths incrementally while adopting

microservices in a more significant step is a useful model. This approach helps avoid the shocks inherent to full-blown microservices

adoption and offers a way to fix problems when they emerge. Rather than moving the entire system, which is usually full of

complications and may require extensive time for the system to come up, organizations can migrate one business function or module at

a time (Nyati, 2018). This helps teams integrate the microservices in a modular fashion, where they are designed so that it is easier to

recognize if there is a problem. The hybrid approach also allows for changing the migration strategy depending on the feedback and

issues that were met regarding migration.

Figure 12: Effective Hybrid Cloud Migration Strategy

Continuous Testing and Feedback Loops

Testing and feedback are important so that the migration process will continue effectively and the newly created microservices

address the business and technical needs. Due to the continuous evolution of microservices, integration testing is crucial across the

development life cycle to ensure continued functionality, performance, and security (Orazi et al., 2020). Integration testing and

automated testing frameworks spotted during the early stages of testing can help deal with screw-ups early enough to avoid making the

problem bigger and more costly. In addition, user feedback and stakeholders’ feedback should be collected frequently to evaluate if the

migration will bring the expected business benefits (Hidalgo & Ferreiro, 2020). Asking for feedback means that the migration strategy

can be changed as the process progresses while staying true to the organizational objectives. This work-in-progress approach can also

help control technical debt as it can fix problems when they arise and not pile up for a long time.

8. Potential Future Research

Microservices architecture has been a hot topic, but the move from monolithic systems is an area that still holds the most

potential for more development. As this paper shows how TOGAF’s ADM framework and Agile principles can be used for such a

migration, several directions for future research can enhance this field more.

• Expanding the Scope of TOGAF in Distributed Architectures: It is logical to continue the development of TOGAF to focus

on the second characteristic of complex structures, such as microservices and distributed systems. Even though TOGAF has a

good structure and enables good governance and planning, it may be adapted for the more constantly changing and

uncentralized architectures. It would be beneficial for future researchers to explore the possibility of using TOGAF in tandem

with newer frameworks that pertain to distributed systems where ideas such as domain-drive design or event-driven

architectures may be applicable (Pinheiro, 2019). Furthermore, it may be useful to understand how TOGAF could be prepared

to function in edge computing typology, wherein microservices cooperate with IoT devices and low-latency applications.

Figure 13: An example of TOGAF Architecture Project

• Machine Learning for Migration Optimization: It is interesting to investigate the application of ML-driven prediction and

optimization of migration. ML models could be trained to analyze the current monolithic systems and determine which strategy

of microservices segmentation would suit the given system better, thus taking into account such parameters as scalability,

loading, and fault tolerance. Furthermore, the ML algorithms could be designed to constantly watch how the microservices are

performing after the migration, provide proactive advice if a failure is likely, and constantly update the configurations that are

best for the systems.

• Addressing Security and Compliance in Microservices Migration: The transition to the new microservices architecture comes

with its own risks, such as new vectors of attacks and new ways of managing APIs. Alternatively, future research can work on

accommodations of universal security patterns offered by other architectures adapted to microservices. This is accomplished

through recognizing, for instance, how TOGAF’s risk management concepts can be incorporated with zero trust models and

timely threat identification frameworks. Moreover, as privacy protection laws are getting stricter around the globe, it may be

more beneficial to study the compliance measures for microservices, how to follow GDPR and CCPA rules, and so on (Farhadi,

2021).

• Hybrid and Incremental Migration Strategies: While this study encourages using phased migration as one of the best practices

we outline, future work could further explore schemes combining phased and big bang migration. Research could also compare

these approaches in terms of cost, time, and risk using industries with differing technological environments. Research of this

kind might reveal how to optimize decisions regarding individuals and teams to recognize organizational realities while

embracing the need for high-velocity change.

• Enhancing Collaboration through DevOps and Agile Practices: This is why understanding the part of Agile and DevOps in

enabling microservices migration is an under-researched area. It could also be about presenting certain activities in Agile as

specific practices on scopes within large-scale migrations. Case studies could explore how organizations might improve the

alignment of DevOps Pipelines with TOGAF and how these being in place can enhance interaction across departments and

improve deployment cycles (Camilleri, 2022). Such a line of research would be especially pertinent to enterprises in especially

stringent industries, including the financial or healthcare sectors.

Figure 14: Exploring the Benefits of Combining DevOps and Agile

• Exploring Sustainability in IT Modernization: As sustainability emerges as a global concern, further studies should reveal

how the modernization agenda, like the microservices migration, could support sustainability targets. Research works could

compare the energy footprint of monolithic and microservices designs and analyze where green technologies can be applied

when transitioning from one design to the other. The investigation could also examine how architectures like containerization

and serverless help lower an organization’s environmental impact.

