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ABSTRACT 

	Sentinel-1A Synthetic Aperture Radar (SAR) satellite is highly beneficial for continuously monitoring the evaluating changes in agricultural areas and water spread area assessment. Having reliable information about water availability is crucial for effective regional planning. By analyzing water spread dynamics using SAR satellite data at the tank level, farmers can access more accurate and timely information, aiding in crop planning locally and regionally and improving water management practices. Utilizing SAR satellite data to track water spread is essential for addressing these challenges and enhancing agricultural productivity. This approach allows stakeholders to make better decisions about water resource allocation, promoting sustainable agriculture and water conservation. This study focused on the water spread area in Lower Palar tanks by analyzing multi-temporal Sentinel-1A SAR data, linking it to rainfall and cropping pattern changes in and around the command areas. The years 2020-2023 showed increased water spread compared to 2018-2019, suggesting improved rainfall distribution and potential for year-round cropping using Northeast monsoon rainfall for subsequent seasons. The study applied Random Forest machine learning for crop classification across seasons using Sentinel-2 optical datasets, leveraging the algorithm's accuracy and efficient handling of large datasets to understand how water availability affects crop diversification in the Lower Palar Sub-Basin.The crop diversification confirmed through diversity index. The SID value of 0.59 was obtained in the Summer 2018, due to the even distribution of (n) number of crops like paddy, groundnut, sugarcane and watermelon. The lowest SID value (0.21) was observed in Rabi 2021 due to higher water spread and the adoption of mono cropping in larger areas.
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1. INTRODUCTION 

In India, agriculture holds significant importance in terms of its economic, employment, and food security implications. Accurate and timely data regarding crop production and land utilization are crucial for informed decision-making among various stakeholders in agriculture, including farmers, policymakers, marketers, financial institutions, and governmental bodies. This necessity becomes even more pronounced considering India's population is expected to surpass 1.62 billion by 2050, posing a formidable challenge for the sustainable management of land resources per capita (Bhumika et al., 2019). The mapping of irrigated areas within river basins plays a pivotal role in assessing water usage and ensuring food security, especially amid ongoing changes in land use driven by fluctuations in rainfall patterns, particularly noticeable in regions such as Tamil Nadu. The increasing reliance on irrigated agriculture, which accounts for over 70% of water withdrawals, faces escalating challenges due to global population growth, heightened food demands, and pressures stemming from climate change. 
Efforts aimed at enhancing irrigation efficiency and potential, such as the implementation of initiatives like the Water Resources Consolidation Project (WRCP) and Command Area Development (CAD), are crucial (Hakeem et al., 2021). Satellite remote sensing emerges as a valuable tool for irrigation management, providing insights into inventory, performance, monitoring, viability, and environmental impacts. Integrating spatial information with conventional methods, aids in managing water scarcity and optimizing water use efficiency in irrigated agriculture. Techniques utilizing satellite imagery and data processing are particularly instrumental in mapping irrigated areas like tank ayacuts, facilitating the monitoring and evaluation of agricultural productivity and water management, thereby enhancing resource value and revenue generation (Premalatha and Rao, 1994). Understanding irrigation water demand and distribution across space and time is essential for effective irrigation planning and management to ensure efficient cropland use and food security. 
Cropland mapping assumes significance in evaluating food and water security, especially in densely populated regions like South Asia, which hosts vast agricultural lands (Gumma et al., 2022). Despite challenges in obtaining reliable irrigation information, integrating spatial information with traditional methods remains valuable for managing water scarcity and enhancing water use efficiency in irrigated agriculture (Hakeem et al., 2021). The distribution of water in tanks directly influences cropping patterns in corresponding ayacuts. Satellite remote sensing not only aids in detecting water spread in tanks but also serves as a reliable method for acquiring crop acreage and production data. Advanced technologies coupled with satellite imagery empower farmers and policymakers to monitor and evaluate agricultural landscapes, identifying opportunities for diversification (Kamble et al., 2020). High-resolution remote sensing, enabled by satellite data, proves effective in mapping and conducting irrigation studies over vast areas within time constraints. Innovations in remote sensing and Geographic Information Systems (GIS) offer new ways of collecting, storing, and analyzing agricultural land parcel information. Techniques such as those employed by Shen et al. (2022) and Bioresita et al. (2019) demonstrate the precision and accuracy achievable through the fusion of Sentinel satellite data and advanced classification engines. 
Addressing diverse cropping patterns is crucial for enhancing potential production and resilience to water scarcity. Machine learning techniques, utilizing multi-spectral and multi-temporal satellite images, are employed to develop accurate crop categorization models. From 2019 to 2024, the Centre for Water and Geospatial Studies at Tamil Nadu Agricultural University in Coimbatore, handled the TNIAM (Tamil Nadu Irrigated Agriculture Modernization) project (World Bank Mission Project). This project focused on leveraging Remote Sensing and GIS technologies for water resource monitoring and Crop diversification in lower palar sub basin tanks. Throughout the project duration, significant outcomes were achieved, which are summarized below. 
2. material and methods 

