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NEW APPROACH BASED ON THE ENSEMBLE LEARNING ESTIMATOR TO MAXIMIZE ACCURACY

1) Abstract
The objective of this article is to contribute to the development and optimization of ensemble models in machine learning by proposing an innovative method based on homogeneous and heterogeneous families of algorithms. This approach aims to improve the model's generalization and reduce the bias-variance tradeoff, with the ambition of achieving more accurate and robust predictions.
To illustrate this approach, we rely on proven techniques such as Random Forest, which is based on the principle of Bagging (Bootstrap Aggregating) to reduce the model's variance, as well as AdaBoost and Gradient Boosting, which belong to the family of sequential ensemble methods that utilize dynamic weighting and gradient descent to progressively correct errors. Additionally, other approaches from supervised and unsupervised learning, such as Support Vector Machines (SVM) for classification, K-means for clustering, and Artificial Neural Networks (ANN), enrich this algorithmic landscape.

The central idea of our method is to intelligently combine several ensemble models by applying strategies such as Stacking and Blending to optimize errors at each iteration and enhance the model's generalization capacity. As the saying goes, "unity is strength."
This maxim is particularly relevant in the context of building a hybrid machine learning model, as it highlights the importance of collaboration among different classes of algorithms to achieve optimal results. By integrating these various approaches under a unified architecture, we aspire to design a robust ensemble model capable of adapting to the complexity of big data and providing accurate and reliable predictions in a highly variable environment.
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2) Introduction
Following our extensive research, we found that the Stacking algorithm, which combines multiple estimators from sequential and parallel families into a homogeneous group, has undeniable strengths in the field of Machine Learning. This mechanism aims to create a meta-estimator that predicts the final result based on the predictions of various classifiers. However, we have highlighted a major limitation: this algorithm fails to effectively correct prediction errors at different learning levels. This inability to adjust errors over iterations represents a significant opportunity for improvement.
In our proposal, the errors generated at the first level of aggregation are reevaluated and reinjected into the subsequent models through an adaptive feedback mechanism inspired by policy gradients in reinforcement learning. This continuous iteration fosters progressive learning, where each level leverages the generalization errors of previous predictions to improve subsequent decisions.

This process culminates in the construction of a Multi-Meta-Estimator, which we call MaxEnsForest. This model relies on a hierarchical meta-model that dynamically adjusts its weights based on the evolution of the loss function. Consequently, MaxEnsForest aims to enhance predictive accuracy, model robustness, and generalization capacity in the face of complex and high-dimensional data.

We know that the fundamental goal of a machine learning algorithm is to minimize learning errors as much as possible. However, when using these algorithms, several challenges arise, such as reducing model complexity, lack of K-fold cross-validation, model regulation, establishing a robust ensemble model, and data augmentation. These issues raise crucial questions for researchers and practitioners in the field:
· How to build a model that minimizes its complexity while maintaining high performance?
· What mechanism should be adopted to prevent overfitting and underfitting during the learning process?
· How to identify and eliminate insignificant variables in model training?
· What method should we apply to ensure accurate and reliable predictions?
· What impact does the number of features have on the effectiveness of model training?
In response to these questions, we propose a significant contribution to the development of machine learning models through a new classifier based on aggregation methods. Our goals are clear: reduce model complexity, introduce K-fold validations during training, regularize the model, establish a robust ensemble model, and augment the data before training. This integrated approach promises not only to improve model performance, but also to address current challenges in machine learning, paving the way for more accurate and reliable predictions in various application domains.
3) Methodology
The MaxEnsForest method allowed us to combine several meta-estimators through algorithms of homogeneous and heterogeneous classes such as Decision Tree, Random Forest, Adaboost, GradientboostingTree, SVM, Neural Network in order to improve the performance of the machine learning model.

Figure 1 : La figure ci-dessous illustre le fonctionnement du modèle MaxEnsForest 
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Interpretation of symbols:

	          
	: The different errors of each level of learning.

	          
	: Large set classifiers.

	
	: The different weights of the large set estimators

	
	: Mode predictions of homogeneous estimators.

	
	: Mode predictions of heterogeneous estimators.

	 
	: The different homogeneous and heterogeneous estimators.

	 
	: Meta-Classifier Prediction.