• Evaluating Long-Term Business Impacts: On the technical side, microservices have been demonstrated to have numerous

benefits when implemented, but their effects on the longer-term business arrangement remain clear. Subsequent research should

explore the effects of microservices on organizational adaptability, customer satisfaction, and innovation in the long run (Mobit,

I2023). Multi-year research in various industries may give evidence of the unique value of microservices in the strategic

management of companies to support the perceived lack of such investigations in the majority of scientific articles, which is

dominated by technical considerations.

• Incorporating Feedback Loops and Continuous Improvement: Agile development is iterative and based on feedback in

successive cycles, making it suitable for feedback learning. Still, its applicability in perpetual architecture evolution is not fully

exploited. Future investigations might look at how to institutionalize the reception of student feedback into the architectural

models for governing microservices and guarantee that the structures adapt continuously to the dynamics encompassing

business and technology. Additionally, research can be devoted to the application of AI-based tools for collecting and

processing data on users’ activity and the utilization of such data in updating the system.

• Cross-Industry Applications and Customization: Future research could address the similarities and differences of

microservices migration across different industry sectors. For example, the requirements of a financial application could be

compliance and fault tolerance, whereas those of an e-commerce application could be scales and real-time analysis. Industry-

specific frameworks that are more specific could greatly improve the use and flexibility of TOGAF and Agile principles in

microservices conversion. By considering these potential future research directions, the field can continue to improve and offer

better solutions for organizations adopting microservices architecture while maintaining relevance to the ever-changing

business and technological context.

9. Conclusion

It is not a secret that the shift from monolithic structures to using microservices is a push that is growing more critical for

companies that wish to stay relevant in a world of constant technological advancement. Monolithic systems are easier to design and

implement than microservices but have limited scalability, are challenging to maintain, and are not robust. While these features seem

natural in small organizations, they become serious limitations as they evolve. They must meet new customer needs and alter the offering

to fit their requirements better. On the other hand, microservices offer a sound architecture that can accommodate these challenges and

help organizations become more agile and adopt emerging technologies. Achieving success in this migration process is facilitated by

frameworks consisting of TOGAF (The Open Group Architecture Framework). TOGAF has its Framework Administration Apparatus

(ADM), an orderly procedure to assist organizations in dealing with complex change management, especially while transitioning from

monolithic architecture to microservices architecture. The ADM makes the transition formal, enterprise-focused, and risk-aware

simultaneously. TOGAF spans eight phases. Its main goal is not only to align architectural visions, revolve the business processes, and

guide on how to integrate technology and manage change but also to provide a gradual transition plan, unlike applying big changes at

once, leading to the occurrence of risk.

Using TOGAF, organizations can plan migration in phases that do not affect system functionality, hence allowing for efficiency

in migration. In addition, integrating TOGAF with agile frameworks improves the migration process through continuous development

methodologies, adaptability, and feedback integration. The principles of agility allow the migration project to be divided into possible

sub-tasks so businesses can implement the changes steadily and concurrently with the delivery of other tasks. By taking this iterative

approach, it is possible to mitigate the risks inherent in migration and check that each step in the migration process delivers the envisaged

value and meets the organization's strategic goals. However, it is also important to note that though the benefits of microservices are

quite apparent, the migration journey is not easy. Another challenge that organizations may encounter during this transition is cultural

resistance, the challenge arising from the fact that managing distributed systems can be rather complicated, and the final challenge

concerns the fine line between moving fast and delivering quality work. All of these must be brought down through effective and

efficient interpersonal and group communication, strategic planning, enhanced operational and technology management, and testing

with feedback. Companies should embrace trends such as the hybrid migration approach, which gradually makes the transition to

microservices, and good governance, which deals with the migration process.

It is a technological and strategic change for a business to choose microservices architecture. Implementing the transition can

be smooth, with lower risk, and achieve organizational goals if organizations use a well-developed framework such as TOGAF. The use

of both TOGAF and Agile as frameworks to facilitate this process makes leveraging them for such a task a very sensible approach to

achieving this complex change in a way that maintains organizational flexibility, robustness, and capability to respond to new

technological realities adequately. This paper describes how organizations can successfully transition to a microservices architecture,

allowing them to grow and develop in the constantly evolving business world by adopting precise planning and implementation and a

continuous assessment of the project.

COMPETING INTERESTS

Authors have declared that they have no known competing financial interests OR non-financial interests OR personal

relationships that could have appeared to influence the work reported in this paper.

Disclaimer (Artificial intelligence)

Option 1:

Author(s) hereby declare that NO generative AI technologies such as Large Language Models (ChatGPT, COPILOT, etc.)

and text-to-image generators have been used during the writing or editing of this manuscript.

Option 2:

Author(s) hereby declare that generative AI technologies such as Large Language Models, etc. have been used during the

writing or editing of manuscripts. This explanation will include the name, version, model, and source of the generative AI

technology and as well as all input prompts provided to the generative AI technology

Details of the AI usage are given below:

1.

