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Abstract

We attempt to establish a computational insight into the structural, mechanical, dynamic,
electronic, and photocatalytic properties of orthorhombic phase Yttrium sulphide Y2S3

and Y2TeS2 Janus compounds by density functional calculations. The Janus Y2TeS2

is a hypothetical compound with all properties computed for the first time. Computed
lattice parameters for Y2S3 are in reasonable agreement with available experimental data.
Mechanical properties are investigated by calculating the elastic constant to check for
Born stability criteria. A finite displacement vibrational frequency study confirmed that
Y2S3 and Y2TeS2 are stable; negative phonon frequencies were checked. Computed
PBEsol and MBJ band structures found that Y2S3 is a direct band gap semiconductor,
while Y2TeS2 is an indirect band gap semiconductor. Band gaps estimated from the
HSE06 hybrid functional are 2.75 eV and 2.70 eV for Y2S2 and Y2TeS2, respectively,
suggesting that they are semiconductor materials with wide band gaps that can absorb
light in the ultraviolet region. Mullikan’s electronegativity screen technique, used to
calculate valence band maximum VBM and conduction band minimum CBM potentials,
predicted that Y2S3 and Y2TeS2 have suitable conduction band minimum potential of -
1.05 V and -1.30 V and valence band maximum of 1.70 V and 1.40 V, respectively, versus
normal hydrogen electrode (NHE) at PH = 0 to trigger the oxygen evolution reaction
(OER) and hydrogen evolution reaction (HER) simultaneously.
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1 Introduction
Rare-earth-containing chalcogenide elements are particularly interesting because of their diverse structural chemistry
and physical properties. The rare earth is related to the chemistry of 4f electrons; possession of 4f orbital



occupancy has a significant function of electronic modulation that enhances the electronic and optical properties
of materials (1). Rare earths are dopants in transition metal oxides and transition metal chalcogenides. They
were widely explored and reported to enhance their application in photocatalysis and thermoelectric, including
optoelectronic materials. Rare-earth doped metal oxides have been reported to modify photocatalytic properties
effectively (2; 3) and materials band gap turning (4), pollutant degradation (5; 6). Recent research conducted on
rare-earth metal-doped metal chalcogenides has further confirmed the capability of rare earth metal to enhance
the electronic and optical properties (7); others are photocatalytic properties (8; 9). In the area of photocatalytic
applications, early and recent research has shown that rare-earth metal chalcogenides demonstrate the potential
of a future promising photocatalytic material. This was confirmed from previous research, such as the magnetic
and photocatalytic properties of Dy4S4Te3 (10), physical and photocatalytic properties of RE4S4Te3 (RE = Gd, Ho,
Er, and Tm) (11), others are the photocatalytic activity of GeSbSeEr (12), photoluminescence and photocatalytic
properties of α-EuZrS3 (13), and electronic and optical properties are reported in Y2MgX4 (X = S, Se, and Te)
(14) and YX (X = S, Se, and Te) (15). Rare-earth sulphides are among the most researched rare-earth materials,
owing to their tunable wide band gap. The Rare-earth sulfide possesses various applications, including the
electrolyte materials, thermoelectric (16), optical material (17), and supercapacitors (18). Among the rare-earth
sulfides, yttrium sulfide Y2S3 received attention for applications such as pressure-dependent optical properties
(19), thermoelectric material (20), and electrolyte material (21). Three crystal phases of yttrium sulfide Y2S3

were known, the cubic, monoclinic, and orthorhombic phases (19; 21; 22). Because of the role played by rare-
earth material and its doping capabilities in improving other material properties, such as photocatalytic efficiency,
physicochemical, electronic, and optical, and in particular the tunable wide band gap possessed by Y2S3. The
excellent tunable band gap property of Y2S3 can be useful for photocatalytic properties studies. In this study, we
investigate using state-of-the-art density functional theory the physical properties and photocatalytic application of
orthorhombic phase yttrium sulphide Y2S3. The Y2S3 was found to be stable under high-pressure phase transition
(19). Another compound is the yttrium sulphide tellurite Y2TeS2 Janus-structured materials. The Y2TeS2 was
investigated for the first time; the structure is derived from the material-project software (23). Recently, a similar
compound, yttrium sulphide selenide (YSSe), a Janus two-dimensional material, was predicted by (24) using first
principle calculations.