K-Fold1 and K-Fold2: The different parts of DATASET divided into two to reduce the errors of Overfitting and Underfitting.
4) Results
From the methodology described above, integrating several large ensemble estimators into a machine learning framework requires a rigorous and well-defined mathematical approach. We have chosen to focus on the use of Markov chains, in particular non-homogeneous Markov chains. This approach is particularly relevant in the context of machine learning, as it allows to model the temporal evolution of decision processes in a dynamic environment.
Nonhomogeneous Markov chains are distinguished by their ability to account for contextual variations over time. Unlike homogeneous chains, where transition probabilities remain constant, nonhomogeneous chains allow these probabilities to be adapted based on the current state of the system. This is crucial in the field of machine learning, where input conditions can change significantly and unpredictably.
This flexibility brings several benefits. First, it improves the handling of temporal dependency, a key aspect in many learning scenarios, especially those involving sequential or temporal data. By incorporating information about the history of decisions and previous states, we can better anticipate the future behaviors of the estimators, thus increasing their accuracy.
Moreover, this approach ensures optimal convergence of the estimators. By adapting transition probabilities at each step of the training process, non-homogeneous Markov chains facilitate the adjustment of models to the nuances of the data. This not only reduces prediction errors, but also optimizes the model training process by ensuring that they remain responsive to contextual changes.
4.1. Properties
Let E be a sequence of random variables with values ​​in the state space . 
Is a Markov chain on E when, for all i and j in E :

· the event [ =i] depends only on the previous state of , and not on the states that precede it;
· The probability of moving from state i to state j does not depend on n . So to recognize a Markov chain:
· we identify the space of states of the random variable;
· we justify that the state of at step (n+1) depends only on the state of at step n ; and not on the previous states;
· we justify that the probability of moving from one state to another does not depend on the step number.

4.2. Non-homogeneous Markov process
Consider ( a continuous-time Markov process, having a finite state space The cumulative intensity measure is another parameter that allows us to define a Markov process. It is a matrix of functions, denoted , such that:


For this purpose, in the case of our method, the cumulative intensity measure could mean the sum of the transition probabilities to a given state, or a group of states during learning in order to adjust the weights of each large estimator according to the rewards obtained for its correct predictions.

a) Proposed algorithm: “MaxEnsForest”
Entrance :
· Training data: 
· (m, …, M): The number of iterations.
· p: The number of estimators
· : The different weights of the large set classifiers
· : Great estimator of each level of learning
· : Error of each learning level.
Output : A set of estimators
Step 1: Learning Homogeneous and Heterogeneous Classifiers
 
Learn a new estimator based on set D
 
Step 2: Learning the Large Classifiers
       
Learn a new estimator based on its predictions of
1. Initialize the weights = , i = 1 ,..., n

2. Calculate 
For m = 1 to M :
(a) Adjusting the weak rule on the sample of estimators  weighted by the weights ,..., resulting from this adjustment.

(b) Calculate the error rate of :


(c) Calculation of the weight of the resulting estimators :

(d) Readjust the weights of the estimators :

   
   Step 3: Construction of a new data set D
   
Construction of a new dataset will contain the predictions of the first level
  
Step 4: Repeat step (2)
Return

5) Contribution and Perspective

We have highlighted the importance of aggregation methods in Machine Learning and proposed an innovative approach based on a set method. This method is based on the following principles:
· Combination of homogeneous and heterogeneous estimators: Integration of models from the same family (decision trees, Random Forest, etc.) and from different families (SVM, neural networks, etc.);
· Large-scale aggregation: Using and combining multiple large estimators to capture complex dependencies in the data;
· Error optimization at each level of interaction: A hierarchical strategy for optimizing intermediate errors, aiming to reduce both variance and bias at each step of the process;
· Building a hyper-estimator: An optimized combination of aggregated predictions to form a better performing global model.

Our methodology is inspired by the principles of Q-Learning (due to the sequential optimization of interactions) and Adaboost (for its management of model weights), while distinguishing itself by an improvement of the Stacking algorithm.
This improvement consists of a restructuring and optimized weighting of the basic estimators, which allows to surpass the performances of standard methods. And we have named our estimator approach " MaxEnsForest ", which is based on a structured organization of the models into interactive subsets, optimized iteratively.

Finally, this contribution opens the way to several perspectives, including the exploration of more advanced optimization strategies for learning model weights, integration of online learning mechanisms for dynamic data and evaluation on specific application domains such as health, finance (cases of fraud or non-fraud), etc.
Conclusion
In this paper, we further explore the effectiveness of aggregation methods in Machine Learning by introducing a novel approach, called MaxEnsForest, that aims to optimize the performance of ensemble algorithms. Our methodology relies on a carefully optimized combination of homogeneous and heterogeneous estimators, embedded in a hierarchical structure designed to simultaneously reduce the bias and variance of predictions.
By optimizing the interactions between models at each level, we have demonstrated that Lady-Forest outperforms traditional algorithms, such as Stacking or Adaboost, particularly in contexts requiring increased robustness to complex or unbalanced data. This superiority is manifested not only by improved predictive performance, but also by an ability to adapt to diverse and unpredictable environments.
Thus, MaxEnsForest represents a significant advance in the field of aggregation methods. By combining the strengths of existing approaches while providing better generalization and increased flexibility, it opens new perspectives for the development of machine learning models. This approach could potentially transform the way we approach the challenges of predictive modeling, laying the foundation for more powerful and adaptive algorithms that can efficiently handle diverse datasets and maximize the accuracy of predictions in real-world applications.
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