2.

3.

References;

1. Aaker, D. A., & Moorman, C. (2023). Strategic market management. John Wiley & Sons.

https://books.google.com/books?hl=en&lr=&id=_TDaEAAAQBAJ&oi=fnd&pg=IA2&dq=1.%09Aaker,+D.+A.,+%26+Moorma

n,+C.+(2023).+Strategic+market+management.+John+Wiley+%26+Sons.&ots=uEjDvpKdfL&sig=X2pBRg9cUBW1XUopL9w

AgWvhpIQ

2. Auer, F., Lenarduzzi, V., Felderer, M., & Taibi, D. (2021). From monolithic systems to microservices: An assessment

framework. Information and Software Technology, 137, 106600.

https://www.sciencedirect.com/science/article/pii/S0950584921000793

3. Bagwani, M. K., & Shrivastava, G. K. (2024). Performance comparison of REST API and GraphQL in a

microservices architecture. Proceedings of the International Conference on Data Science, Artificial

Intelligence, and Machine Learning, 409.
4. Baruah, B., Vivekanandha, A., & Ramadoss, K. (2024). Introduction: Why Evolve from Infrastructure to Innovation with SAP on

AWS?. In Evolve from Infrastructure to Innovation with SAP on AWS: Strategize Beyond Infrastructure for Extending your SAP

applications, Data Management, IoT & AI/ML integration and IT Operations using AWS Services (pp. 1-72). Berkeley, CA: Apress.

https://link.springer.com/chapter/10.1007/979-8-8688-0890-6_1

5. Bebortta, S., Tripathy, S. S., Modibbo, U. M., & Ali, I. (2023). An optimal fog-cloud offloading framework for big data optimization

in heterogeneous IoT networks. Decision Analytics Journal, 8, 100295.

https://www.sciencedirect.com/science/article/pii/S2772662223001352

6. Camilleri, R. (2022). Adoption of IT Governance Strategies for Multiproduct DevOps Teams: A Correlational Quantitative

Study (Doctoral dissertation, Walden University).

https://scholarworks.waldenu.edu/cgi/viewcontent.cgi?article=14515&context=dissertations

7. Chuang, J. A. (2022). The International Organization for Migration and New Global Migration Governance. Harv. Int'l LJ, 63, 401.

https://journals.law.harvard.edu/ilj/wp-content/uploads/sites/84/HLI205_crop-3.pdf

8. Daim, T. U., Ha, A., Reutiman, S., Hughes, B., Pathak, U., Bynum, W., & Bhatla, A. (2012). Exploring the communication

breakdown in global virtual teams. International journal of project management, 30(2), 199-212.

https://www.academia.edu/download/45407940/Daim-comm_bdown-121.pdf

9. Drutchas, J., & Eppinger, S. (2022). Guidance on application of agile in combined hardware and software development

projects. Proceedings of the Design Society, 2, 151-160. https://www.cambridge.org/core/services/aop-cambridge-

core/content/view/5978631E6BADD6EA7E8559938852B8D5/S2732527X22000165a.pdf/guidance_on_application_of_agile_in_

combined_hardware_and_software_development_projects.pdf

10. Farhadi, M. (2021). Automated application privacy compliance checking in distributed Fog environments (Doctoral dissertation,

Université de Rennes 1). https://inria.hal.science/tel-03420748/file/thesis-v2.pdf

11. Gill, A. (2018). Developing A Real-Time Electronic Funds Transfer System for Credit Unions. International Journal of Advanced

Research in Engineering and Technology, 9(1), 162-184. Retrieved from

https://iaeme.com/Home/issue/IJARET?Volume=9&Issue=1

12. He, T., & Buyya, R. (2023). A taxonomy of live migration management in cloud computing. ACM Computing Surveys, 56(3), 1-

33. https://arxiv.org/pdf/2112.02593

13. Hedenäs Bennet, O., & Jyborn, A. (2024). The Data Management of a Microservices Migration of Embedded Software-Strategies

and Challenges in Migrating Embedded Software to Microservices Architecture. https://odr.chalmers.se/bitstreams/8e84414a-