2.1 Study area

[image: ][image: ]The Lower Palar sub-basin extends from Longitude 79° 34' E to 80° 9' E and Latitude 12° 57' N to 12° 25' N (Figure 1) and covers an area of 1044.7 km2. The Lower Palar sub-basin overlaid on the districts of Kancheepuram and Chengalpattu with 243 tanks in the area. The average annual rainfall is around 1161 mm, and most of it is received during the northeast monsoon. The climate is variable, ranging from arid to semi-arid, with temperatures ranging from 20.9°C to 34.5°C. The general elevation of the region ranges from 60 to 240 m above mean sea level, with a gentle gradient from west to east. The small drainage in the basin's center contributes to the recharge of the various tanks. The registered ayacut area of the Lower Palar sub-basin is 27,850.1 ha. Rice is the primary crop grown throughout the area, followed by sugarcane crop. Groundnut is another significant crop primarily grown in areas with water scarcity or insufficient rainfall.

Figure 1. Study area boundary and Lower Palar Sub-Basin tanks
2.2 Water spread analysis 

2.1.1 Sentinel 1A (SAR) Microwave Data

 The European Space Agency (ESA) launched Sentinel-1A in 2014 for its imaging radar mission, focused on Synthetic Aperture Radar (SAR) data collection. Operating at C-band with both H and V polarizations, it emphasizes the Interferometric Wide swath (IW) mode over land. Sentinel-1A prioritizes VV polarization for surface water detection (Liu, 2016; Clement et al., 2017). Information on the characteristics of Sentinel 1A's features is provided in Table 1. This study utilized Sentinel-1A C band GRD SAR data with 10m resolution, accessed through Google Earth Engine (Figure 2), for analyzing water spread within the Lower Palar sub-basin. Preprocessing techniques, similar to ESA's Sentinel 1A toolbox (ESA, 2023), included noise removal, calibration, and radiometric correction (Schuster et al., 2015). 
1. Strip mosaicking merges frames into coherent strips, simplifying data management.
2. Co-registration aligns temporal images, adjusting pixel shifts using orbital data.
3. Time-series speckle filtering reduces noise across images.
4. Terrain geocoding, radiometric calibration, and normalization transform data into meaningful coordinates.
5. ANLD filtering enhances image quality, while atmospheric attenuation removal rectifies anomalies.
6. Sub-setting and SAR fuzzy thresholding enable targeted analysis and pixel classification, followed by zonal statistics for quantitative assessments, particularly in water spread area calculations.



Table 1. Characteristics of Sentinel 1A (IW1-HR) Data

	Parameters
	Ground range (GRD)
	Slant range (SLC)

	Pixel value
	Magnitude detected
	Complex

	Coordinate system
	Ground Range
	Slant Range

	
Polarizations
	Single (VV), Cross (VH) and Dual (VV+VH)
	Single (VV), Cross (VH) and Dual (VV+VH)

