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Abstract 

Developing genetically resistant maize varieties to mitigate yield losses would reduce reliance on chemical 

control measures. This study underlines the substantial genetic variability and heritability of northern corn 

leaf blight (NCLB) resistance within a recombinant inbred line (RIL) population, highlighting the genetic 

basis of the trait. ANOVA revealed highly significant genetic variability among families at the 1% level, 

confirming the presence of sufficient variability for effective selection. The progression from F5 to F6 

generations demonstrated the effectiveness of selection, as seen from reduced AUDPC scores in the F6 

generation. A genetic gain of -7.74 and a heritability estimate of 48% further validated the success of 

selection based on lower AUDPC scores. The regression analysis supported by the significant positive 

correlation (r = 0.65) revealed a significant association between F5 selections and the F6 AUDPC scores, as 

seen from an R2 value of 0.42 and a moderate predictive slope of 0.52. These associations suggest that while 

selection is effective in predicting advanced-generation performance, the residual variability points to the 

need for incorporating additional genetic or environmental factors to improve predictive accuracy. These 

findings emphasize the predominance of genetic factors in NCLB resistance and the stability of resistance 

traits across the two generations, offering insights into the genetic control of the trait. By providing a solid 

foundation for breeding efforts targeting durable resistance, this study contributes to the development of 

maize varieties with enhanced NCLB resistance and supports sustainable agricultural practices. 
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INTRODUCTION 

Resistance breeding is a critical area of research in crop improvement, particularly for economically 

significant crops like maize. Maize, the world’s most grown staple crop occupies about 193.7 million 

hectares worldwide, with an average productivity of 5.75 tons per hectare [1]. An extremely versatile crop 

grown across different ecological zones, however, maize is a vulnerable host to various foliar diseases 

which can severely impair yields and cause economic losses. Northern Corn Leaf Blight (NCLB), caused by 

Exserohilum turcicum, is one such globally prevalent disease of maize [2].  

In warm and humid conditions that promote the disease, spindle-shaped lesions form on the leaves. 

These lesions spread rapidly in susceptible hosts, reducing their photosynthetic capacity and ultimately 

affecting the yield [3, 4]. These challenges necessitate sustainable management strategies, with resistance 

breeding emerging as a primary solution since it represents a long-term and sustainable approach.  

Breeding disease-resistant genotypes offers several advantages, including reduced reliance on fungicides, 

increased productivity, and improved environmental sustainability [5]. Moreover, understanding the genetic 

basis of resistance traits accelerates the development of improved varieties, strengthens food security, and 

promotes ecosystem stability. Advances in molecular tools, such as marker-assisted selection (MAS), have 

further enabled researchers to identify genetic markers linked to resistance. By integrating these markers 

into breeding programs, researchers can develop resilient maize varieties [6] that empower farmers to 

manage disease pressures effectively and maintain stable crop production.  

To complement molecular approaches, robust phenotyping is essential for accurately assessing 

disease resistance. One of the widely used phenotyping methods is the Area Under the Disease Progress 

Curve (AUDPC) - a quantitative measure that estimates the intensity of disease spread over time [7]. This 

method accounts for the dynamic nature of disease progression allowing researchers to compare different 



 

 

 

genotypes. AUDPC is especially useful in breeding programs, where it helps in identifying and selecting 

disease-resistant varieties. It can be used to screen and evaluate large populations for resistance under 

controlled or field conditions, leading to identification of genotypes that can withstand disease pressures 

more effectively [8].  

Based on AUDPC scores as a tool, for identifying resistance in maize populations, this study was 

formulated to investigate the inheritance of NCLB across two selfing generations of maize breeding families 

developed from a biparental mating, involving a cross between two contrasting lines for NCLB disease. The 

primary objective was to understand the genetic inheritance and follow disease progression in the F5 and F6 

generations with the goal of improving the selection of resistant lines form this bi-parental population. 

 

MATERIALS AND METHODS 

 

Experimental material  

A mapping population was developed using two parental lines: RM16 (resistant) and SS1 (susceptible). The 

F1 progeny were selfed to advance the population from the F2 to the F6 generation. The advanced 

generations, specifically the F5 and F6, were evaluated for the inheritance of NCLB resistance. Phenotyping 

was done for 119 F5 families and 113 selected F6 individuals over two growing seasons to assess NCLB 

disease resistance. Field trials were carried out over two consecutive seasons in Ri-Bhoi District, 

Meghalaya, India, a natural hotspot for NCLB occurrence. Routine intercultural practices were performed 

throughout the growing seasons to maintain an agronomically healthy standing crop. 