7b76-40d0-8f7b-54eb8cefe258/download

https://books.google.com/books?hl=en&lr=&id=_TDaEAAAQBAJ&oi=fnd&pg=IA2&dq=1.%09Aaker,+D.+A.,+%26+Moorman,+C.+(2023).+Strategic+market+management.+John+Wiley+%26+Sons.&ots=uEjDvpKdfL&sig=X2pBRg9cUBW1XUopL9wAgWvhpIQ
https://books.google.com/books?hl=en&lr=&id=_TDaEAAAQBAJ&oi=fnd&pg=IA2&dq=1.%09Aaker,+D.+A.,+%26+Moorman,+C.+(2023).+Strategic+market+management.+John+Wiley+%26+Sons.&ots=uEjDvpKdfL&sig=X2pBRg9cUBW1XUopL9wAgWvhpIQ
https://books.google.com/books?hl=en&lr=&id=_TDaEAAAQBAJ&oi=fnd&pg=IA2&dq=1.%09Aaker,+D.+A.,+%26+Moorman,+C.+(2023).+Strategic+market+management.+John+Wiley+%26+Sons.&ots=uEjDvpKdfL&sig=X2pBRg9cUBW1XUopL9wAgWvhpIQ
https://www.sciencedirect.com/science/article/pii/S0950584921000793
https://link.springer.com/chapter/10.1007/979-8-8688-0890-6_1
https://www.sciencedirect.com/science/article/pii/S2772662223001352
https://scholarworks.waldenu.edu/cgi/viewcontent.cgi?article=14515&context=dissertations
https://journals.law.harvard.edu/ilj/wp-content/uploads/sites/84/HLI205_crop-3.pdf
https://www.academia.edu/download/45407940/Daim-comm_bdown-121.pdf
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/5978631E6BADD6EA7E8559938852B8D5/S2732527X22000165a.pdf/guidance_on_application_of_agile_in_combined_hardware_and_software_development_projects.pdf
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/5978631E6BADD6EA7E8559938852B8D5/S2732527X22000165a.pdf/guidance_on_application_of_agile_in_combined_hardware_and_software_development_projects.pdf
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/5978631E6BADD6EA7E8559938852B8D5/S2732527X22000165a.pdf/guidance_on_application_of_agile_in_combined_hardware_and_software_development_projects.pdf
https://inria.hal.science/tel-03420748/file/thesis-v2.pdf
https://iaeme.com/Home/issue/IJARET?Volume=9&Issue=1
https://arxiv.org/pdf/2112.02593
https://odr.chalmers.se/bitstreams/8e84414a-7b76-40d0-8f7b-54eb8cefe258/download
https://odr.chalmers.se/bitstreams/8e84414a-7b76-40d0-8f7b-54eb8cefe258/download

14. Hedenäs Bennet, O., & Jyborn, A. (2024). The data management of a microservices migration of embedded

software: Strategies and challenges in migrating embedded software to microservices architecture.

Chalmers University of Technology. Retrieved from https://odr.chalmers.se/bitstreams/8e84414a-7b76-

40d0-8f7b-54eb8cefe258/download
15. Hidalgo, R., & Ferreiro, P. (2020). Overcoming resistance to change in microservices adoption. International Journal of Business

and Technology Management, 25(3), 230-242.

16. Khabouze, R. (2022). Modernization of Legacy Information Technology Systems (Doctoral dissertation, Walden University).

https://scholarworks.waldenu.edu/cgi/viewcontent.cgi?article=14014&context=dissertations

17. Kommisetty, P. D. N. K., & Abhireddy, N. (2024). Cloud Migration Strategies: Ensuring Seamless Integration and Scalability in

Dynamic Business Environments. International Journal of Engineering and Computer Science, 13(04), 26146-26156.

https://www.researchgate.net/profile/Phani-Durga-Nanda-Kishore-

Kommisetty/publication/383313290_Cloud_Migration_Strategies_Ensuring_Seamless_Integration_and_Scalability_in_Dynamic

_Business_Environments/links/66c8831f920e05672e48cbb2/Cloud-Migration-Strategies-Ensuring-Seamless-Integration-and-

Scalability-in-Dynamic-Business-Environments.pdf

18. Kornyshova, E., & Deneckère, R. (2022). A proposal of a situational approach for enterprise architecture frameworks: application

to TOGAF. Procedia Computer Science, 207, 3499-3506.

https://www.sciencedirect.com/science/article/pii/S187705092201300X/pdf?md5=7344eb22d38beb962482298c57cc2e43&pid=1

-s2.0-S187705092201300X-main.pdf

19. Kumar, A. (2019). The convergence of predictive analytics in driving business intelligence and enhancing DevOps efficiency.

International Journal of Computational Engineering and Management, 6(6), 118-142. Retrieved from https://ijcem.in/wp-

content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-

ENHANCING-DEVOPS-EFFICIENCY.pdf

20. Lankhorst, M., Proper, H., & Vliet, H. (2020). A framework for enterprise architecture: The TOGAF approach. Enterprise

Architecture Journal, 14(2), 10-21. https://www.taylorfrancis.com/chapters/edit/10.4324/9781351037785-4/enterprise-

architecture-marlies-van-steenbergen

21. Mashaly, B., Selim, S., Yousef, A. H., & Fouad, K. M. (2022, May). Privacy by Design: A Microservices-Based Software

Architecture Approach. In 2022 2nd International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC) (pp. 357-

364). IEEE.