2 Computational Method
In this work the calculations were carried out based on density functional theory (DFT) (25; 26) implemented in
the Vienna ab initio simulation package (VASP) (27). VASP expands the pseudopotential part of Kohn-Sham
one-electron spin orbitals ψσ,k

i (r) on a basis set of plane waves to solve the self-consistent Kohn-Sham (KS)
Schrödinger-like eigen equation (25).{
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Kohn-Sham DFT is the robust method employed for ground state electronic structure calculation of materials and
molecules. For this calculation, the Perdew-Burke-Ernzehof generalized gradient approximation revised for solids
and their surfaces (PBEsol) functional was employed for computational studies. It was reported to predict the
mechanical stability of metal chalcogenide material semiconductor (28), and a plane wave basis with projected
augmented wave (PAW) potential (29) was chosen to treat the exchange energy correlation effect. For decades,
the PAW basis set framework has offered remarkable efficiency and accuracy to Kohn-Sham DFT calculations
for molecules and extended solids. For equilibrium structure optimization, we used the primitive cell structure
of Y2S3 and Y2TeS2 with the choice of plane-wave with kinetic energy. - ℏ2

2me
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point sampling integral over the irreducible Brillouin zones is performed up to 8×3×3 and 6×8×10 for Y2S4 and
Y2TeS2, respectively, using the Monkhorst-Pack mesh (30) approach that was chosen to achieve convergence
energies within less than 1 meV/atom. From the optimized structure, the elastic tensor and phonon dispersion
were calculated.

Phonon calculation was performed using the finite displacement supercell technique as implemented in the
phonopy package (31). In the finite displacement method, one or multiple atoms are displaced, and forces on
atoms are calculated from the force constant equation: (32; 33)
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From the Brillouin zone integration calculation, the phonon density of state (DOS) per unit cell was determined
from the equation,D(ω) = 1

N

∑
qv δ(ω − ωqv) and the projected contribution of atom to DOS from Dkα(ω) =

2
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qk δ(ω−ωqk)|Wqα(qk). The vibrational frequency ωqk is the product of the square root of the eigenvalues

of the dynamical equation:
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where R0 + τt represents the equilibrium position with atom s of mass Ms in primitive cell l, the sum runs over
the infinite number of primitive cells in the crystal. With the known force constant equation 2.2, the dynamic matrix
Dsα,tβ and frequency ωqk were obtained at any q.

Electronic structure calculation, including band structure and density of state based on GGA-PBEsol, hybrid
functional, the modified Becker Johnson potential (mBJ) (34) and Heyd-Scuseria-Ernzerhof (HSE)(35) within
the DFT, was performed. The PBEsol/HSE exchange-correlation functional was also used for the calculation
of the dielectric constant for the determination of optical properties. HSE and MBJ functional were reported to
successfully describe properties of bulk semiconducting and insulating condensed systems. The HSE functional
treats the electron-electron interaction partly with long-range 75% semi-local PBE-xc functional and 25% short-
range non-local Hartree-Fock exchange.

3 Result and Discussion

Structural properties
The relaxed crystal structure of Y2S3 and Y2TeS2 is viewed in the b-a axis in Figure 1; both compounds are
orthorhombic crystals. Y2S3 was experimentally observed with space group Pnnm (19) under unreversible
pressure transition (19). The result of the structural optimization, the lattice parameters, and the optimized volume
of Y2S3 and Y2TeS2 are seen in Table 1. Depending on the combination of the metal and chalcogenide (S, Se,
and Te) elements, the physical properties such as structural, mechanical, dynamic, and electronic properties are
modified (36; 37). The lattice parameter compared to experimentally derived values shows an increase of< 0.6%.
This is expected of the PBEsol accurate prediction of structural properties. The substitution of tellurium in Y2S3

structure significantly regulates the crystal lattice parameters and volume the percentage deviation is recorded in
Table 1. The calculation of structural optimization for Y2TeS2 shows an increase of < 30% of lattice parameter
a, b/, and a decrease of < 50% for lattice parameter c and volume V compared to that of Y2S3 material. This
structural change is reflected in the calculated elastic constant (cij ) and its derived parameter values (Bulk, Young,
Shear modulus) as observed in Table 2 and 3. .