	Ground range coverage (km)
	251.8
	251.8

	Radiometric resolution (dB)
	1.7
	-

	Bits per Pixel
	16
	16 I and 16 Q

	Resolution (range x azimuth) (m)
	20.4 x 22.5
	2.7 x 22.5

	Pixel spacing (range x azimuth) (m)
	10 x 10
	2.3 x 14.1

	Incident angle
	32.9o
	32.9o

	Number of Looks
	5 x 1
	1 x 1

	Range look bandwidth (MHz)
	14.1
	56.5

	Azimuth look bandwidth (Hz)
	315
	315


						Source: sentinels.copernicus.eu

[image: ]Figure 2. Satellite data download and processing in the GEE environment
2.1.2 Drone Image Collection and Processing
Using drones to capture imagery involves careful planning of flight paths tailored to specific goals. In this study, the objective was to create an extremely accurate elevation model with sub-centimeter precision, requiring images with resolutions finer than 3 cm. Both quadcopters and fixed-wing drones were used to capture orthoimages of tanks, which were then used to generate Digital Terrain Models (DTMs) for Lower Palar tanks. Fixed-wing drones were preferred for larger tanks due to their efficiency. Geotagged data from onboard receivers was embedded into images as EXIF information. The cameras were optimized to produce sharp imagery and accurate data, set in programmable mode with optimal settings such as shutter speed and exposure time. Overlapping images were taken along the flight path to create detailed point cloud data, with a recommended minimum front and side overlap of 60% to enhance matching accuracy. The Unmanned Aerial Vehicle (UAV) was equipped with an autopilot and high-precision GPS for navigation, and the onboard flight controller triggered the camera every 1-2 seconds. Flight paths were recorded using onboard GPS and synchronized with the camera before each flight. Figure 3 illustrates an exemplary flight path over the tank area.
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	Figure 3. Flight Track over the study area



2.1.3 Processing of images in Pix4D
Drone images created an ortho-image and Digital Surface Model (DSM) for the tank, using Pix4D software for tasks like bundle block adjustment, point cloud generation, Orthomosaic creation, and filtering (Küng et al., 2011). Pix4D mapper, known for UAV photogrammetry, managed lightweight UAV photos well (Sona et al., 2014). This process generated cloud points, Orthoimages, and a Digital Elevation Model (DEM). Additional tie points made a Densified Point Cloud and a 3D Textured Mesh. Orthoimage correction fixed image perspective and terrain changes, aiding 3D model creation from 2D photos. Creating 3D models from 2D photos faces challenges due to the non-differentiable image generation process. Overcoming this requires more information, like corresponding image points in multiple views. Triangulating viewpoints reconstructs a 3D projection. Camera calibration and position are crucial, achieved through a projection matrix. The geometrical theory of Structure from Motion (SfM) computes projection matrices and 3D coordinates simultaneously using relevant points. DSM and Digital Terrain Model (DTM) development helps compute Volumes, Orthomosaics, and Reflectance Maps.
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Figure 4. Methodology Overview for Water Spread Analysis
2.1.4 Tank dimension assessment and estimation of water quantity
The quantification of water in tanks was assessed using the customized tool developed by ArcGIS 10.6 software. The ‘Compute Water Depth’ tool was developed to create the water spread depth raster using DTM data generated from the Pix4D mapper and mask raster data of the water spread pixels (Figure 4). The volume will be generated as output in m3.
	The volume (Vi) of each grid cell i is provided by:
Vi = Li x Wi x Hi
Where,
	Li = the length of the cell; Wi = the width of the cell; Hi = the height of the cell
	The Length (Li) and Width (Wi) equal the project's Ground Sample Distance (GSD).
Li =Wi = GSD
The Height (Hi) is given by
Hi = ZTi – ZBi
Where,
	ZTi = the terrain altitude of each cell at the centre of the cell
	ZBi = the base altitude of each cell at the centre of the cell
Therefore, the volume Vi of cell i is given by
Vi = GSD x GSD x (ZTi - ZBi)
	The altitude of the 3D terrain corresponding to the centre of cell ‘i' is denoted by ZTi. The altitude of the base surface of the volume corresponding to the centre of cell ‘i' is denoted by ZBi.