https://ieeexplore.ieee.org/iel7/9781670/9781642/09781685.pdf?casa_token=gERGFm3BInUAAAAA:v1uMSsD_iI2oPVEKocz9

hhBdD3lBrmDSQPb5-l8q240UNhW3VaXen6f4dn-I-B6jtjFLEg4YWus

22. May, M. C., Glatter, D., Arnold, D., Pfeffer, D., & Lanza, G. (2024). IIoT System Canvas—From architecture patterns towards an

IIoT development framework. Journal of Manufacturing Systems, 72, 437-459.

https://www.sciencedirect.com/science/article/pii/S0278612523002492

23. Milić, M., & Makajić-Nikolić, D. (2022). Development of a quality-based model for software architecture optimization: a case

study of monolith and microservice architectures. Symmetry, 14(9), 1824. https://www.mdpi.com/2073-8994/14/9/1824/pdf

24. Mobit, I. A. C. (2023). Technological, Organizational, and Environmental Factors and the Adoption of Microservices in the

Financial Services Sector. Robert Morris University.

https://search.proquest.com/openview/856cdf116f043ef9125979143fd1d270/1.pdf?pq-origsite=gscholar&cbl=18750&diss=y

25. Nookala, G. (2023). Microservices and Data Architecture: Aligning Scalability with Data Flow. International Journal of Digital

Innovation, 4(1). https://researchworkx.com/index.php/ijdi/article/download/19/19

26. Nyati, S. (2018). Revolutionizing LTL carrier operations: A comprehensive analysis of an algorithm-driven pickup and delivery

dispatching solution. International Journal of Science and Research (IJSR), 7(2), 1659-1666.

https://www.ijsr.net/getabstract.php?paperid=SR24203183637

27. Nyati, S. (2018). Transforming telematics in fleet management: Innovations in asset tracking, efficiency, and communication.

International Journal of Science and Research (IJSR), 7(10), 1804-1810.

https://www.ijsr.net/getabstract.php?paperid=SR24203184230

28. Orazi, G., Vallittu, K., Sainio, P., & Virtanen, S. (2020, September). Enhancing and integration of security testing in the

development of a microservices environment. https://www.utupub.fi/bitstream/handle/10024/150701/orazi_master_thesis.pdf
29. Parida, P. R., Ramalingam, S., & Burila, R. K. (2024). Enterprise Architecture Frameworks for Cloud Transformation: Aligning

Business Strategy with Cloud Migration Goals. Journal of Artificial Intelligence Research and Applications, 4(1), 818-859.
https://aimlstudies.co.uk/index.php/jaira/article/download/299/288

30. Petersen, K., & Wohlin, C. (2010). The effect of moving from a plan-driven to an incremental software development approach with

agile practices: An industrial case study. Empirical Software Engineering, 15, 654-693. https://www.researchgate.net/profile/Kai-

Petersen/publication/225120572_The_effect_of_moving_from_a_plan-

driven_to_an_incremental_software_development_approach_with_agile_practices_An_industrial_case_study/links/555b31da08a

e6943a87946a5/The-effect-of-moving-from-a-plan-driven-to-an-incremental-software-development-approach-with-agile-