Figure 1: The unit cell structure of Y2S3 right z - y direction and Y2TeS2 left in x - y direction
side view respectively.

Mechanical stability
First-principles calculation was widely accepted for studies of mechanical and phonon stabilities of semiconductor
materials. Mechanical properties were linked to elastic constant, which gives insight into material characteristics
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Table 1: Calculated values of lattice parameters, crystal angles; α, β, γ in degree
and optimized volume for Y2S3, Y2TeS2 and the percentage deviation from experimental
values(22; 19) and the deviation of Y2TeS2 values from that of Y2S3 structure with PBEsol
functional

a (Å) b (Å) c (Å) α β γ V (Å3)
Y 2S3 10.65 (+0.43%) 3.87(+0.38%) 10.49(+0.56%) 90 90 90 432.79
Y2TeS2 13.48(+26.57%) 4.19(+8.27%) 5.35(-49%) 90 90 90 302.46(-30%)

Table 2: Calculated values of lattice constant (cij) for Y2S3, Y2TeS2 compound with PBEsol

.
C11 C12 C13 C22 C23 C33 C44 C55 C66

Y 2S3 170.91 57.89 50.52 148.37 68.42 167.13 61.40 65.69 53.79
Y2TeS2 117.24 21.24 61.78 150.98 16.84 102.26 25.90 17.48 63.78

such as bonding nature, anisotropy, ductility, hardness, and brittleness. They describe important applications
of materials, such as the thermo-physical properties. Elastic constants play a vital role in determining material
stability via the Born-Huang criteria (38). For orthorhombic material to achieve mechanical stability, it must satisfy
six Born-Huang criteria stated by (39) Equation 3.1:

C11>0, C44>0, C55>0, C66>0

C11C22>C
2
12,

C11C
2
23C33 + 2C12C13C23

−C11C2
23 − C22C

2
13 − C33C

2
12>0

(3.1)

The computed elastic constants (cij ), bulk (B), Young (y), Shear (G), linear compressivility and Poisson’s ratio
(ν), and energy of cohesion (Ecoh) for Y2S3 and Y2TeS2 are listed in Table 2. Having satisfied the criteria stated
in Equation 3.1, both materials are mechanically stable. In contrast, materials with larger lattice constants (cij )
and bulk moduli (B0) are more resistant to compression than those with smaller (cij ) and (B0). The change of
values recorded for c11, c33, and c44, which values are directly related to lattice parameters a, b, and c, and its
derived properties the bulk, Young, and shear modulus. The calculated values for Y2TeS2 recorded low values
as seen in Table 2 and 3 as compared to that of Y2S3 signify the crystal structure properties transformation. The
Y2TeS2 compound is a softer and more flexible material with the incorporation of a Te atom in comparison to the
Y2S3 structure.

The Poisson ratio describes the material nature of bonding characteristics, and material compressibility is
related to shear modulus and Poisson’s ratio. The ductility and brittleness of materials are distinguished based
on Poisson’s ratio, the material with a lower Poisson ratio exhibited a covalent nature of bonding because the
directional nature of covalent bonding can limit lateral deformation. The Computed Poisson’s ratio for Y2S3 and
Y2TeS2, 0.24 and 0.25 respectively are seen in Table 3. The obtained values are lower suggesting that Y2S3

and Y2TeS2 are brittle materials, compressible, and can possess covalent or ionic bonding characteristics (40).
Cohesive energy (Ecoh) is the energy required for a free atom and is crucial to material stability and fundamental
properties such as thermo-physical and physicochemical properties. Negative cohesive energy confirmed that
the materials are energetically stable; the higher the cohesive energy, the greater the stability (41), and Y2TeS2

is predicted to be more energetically stable material than the Y2S3 seen from the calculated cohesive energy in
Table 3.