 

Phenotyping based on AUDPC scores  

Phenotyping was based on calculation of AUDPC scores. At the beginning of the growing season, the causal 

organism was isolated and cultured on potato dextrose agar medium. Inoculum was then prepared and 

applied by spraying on 25-30 days old seedlings. Once disease symptoms appeared, the progression of the 

disease was recorded at 3 days interval for a period of 15 days. From this disease progression data, area 

under disease progress curve (AUDPC) was calculated [9].  

 

 

 

 

where, n = total number of observations, 𝒚𝒊 = disease area at the ith observation and ti = time at the ith 

observation. The recorded AUDPC scores were analysed using basic statistics, including the calculation of 

the mean, variance, mode, and median, in order to understand the nature of the phenotypic data. 

 

Statistical analysis 

An ANOVA was done to determine if differences for response to NCLB across the families and generations 

are statistically significant. Frequency distribution analysis and response to selection which included studies 

on selection differential and genetic gain to ultimately calculate the realized heritability of disease 

progression was also done [10].  

Here, selection differential S = iσp  

Where, i= intensity of selection (10%) and σp is the phenotypic standard deviation 

Genetic gain (R) was calculated as the difference between mean values of the F6 generation and the original 

F5 generation. 

Realized heritability h2 was calculated as h2 = R/i σp  

Pearsons’s correlation and regression analysis to determine the goodness of fit were also performed to 

understand the nature of association between F5 families and the selections advanced to the F6 generation. 

 

RESULTS 

 

Analysis of variance (ANOVA) 

ANOVA (Table 1) indicated highly significant differences among the families at 1 % level of significance, 

implying the presence of genetic variability within the RIL population for response to NCLB disease 
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incidence. This variability is important for identifying lines with enhanced resistance to the disease. 

Conversely, the marginally significant difference observed between generations suggests that the disease 

pressure experienced by both generations was largely comparable. This finding implies that the heritability 

of disease response is predominantly governed by genetic factors, with minimal influence from 

environmental variation. All in all, these results reinforce the stability of the trait across generations, 

highlighting the role of genetic control over NCLB resistance [11]. 

 

Table 1. ANOVA of AUDPC Scores for Disease Progression in F5 and F6 Generations 

Source of Variation SS df MS F P-value F critical 

Genotype (Families) 7964.55 112 71.11** 4.47 0.00** 1.37 

Generation 65.70 1 65.70 4.13 0.05 3.93 

Error 1782.74 112 15.92    
Total 9812.99 225     
 *p <0.05; **p <0.01 

 

Frequency distribution and response to selection 

Based on the frequency distribution studies of the F5 families, F5 selections and the F6 generation, the mean 

AUDPC score decreased from F5 (21.03) to F6 (13.29) as shown in Figure 1. This reflects effective 

selection, with reduced disease severity in subsequent generations. The median and mode also decreased 

across generations, indicating increase in the F6 population's disease resistance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Frequency distribution graph the F5 families, selected F5 RILs and F6 RILs 

The variability was lower in the F6 generation, likely due to selection pressure narrowing the range of 

phenotypes. While the F5 generation recorded a slight positive kurtosis (0.78), the F6 generation with a 

kurtosis of 1, recorded a sharper peak. The right-skewed distribution in the F6 generation implied that most 

individuals were concentrated around lower AUDPC scores. The range of AUDPC scores decreased from F5 

(40.94) to F6 (31.57), further confirming reduced variability. The minimum AUDPC scores decreased from 

5.49 in F5 to 2.75 in F6, showing that selection effectively retained the individuals with better resistance. 

A selection differential of 16.23 and a genetic gain of -7.74 were achieved for a selection intensity of 10%. 