practices-An-industrial-case-study.pdf

https://odr.chalmers.se/bitstreams/8e84414a-7b76-40d0-8f7b-54eb8cefe258/download
https://odr.chalmers.se/bitstreams/8e84414a-7b76-40d0-8f7b-54eb8cefe258/download
https://scholarworks.waldenu.edu/cgi/viewcontent.cgi?article=14014&context=dissertations
https://www.researchgate.net/profile/Phani-Durga-Nanda-Kishore-Kommisetty/publication/383313290_Cloud_Migration_Strategies_Ensuring_Seamless_Integration_and_Scalability_in_Dynamic_Business_Environments/links/66c8831f920e05672e48cbb2/Cloud-Migration-Strategies-Ensuring-Seamless-Integration-and-Scalability-in-Dynamic-Business-Environments.pdf
https://www.researchgate.net/profile/Phani-Durga-Nanda-Kishore-Kommisetty/publication/383313290_Cloud_Migration_Strategies_Ensuring_Seamless_Integration_and_Scalability_in_Dynamic_Business_Environments/links/66c8831f920e05672e48cbb2/Cloud-Migration-Strategies-Ensuring-Seamless-Integration-and-Scalability-in-Dynamic-Business-Environments.pdf
https://www.researchgate.net/profile/Phani-Durga-Nanda-Kishore-Kommisetty/publication/383313290_Cloud_Migration_Strategies_Ensuring_Seamless_Integration_and_Scalability_in_Dynamic_Business_Environments/links/66c8831f920e05672e48cbb2/Cloud-Migration-Strategies-Ensuring-Seamless-Integration-and-Scalability-in-Dynamic-Business-Environments.pdf
https://www.researchgate.net/profile/Phani-Durga-Nanda-Kishore-Kommisetty/publication/383313290_Cloud_Migration_Strategies_Ensuring_Seamless_Integration_and_Scalability_in_Dynamic_Business_Environments/links/66c8831f920e05672e48cbb2/Cloud-Migration-Strategies-Ensuring-Seamless-Integration-and-Scalability-in-Dynamic-Business-Environments.pdf
https://www.sciencedirect.com/science/article/pii/S187705092201300X/pdf?md5=7344eb22d38beb962482298c57cc2e43&pid=1-s2.0-S187705092201300X-main.pdf
https://www.sciencedirect.com/science/article/pii/S187705092201300X/pdf?md5=7344eb22d38beb962482298c57cc2e43&pid=1-s2.0-S187705092201300X-main.pdf
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://www.taylorfrancis.com/chapters/edit/10.4324/9781351037785-4/enterprise-architecture-marlies-van-steenbergen
https://www.taylorfrancis.com/chapters/edit/10.4324/9781351037785-4/enterprise-architecture-marlies-van-steenbergen
https://ieeexplore.ieee.org/iel7/9781670/9781642/09781685.pdf?casa_token=gERGFm3BInUAAAAA:v1uMSsD_iI2oPVEKocz9hhBdD3lBrmDSQPb5-l8q240UNhW3VaXen6f4dn-I-B6jtjFLEg4YWus
https://ieeexplore.ieee.org/iel7/9781670/9781642/09781685.pdf?casa_token=gERGFm3BInUAAAAA:v1uMSsD_iI2oPVEKocz9hhBdD3lBrmDSQPb5-l8q240UNhW3VaXen6f4dn-I-B6jtjFLEg4YWus
https://www.sciencedirect.com/science/article/pii/S0278612523002492
https://www.mdpi.com/2073-8994/14/9/1824/pdf
https://search.proquest.com/openview/856cdf116f043ef9125979143fd1d270/1.pdf?pq-origsite=gscholar&cbl=18750&diss=y
https://researchworkx.com/index.php/ijdi/article/download/19/19
https://www.ijsr.net/getabstract.php?paperid=SR24203183637
https://www.ijsr.net/getabstract.php?paperid=SR24203184230
https://www.utupub.fi/bitstream/handle/10024/150701/orazi_master_thesis.pdf
https://aimlstudies.co.uk/index.php/jaira/article/download/299/288
https://www.researchgate.net/profile/Kai-Petersen/publication/225120572_The_effect_of_moving_from_a_plan-driven_to_an_incremental_software_development_approach_with_agile_practices_An_industrial_case_study/links/555b31da08ae6943a87946a5/The-effect-of-moving-from-a-plan-driven-to-an-incremental-software-development-approach-with-agile-practices-An-industrial-case-study.pdf
https://www.researchgate.net/profile/Kai-Petersen/publication/225120572_The_effect_of_moving_from_a_plan-driven_to_an_incremental_software_development_approach_with_agile_practices_An_industrial_case_study/links/555b31da08ae6943a87946a5/The-effect-of-moving-from-a-plan-driven-to-an-incremental-software-development-approach-with-agile-practices-An-industrial-case-study.pdf
https://www.researchgate.net/profile/Kai-Petersen/publication/225120572_The_effect_of_moving_from_a_plan-driven_to_an_incremental_software_development_approach_with_agile_practices_An_industrial_case_study/links/555b31da08ae6943a87946a5/The-effect-of-moving-from-a-plan-driven-to-an-incremental-software-development-approach-with-agile-practices-An-industrial-case-study.pdf
https://www.researchgate.net/profile/Kai-Petersen/publication/225120572_The_effect_of_moving_from_a_plan-driven_to_an_incremental_software_development_approach_with_agile_practices_An_industrial_case_study/links/555b31da08ae6943a87946a5/The-effect-of-moving-from-a-plan-driven-to-an-incremental-software-development-approach-with-agile-practices-An-industrial-case-study.pdf
https://www.researchgate.net/profile/Kai-Petersen/publication/225120572_The_effect_of_moving_from_a_plan-driven_to_an_incremental_software_development_approach_with_agile_practices_An_industrial_case_study/links/555b31da08ae6943a87946a5/The-effect-of-moving-from-a-plan-driven-to-an-incremental-software-development-approach-with-agile-practices-An-industrial-case-study.pdf

31. Pinheiro, C. R. (2019). The role of enterprise architecture management in microservice architecture adoption: the key aspects to

govern the microservice architecture (Master's thesis, Universidade Aberta (Portugal)).

https://repositorioaberto.uab.pt/bitstream/10400.2/9871/1/TMISE_CarlosPinheiro.pdf