Table 3: Calculated values Bulk (B), Young (Y ) and Shear (G) moduli in GPa, Linear
compressibility (β) TP−1, poissons ratio (ν) and energy of cohension (Ecoh) (eV/atom) for
Y2S3, Y2TeS2 with PBEsol

.
B Y G β ν Ecoh

Y 2S3 93.34 141.70 56.82 3.80 0.25 -6.04
Y2TeS2 63.36 98.06 39.42 6.36 0.24 -2.12
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Dynamic stability
The thermodynamic behavior of materials is characterized by the phonon dispersion, hence calculating phonon
dispersion and density of states is essential for understanding the dynamic stability of Y2S3 and the predicted
material Yttrium sulphide telluride Y2TeS2. The calculated phonon dispersion and projected density of state
(PDOs) along high symmetry k-point directions in the Brillouin zone for Y2S3 and Y2TeS2 are presented in Figures
2 and 3. The primitive unit cell of Y2S3 contains twenty atoms, giving rise to sixty phonon modes for a given wave
vector (ωqk), consisting of three acoustic modes and fifty-seven optical mode types. Similarly, the Y2TeS2 unit
cell contains five atoms, which give rise to fifteen phonon modes of three acoustic and twelve optical modes of
(ωqk).

Analysis of the phonon dispersion and PDOS reveals that there are no negative frequencies observed, as
evidenced by Figures 2 and 3. This demonstrates that the investigated Y2S3 and Y2TeS2 are dynamically stable.
There is no available literature to compare results for Y2TeS2 calculated lattice dynamic properties, calculation
conducted by (19) confirm our dynamic stability calculation for Y2S3. The analysis of phonon dispersion from the
left panel of Figures 2 and 3, at Γ points reveals that longitudinal acoustic (LA) and transverse acoustic (TA) modes
are linear, as seen from Figure 2 for Y2S3, while a combination of linear and flat (TA) and (LA) modes is seen
from Figure 3 for Y2TeS2. The flat acoustic mode is referred to as acoustic attenuation due to the thermoelastic
phenomenon or phonon-phonon interaction and localization of state (42). From Figure 2 there is no gap observed
in the phonon dispersion between the acoustic and optical modes. Besides in Figure 3, there is a clear band
gap separating the acoustic and optical modes in phonon dispersion for the Y2TeS2 compound. The presence
of a band gap indicated the localization of a state corresponding to the Te-atom peaks in PDOs, which is merely
reflected due to the concentration of substitution of tellurium (Te) atoms in the Y2S3 structure and the effect of
the large mass difference between tellurium (Te) and sulfur (S) and yttrium (Y) atoms and confirmed the structural
transformation.

The projected density of states is depicted in the right panel of Figures 2 and 3. The phonon dispersion
spectra of solids are known to be influenced by the atomic mass and bonding strength of the constituent atoms.
The Y2TeS2 phonon dispersion and PDOs are characterized by two parts, the lower frequency region from 0 - 6
THz of acoustic mode and the 6 - 10 THz higher frequency region of optical mode separated by a band gap as
depicted in Figure 3. From Figure 3, the phonon spectra for Y2TeS2, the acoustic mode of the lower frequency
region is dominated by the vibration of the tellurium Te atom, and at high frequency, the optical mode vibration of
yttrium, tellurium, and sulfur atoms. It is observed from Figure 2 that the phonon dispersion and PDOs spectra are
continuous along acoustic and optical modes for Y2S3; therefore, both the lower and higher frequency regions of
acoustic and optical modes are dominated by the vibration of yttrium and sulfur atoms.
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Figure 2: Phonon band structure left and projected density of state calculated with PBEsol
for Y2S3 compound

Structural stability including mechanical, dynamical, and cohesive energy screening is part of the criteria and
requirements for predicting the material possibility of being synthesized. The predicted Y2TeS2 from material
project database (23), calculated elastic constant results seen in Table 2, the phonon dispersion and cohesive
energy seen in Table 3 reveals that Y2TeS2 is stable and can be synthesized. The Y2S3 material was synthesized,
and PBEsol calculation reveals the Y2S3 is a stable material for other applications.
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Figure 3: Phonon band structure left and projected density of state calculated with PBEsol
for Y2TeS3 compound