2.3 Crop classification
2.3.1 Sentinel 1A and Sentinel 2 data
Crop diversification and classification for the Kharif, Rabi, and Summer seasons in the Lower Palar Subbasin were evaluated using high-resolution Sentinel 2 Optical satellite data, along with Sentinel 1A Synthetic Aperture Radar products. Sentinel 2 comprises 13 spectral bands, of which four bands (B2 490 nm, B3 560 nm, B4 665 nm, and B8 842 nm) with 10 m resolution were utilized. Composite images for Kharif, Rabi, and Summer seasons in 2018 and 2021 were obtained from the Google Earth Engine platform. The data underwent preprocessing steps like cloud filtering and atmospheric corrections via Python scripting for optimal Sentinel 2 imagery of the Lower Palar sub-basin.
2.3.2 Generation of Land parcel Information and Ayacut Area
The cadastral maps of villages in the Lower Palar sub-basin were acquired from the Department of Agriculture in Chengalpattu and Kancheepuram Districts, using large-scale (1:5000) cadastral maps. The process involved map mosaicking, georeferencing, digitization, and edge matching to delineate the tank ayacut area from the digitized cadastral maps, as outlined in Figure 5 of the methodology. 
	Tank ayacut maps, obtained from the Water Resources Department, were generated using digitized cadastral maps and tank water user association maps in ArcGIS 10.6, delineating major tank ayacut boundaries across the Lower Palar sub-basin. Ground truth surveys collected 1833 points across six seasons to validate crop and non-crop areas derived from satellite data, employing a random stratified sampling approach for training and validation in crop classification.
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Figure 5. Methodology adopted for generation of cadastral maps and Tank Ayacut
2.3.3 Crop Classification and Crop Diversification Assessment 
Pixel-based classification and the random forest machine learning algorithm were applied to pre-processed Sentinel 2 satellite data with 10m spatial resolution to identify major crop areas. Ground truth points from surveys were crucial for training classification modules to pinpoint major crops in the study area (Figure 6). Crop classification was performed for major crops across different seasons, and water spread in tanks was assessed during the kharif, rabi, and summer seasons of 2018 and 2021. These assessments correlated with crop area and crop variety in each season, informing the Crop Diversification Index analysis using Simpson Index of Diversity (SID) (Simpson, 1949). It considers species abundance and evenness, with values close to 1 indicating diverse cropping patterns and 0 indicating monoculture.
SID = 
M is the number of classes, N is the area that is being observed, and n is the area of one class (Crop). Values around 1 imply a more diversified and heterogeneous cropping pattern, whereas a value of 0 implies monoculture in contrast.
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Figure 6. Methodology of Crop classification and Crop diversification assessment
	
3. results: 
[bookmark: _Hlk164942026]3.1 Water Spread Assessment in Lower Palar Sub-Basin
The estimated water spread data for tanks in the Lower Palar sub-basin were presented in Tables 2 and 3. The monthly mean total water spread area in the Lower Palar basin ranges from 1489.0 to 3160.0 ha throughout the year, with higher cumulative totals observed from October to April. Conversely, May to September typically gets lower water spread areas. Peak water spread occurs in December, followed by January and February. In 2019-20, July had the minimum water spread area (460 ha), while December had the maximum (5211.8 ha), except for December 2019, where a lower area indicated a monsoon deficit.
	The monthly mean total water spread volume ranges from 724.3 to 1185.7 million cubic meters (MCM) regardless of month or year, following a similar pattern to the water spread area, with higher volumes from October to April. Again, December stands out with the maximum volume, followed by January, April, and February. In 2019-20, July had the minimum volume (122.9 MCM), while December had the maximum (2117.6 MCM), except for December 2019 due to monsoon deficits. Due to the unavailability of a sentinel 1A satellite pass over Tamil Nadu during December 2023, water spread and volume were not assessed for that month.
Table 2. Month-wise cumulative water spread area (ha) analysis 
	Year
	Jan
	Feb
	Mar
	April
	May
	June
	July
	Aug
	Sep
	Oct
	Nov
	Dec

	2018-19
	2170.3
	1526.3
	1598.7
	1278.3
	1064.4
	1456.8
	1187.5
	1117.1
	1232.9
	1282.1
	1019.6
	1904.8