32. Poudel, L., Elagandula, S., Zhou, W., & Sha, Z. (2023). Decentralized and centralized planning for multi-robot additive

manufacturing. Journal of Mechanical Design, 145(1), 012003. https://asmedigitalcollection.asme.org/mechanicaldesign/article-

pdf/145/1/012003/6926701/md_145_1_012003.pdf

33. Rahman, T., Nwokeji, J., & Manjunath, T. V. (2022). Analysis of Current Trends in Software Aging: A Literature Survey. Computer

and Information Science, 15(4), 1-19.

https://scholar.archive.org/work/klkddoofgzbe5d5pnspsq53nvq/access/wayback/https://ccsenet.org/journal/index.php/cis/article/d

ownload/0/0/47656/51114

34. Ramachandran, R., Vadlamani, S., Kumar, A., Goel, O., Agarwal, R., & Jain, S. (2023). Data Migration Strategies for Seamless

ERP System Upgrades. International Journal of Computer Science and Engineering (IJCSE), 12(2), 431-462.
https://www.researchgate.net/profile/Ramya-Ramachandran-

6/publication/387534566_DATA_MIGRATION_STRATEGIES_FOR_SEAMLESS_ERP_SYSTEM_UPGRADES/links/67732b

f9894c5520853632b3/DATA-MIGRATION-STRATEGIES-FOR-SEAMLESS-ERP-SYSTEM-UPGRADES.pdf

35. Rinaldi, R., Khairul, K., Wijaya, R. F., Nasution, D., & Siahaan, A. P. U. (2024). Enterprise Architecture Using TOGAF ADM to

Support Smart Campus at STAI Raudhatul Akmal. Jurnal Info Sains: Informatika dan Sains, 14(04), 619-630.

https://ejournal.seaninstitute.or.id/index.php/InfoSains/article/download/5617/4413

36. Saboor, A., Hassan, M. F., Akbar, R., Shah, S. N. M., Hassan, F., Magsi, S. A., & Siddiqui, M. A. (2022). Containerized

microservices orchestration and provisioning in cloud computing: A conceptual framework and future perspectives. Applied

Sciences, 12(12), 5793. https://www.mdpi.com/2076-3417/12/12/5793/pdf

37. Schmitz, A., & Wimmer, M. A. (2023). Framework for interoperable service architecture development. Government Information

Quarterly, 40(4), 101869. https://www.sciencedirect.com/science/article/pii/S0740624X23000692

38. Simelton, E., Duong, T. M., & Houzer, E. (2021). When the “strong arms” leave the farms—migration, gender roles and risk

reduction in Vietnam. Sustainability, 13(7), 4081. https://www.mdpi.com/2071-1050/13/7/4081/pdf

39. Solberg, E. (2022). The transition from monolithic architecture to microservice architecture: A case study

of a large Scandinavian financial institution (Master's thesis). University of Oslo. Retrieved from

https://www.duo.uio.no/bitstream/handle/10852/95663/1/Master-thesis--Eivind-Solberg.pdf
40. Solberg, E. (2022). The transition from monolithic architecture to microservice architecture: A case study of a large Scandinavian

financial institution (Master's thesis). https://www.duo.uio.no/bitstream/handle/10852/95663/1/Master-thesis--Eivind-Solberg.pdf

41. Sommerville, I. (2015). Software engineering: A practitioner’s approach (10th ed.). McGraw-Hill Education.

https://dspace.agu.edu.vn/handle/agu_library/13103

42. Söylemez, M., Tekinerdogan, B., & Tarhan, A. K. (2024). Microservice reference architecture design: A multi‐case study. Software:

Practice and Experience, 54(1), 58-84. https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3241

43. Tambo, T., Bargholz, J. M., & Yde, L. (2016, May). Evaluation of TOGAF as a Management of Technology Framework.

In International Association for Management of Technology (pp. 1-17). International Association for Management of Technology

(IAMOT).

https://pure.au.dk/portal/files/101849661/IAMOT_2016_Evaluation_of_TOGAF_as_a_management_of_technology_framework.

pdf

44. Vasireddy, I., Ramya, G., & Kandi, P. (2023). Kubernetes and Docker Load Balancing: State-of-the-Art Techniques and

Challenges. International Journal of Innovative Research in Engineering & Management, 10(6), 49-54.

https://acspublisher.com/journals/index.php/ijirem/article/download/12289/11155

45. Visweswara, S. (2023). An agile enterprise architecture methodology for digital transformation (Master's thesis, University of

Twente). http://essay.utwente.nl/96720/1/Visweswara_MA_EEMCS_2.pdf

46. Yan, T., & Dooley, K. J. (2013). Communication intensity, goal congruence, and uncertainty in buyer–supplier new product

development. Journal of Operations Management, 31(7-8), 523-542.

https://onlinelibrary.wiley.com/doi/pdf/10.1016/j.jom.2013.10.001?casa_token=wEuNsWVtFiMAAAAA:5Y-

xNnU4RpNffzaAp5dmxJYLzOTYUoRMA4-SBiQmCpz3Gc63msLVfpAvunUQPc-UBLKIKV7n2EuqsEUP

47. Yudhistira, A., & Fajar, A. N. (2024). Integrating TOGAF and Big Data for Digital Transformation: Case Study on the Lending

Industry. Sinkron: jurnal dan penelitian teknik informatika, 8(2), 1215-1225.

https://www.jurnal.polgan.ac.id/index.php/sinkron/article/download/13648/2505

48. Freire AF, Sampaio AF, Carvalho LH, Medeiros O, Mendonça NC. Migrating production monolithic systems to microservices

using aspect oriented programming. Software: Practice and Experience. 2021 Jun;51(6):1280-307.