4 Electronic properties
We study the electronic properties of yttrium sulphide Y2S3 and yttrium sulphide telluride Y2TeS2 materials.
Band structure calculations were performed with the PBEsol functional; the result shows that both materials are
semiconductors. The band gap of Y2S3 was reported by (19) as pressure-dependent; the band gap decreases
with an increase in pressure. The PBE method of calculating band structure is well known for underestimating
semiconductor material band gaps by about 40% (43). More accurate methods, such as MJB and HSE06, were
employed for better estimation of electronic band gaps. The HSE06 on average was reported as the most reliable
method of predicting the material semiconductor electronic properties. The calculated band structure using the
PBEsol and MBJ for Y2S3 and Y2TeS2 are depicted in Figures 4 and 5 and Y2TeS2 in Figure 6 and 7 respectively.
From Figures 4 and 5 left panel band structure, Y2S3 is a semiconductor with a direct band gap at the Γ-point,
both the band structure pattern is similar. The band structure left panel Figure 6 and 7 for Y2TeS2 reveals that
it is a semiconductor with indirect band gap at the Γ and S-points of the wave vector. The right panel of Figures
4 and 5 represents the projected density of state (PDOs) calculated with PBEsol and MBJ has a similar pattern.
Conduction band minimum (CBM) and valence band maximum (VBM) of Y2S3 are mainly the contribution of
Y(d) and S(p), respectively. Figure 6 and 7 shows calculated PDOs using PBEsol and MBJ, CBM, and VBM of
Y2TeS2 are dominated by Y(d) and Te(p) contribution. Analysis of both materials’ PDOs confirmed rare earth
element outer valence electron 4d1 contribution dominated the CBM and chalcogenide out valence electron S(p)
and Te(p) controlled the VBM. The values of band gaps obtained from PBEsol, MBJ, and HSE06 are listed in
Table 4. Calculated band gaps for Y2S3 are comparable to experimentally measured 2.8 eV (21).

Figure 4: PBEsol calculated band structure left and right projected density of state (PDUs)
for Y2S3 material.
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Figure 5: MBJ calculated band structure left and right projected density of state (PDOs) for
Y2S3 material.

Figure 6: PBEsol calculated band structure left and right projected density of state (PDOs)
for Y2TeS2 material.

5 Band edge position
Mullikan’s electronegativity screening method for band alignment was employed for the energy assessment of
the conduction band minimum CBM and valence band maximum VBM potential for bulk semiconductors. In this
method, the flat band potential is the electrode potential at which the semiconductor bands are flat (zero space
charge) and is measured with reference to the redox potential of normal hydrogen electrode (NHE) at pH = 0. The
band edges are predicted and compared to electrode potentials for the normal hydrogen electrode (NHE) scale
theoretically using the Butler and Ginley given relation (44; 45; 46):

EV BM = χ− Ee +
1

2
Eg (5.1)

ECBM = EV BM − Eg (5.2)

where EV BM and ECBM are valence and conduction band edges, χ is the Mulliken electronegativity, Ee is
the energy of free electron hydrogen scale (4.5 eV) (45), and Eg is the band gap. For the bulk semiconductor
compound, Mulleken electronegativity (χ) in Equation 5.1 is the geometric mean of electronegativities for constituent
atoms (47).

χ = (χn
1χ

s
2....χ

p
n−1χ

q
n)

1
N (5.3)

where χn, n, and N are the electronegativity of constituent atoms, the number of species, and the total number
of atoms in the compound, respectively.
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Figure 7: MBJ calculated band structure left and right projected density of state (PDOs) for
Y2TeS2 material.

Table 4: Calculated band gap (Eg), conduction band minimum (CCBM ) and valence band
maximum potentials (VV BM ) for Y2S3 and Y2TeS2 compounds

.

Y2S3 Y2TeS2

PBEsol MBJ HSE06 Exp. PBEsol MBJ HSE06
Eg (eV) 0.66 1.42 2.75 2.80(21),1.35(19) 1.70 2.30 2.70
C(CBM) -1.05 -1.30
V(V BM) 1.70 1.4
Electronegativity (χ) 4.76 4.60