The overall phenotypic standard deviation in the F5 generation was 9.33. Identifying lines with lower 

AUDPC scores is desirable, as it signifies higher resistance to NCLB occurrence. The heritability was 

calculated to be 48% (Figure 2). 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Response to selection for NCLB disease progress (AUDPC) in the F5 and F6 selfing 

generation 

Association studies  

Pearson’s correlation studies revealed a highly significant ‘r’ value of 0.65 between F5 and F6 generations 

for AUDPC scores indicating a strong positive relationship between the two generations. For the scatterplot, 

a positive slope of 0.52, combined with the significant F-statistic and p-value (Table 2), confirms that F5 

values have a significant, moderate predictive effect on the F6 RILs. The R2 value and the residual 

variability indicated that while the model captures a meaningful relationship, additional factors not included 

in the regression (e.g., environmental influences, epistasis, or other genetic effects) account for a 

considerable portion of the variation in F6 as well [12]. This analysis highlights the partial predictability of 

traits in advanced generations (F6) based on earlier selection in F5, demonstrating the impact of selection 

while pointing to areas where model refinement or additional variables could improve predictive accuracy 

(Figure 3). 

 

Table 2. Regression ANOVA for F5 and F6 generations 

 

Source df SS MS F Significance F 

Regression 1 2511.22 2511.22 81.23 0.00 

Residual 111 3431.67 30.91 
  

Total 112 5942.89       

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. A regression graph depicting the strong association between F5 families and F
6
 selections 

 

DISCUSSION 

 

This study comprehensively evaluated genetic variability, heritability, and response to selection for NCLB 

resistance in maize, focusing on F5 and F6 generations of a biparental population. The results provide 

significant insights into the genetic control of resistance, demonstrating the effectiveness of phenotypic 

selection on the basis of AUDPC scores to improve resistance breeding strategies. The highly significant 

genetic variability among RILs at the family level, as revealed by ANOVA, highlights the diversity present 

within the population for resistance to NCLB. This variability is a prerequisite for identifying and advancing 

superior genotypes with enhanced resistance [13, 14]. Additionally, the comparable performance across 

generations (marginally significant differences) highlights the role of genetic factors in determining 

resistance, reinforcing the heritability and stability of the trait across different conditions. 

The frequency distribution analysis revealed a clear shift in population characteristics due to 

selection pressure, as seen in the reduction of AUDPC scores from F5 to F6 generations. The narrowing 

variability and sharper kurtosis in F6 indicated that selection was effective in concentrating resistance traits 

while screening out the less favorable phenotypes. The right-skewed distribution in F6, along with the 

reduction in range and minimum AUDPC scores, confirmed that selection effectively identified and retained 

individuals with higher resistance. Notably, the achieved genetic gain combined with a heritability estimate 

of 48%, highlight the substantial progress made in improving resistance. These results are particularly 

significant, given that NCLB resistance is influenced by both vertical (monogenic) and horizontal 

(polygenic) resistance mechanisms [5, 7, 15]. The regression and correlation analyses further emphasized 

the partial predictability of F6 generation traits based on F5 values, as seen from the moderate positive slope, 

high correlation coefficient (r = 0.65), and significant regression statistics. While these results validate the 

effectiveness of phenotypic selection, the residual variability needs to be addressed in future studies through 

advanced genomic approaches, such as SNP-based QTL mapping, GWAS (Genome-Wide Association 

Studies), and genomic selection. These studies would help refine predictive models and enhance the 

precision of selection efforts [16, 17]. These tools can also help unravel the complex genetic architecture of 

NCLB resistance, identifying key loci that contribute to disease resistance [18]. 

To further strengthen the breeding program, multi-environment trials across diverse agro-climatic 

zones are up next. Such trials would ensure the adaptability and stability of resistant lines [14], particularly 

in regions with varying disease pressure, soil conditions, and climatic factors. This is especially critical 

along the foothills of North east India, which relies heavily on organic farming and where maize is an 

important crop for economic stability [19]. Developing NCLB-resistant varieties for this region supports the 

goals of sustainable agriculture by reducing yield losses, minimizing fungicide dependency, and promoting 

environmentally friendly farming practices. 

 



 

 

 

CONCLUSION 

 

Overall, by focusing on genetic resistance, the findings contribute to the development of resilient maize 

varieties. These outcomes have broader implications for maize breeding in other regions with similar 

environmental conditions and disease pressures. The work done reinforces the potential of genetic 

improvement to transform maize into a more reliable crop for diverse agricultural systems, particularly in 

regions like the NEHR, where it serves as a vital component of rural livelihoods and poultry feed production 

systems. Additionally, integration of advance technologies such as genomic selection can enhance the 

breeding efficiency and significantly shorten the duration of improvement breeding programs. Furthermore, 

these studies provide a strong foundation for in-depth evaluation of phenotype-genotype relationships at 

genomic level, which is valuable for advancing resistant breeding efforts. 
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