49. De Lauretis L. From monolithic architecture to microservices architecture. In2019 IEEE International Symposium on Software

Reliability Engineering Workshops (ISSREW) 2019 Oct 27 (pp. 93-96). IEEE.

50. Bjørndal N, Bucchiarone A, Mazzara M, Dragoni N, Dustdar S, Kessler FB, Wien T. Migration from monolith to microservices:

Benchmarking a case study. Tech. Rep.. 2020.

https://repositorioaberto.uab.pt/bitstream/10400.2/9871/1/TMISE_CarlosPinheiro.pdf
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/145/1/012003/6926701/md_145_1_012003.pdf
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/145/1/012003/6926701/md_145_1_012003.pdf
https://scholar.archive.org/work/klkddoofgzbe5d5pnspsq53nvq/access/wayback/https:/ccsenet.org/journal/index.php/cis/article/download/0/0/47656/51114
https://scholar.archive.org/work/klkddoofgzbe5d5pnspsq53nvq/access/wayback/https:/ccsenet.org/journal/index.php/cis/article/download/0/0/47656/51114
https://www.researchgate.net/profile/Ramya-Ramachandran-6/publication/387534566_DATA_MIGRATION_STRATEGIES_FOR_SEAMLESS_ERP_SYSTEM_UPGRADES/links/67732bf9894c5520853632b3/DATA-MIGRATION-STRATEGIES-FOR-SEAMLESS-ERP-SYSTEM-UPGRADES.pdf
https://www.researchgate.net/profile/Ramya-Ramachandran-6/publication/387534566_DATA_MIGRATION_STRATEGIES_FOR_SEAMLESS_ERP_SYSTEM_UPGRADES/links/67732bf9894c5520853632b3/DATA-MIGRATION-STRATEGIES-FOR-SEAMLESS-ERP-SYSTEM-UPGRADES.pdf
https://www.researchgate.net/profile/Ramya-Ramachandran-6/publication/387534566_DATA_MIGRATION_STRATEGIES_FOR_SEAMLESS_ERP_SYSTEM_UPGRADES/links/67732bf9894c5520853632b3/DATA-MIGRATION-STRATEGIES-FOR-SEAMLESS-ERP-SYSTEM-UPGRADES.pdf
https://ejournal.seaninstitute.or.id/index.php/InfoSains/article/download/5617/4413
https://www.mdpi.com/2076-3417/12/12/5793/pdf
https://www.sciencedirect.com/science/article/pii/S0740624X23000692
https://www.mdpi.com/2071-1050/13/7/4081/pdf
https://www.duo.uio.no/bitstream/handle/10852/95663/1/Master-thesis--Eivind-Solberg.pdf
https://www.duo.uio.no/bitstream/handle/10852/95663/1/Master-thesis--Eivind-Solberg.pdf
https://dspace.agu.edu.vn/handle/agu_library/13103
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3241
https://pure.au.dk/portal/files/101849661/IAMOT_2016_Evaluation_of_TOGAF_as_a_management_of_technology_framework.pdf
https://pure.au.dk/portal/files/101849661/IAMOT_2016_Evaluation_of_TOGAF_as_a_management_of_technology_framework.pdf
https://acspublisher.com/journals/index.php/ijirem/article/download/12289/11155
http://essay.utwente.nl/96720/1/Visweswara_MA_EEMCS_2.pdf
https://onlinelibrary.wiley.com/doi/pdf/10.1016/j.jom.2013.10.001?casa_token=wEuNsWVtFiMAAAAA:5Y-xNnU4RpNffzaAp5dmxJYLzOTYUoRMA4-SBiQmCpz3Gc63msLVfpAvunUQPc-UBLKIKV7n2EuqsEUP
https://onlinelibrary.wiley.com/doi/pdf/10.1016/j.jom.2013.10.001?casa_token=wEuNsWVtFiMAAAAA:5Y-xNnU4RpNffzaAp5dmxJYLzOTYUoRMA4-SBiQmCpz3Gc63msLVfpAvunUQPc-UBLKIKV7n2EuqsEUP
https://www.jurnal.polgan.ac.id/index.php/sinkron/article/download/13648/2505