Mullikan’s electronegativity screening criteria require that the energy of EV BM is > 1.23 eV and the energy
of ECBM is < zero compared to the standard hydrogen electrode (NHE) for reduction H+/H2 and oxidation
O2/H2O reactions, respectively (44). The approach compares the NHE as the band gap energy (Eg) difference
between CBM and VBM, which may be > 1.23 eV, which is sufficient for potentials to provide the driving force for
crossing the barrier. The positions of (ECBM ) and (EV BM ) aligned to water oxidation/reduction potential access
the ability of redox potential and light absorption for semiconductor materials.According to Eqs. (5.1) and (5.2),
the calculation for Y2S4; χ = 4.76 HSE band gap 2.75 eV yield EV BM and ECBM values of 1.70 V and -1.05 V,
EV BM is 0.47 V higher than the oxidation potential andECBM is -1.05 V lower than reduction potential compared
to NHE electrode. The Y2TeS2 with calculated HSE band gap 2.70 eV, χ = 4.60, yields EV BM and ECBM values
of 1.40 V and -1.30 V, respectively. EV BM is 0.17 V higher than the oxidation potential, and ECBM is -1.30 V
lower than the reduction potential compared to the NHE electrode. It is seen from Figure 8 that all the materials
under screening have suitable conduction and valence band edges to trigger the oxygen evolution reaction (OER)
and hydrogen evolution reaction (HER) simultaneously.

However, a semiconductor material must possess perfect band edge positions to be thermodynamically stable
for water-splitting applications. The band edge positions of VBM and CBM located closer to the redox potentials
possess the higher efficiency for photocatalytic water-splitting full reactions (48). Accordingly, both Y2S3 and
Y2TeS2 have suitable VBM band edge positions for oxidation evolution reaction (OER). The calculated values
-1.05 V and -1.30 V of conduction band minimum potential (CBM) for Y2S3 and Y2TeS2 respectively, compared
to the normal hydrogen electrode (NHE) are more negative and much lower than the reduction potential seen in
8. This implies overpotential reference to hydrogen reduction potential due to Y2S3 and Y2TeS2 calculated band
gap values of 2.75 eV and 2.70 eV respectively with light absorption efficiency in the ultraviolet (UV) region. The
calculated band edge position of Y2S3 and Y2TeS2 listed in Table 4 are comparable to graphite-like carbon nitrate
(g-C3N4) semiconductor (49). Semiconductor materials with band gaps between 1.6 and 2.3 eV were reported to
absorb light in the visible region and have maximum absorption light efficiency for efficient photocatalyst material
(50; 51). Although the band edge potential is pH-dependent (51) for bulk semiconductors, our calculations are
based on pH = 0; further screening with pH greater than zero will give more understanding of the water-splitting
application of Y2S3 and Y2TeS2 compounds.
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Figure 8: Computated conduction band minimum (CBM) and valence band maximum
(VBM) pH = 0, band gap versus normal hydrogen electrode (NHE) for Y2S3 and Y2TeS2

material.

6 Conclusion
Structural stability; mechanical and dynamic, electronic and photocatalytic properties of Y2S3 and Y2TeS2 were
investigated by the state of art density functional theory. The calculated structural properties revealed that both the
materials under screening were orthorhombic crystals, based on the calculated elastic constant and elastic tensor
analysis (Elate) derived mechanical properties revealed that Y2S3 and Y2TeS2 are mechanically stable and the
energy of cohesion -2.12 eV/atom reveals that our predicted material Y2TeS2 can be synthesized. The phonon
dispersion based on finite displacement technique yielded vibrational frequency with no negative frequencies
across the wave vector indicating that Y2S3 and Y2TeS2 are dynamically stable. The electronic properties; band
structure and partial density of state calculated from PBEsol, MBJ, and HSE06 revealed that Y2S3 and Y2TeS2 are
wide band gap semiconductors, from HSE06 band gap 2.75 eV and 2.70 eV respectively. The band gap positions
can absorbed within the ultra-violet (UV) wavelength. According to PBEsol and MBJ band structures, Y2S3 is
a direct band gap and Y2TeS2 is an indirect band gap semicondutors. We screen Y2S3 and Y2TeS2 materials
for photo-conversion application, and band-edge positions criteria were used to predict water splitting application.
Mullikan’s electronegativity screen technique based on calculated VBM and CBM band edge potentials predicted
that Y2S3 and Y2TeS2 have suitable conduction and valence band edges to trigger the oxygen evolution reaction
(OER) and hydrogen evolution reaction (HER) simultaneously.
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