	2019-20
	1546.5
	1534.5
	1329.0
	1357.4
	924.3
	926.8
	460.0
	1076.4
	1492.2
	1831.8
	3103.5
	5211.8

	2020-21
	3781.9
	2313.5
	2293.1
	1811.8
	1685.8
	1216.7
	2550.3
	2450.9
	1543.1
	1822.1
	3183.2
	3891.4

	2021-22
	3304.0
	3756.5
	2786.8
	3059.9
	2098.3
	1642.0
	1890.0
	1514.7
	2108.0
	2523.2
	4775.1
	3354.1

	2022-23
	4828.6
	3026.6
	3102.3
	2807.7
	2545.3
	1610.6
	1915.1
	845.7
	2073.7
	1671.4
	1343.1
	4103.8

	2023-24
	3328.6
	3570.9
	2891.2
	3012.4
	2491.1
	2081.0
	1981.6
	2081.5
	2111.3
	2924.4
	2280.7
	N/A

	Maximum
	4828.6
	3756.5
	3102.3
	3059.9
	2545.3
	2081.0
	2550.3
	2450.9
	2111.3
	2924.4
	4775.1
	5211.8

	Mean
	3160.0
	2621.4
	2333.5
	2221.2
	1801.5
	1489.0
	1664.1
	1514.4
	1760.2
	2009.2
	2617.5
	3077.7



Table 3. Month-wise cumulative water spread volume (MCM) analysis 
	Year
	Jan
	Feb
	Mar
	April
	May
	June
	July
	Aug
	Sep
	Oct
	Nov
	Dec

	2018-19
	892.7
	553.9
	618.2
	456.2
	346.5
	648.8
	557.6
	505.8
	553.7
	569.2
	458.1
	692.8

	2019-20
	560.1
	640.7
	609.7
	556.8
	248.0
	299.5
	122.9
	340.2
	468.6
	677.7
	1193.3
	2117.6

	2020-21
	1476.0
	761.1
	882.9
	834.2
	742.1
	307.8
	1020.1
	1017.2
	671.2
	640.3
	1171.2
	1162.8

	2021-22
	1169.6
	1416.1
	1075.7
	1418.7
	762.0
	451.9
	743.4
	597.0
	894.0
	1134.9
	1953.0
	1219.2

	2022-23
	1909.1
	1065.6
	1244.9
	1355.6
	1205.1
	829.4
	926.6
	314.1
	840.6
	677.7
	419.2
	1428.6

	2023-24
	1106.8
	1328.6
	1255.6
	1430.3
	1192.0
	943.8
	975.4
	932.9
	929.7
	1304.6
	955.0
	N/A

	Maximum
	1909.1
	1416.1
	1255.6
	1430.3
	1205.1
	943.8
	1020.1
	1017.2
	929.7
	1304.6
	1953.0
	2117.6

	Mean
	1185.7
	961.0
	947.8
	1008.6
	749.3
	580.2
	724.3
	617.9
	726.3
	834.1
	1025.0
	1103.5



[bookmark: _Hlk164942069]3.1.1 Seasonal Water Spread Analysis

The detailed cumulative seasonal total water spread and volume analysis was performed for the Lower Palar Subbasin from 2018 to 2024 (Table 4). The North East Monsoon reported a higher mean cumulative water spread area of 4798.1 ha, followed by summer (3961.9 ha) and South West Monsoon season (2852.7 ha), and the same pattern was observed in all the years. The maximum water spread was reported during North East Monsoon (6165.3 ha; 2021-22) followed by the Summer season (4787.0 ha; 2020-21) and South West Monsoon (3373.9 ha; 2023-24) respectively. The Mean and Maximum water spread volume follow the same pattern as the water spread area.
Table 4. Seasonal Cumulative water spread area and volume of Lower Palar subbasin
	Year
	South West Monsoon
	North East Monsoon
	Summer

	
	Area (ha)
	Volume (MCM)
	Area (ha)
	Volume (MCM)
	Area (ha)
	Volume (MCM)

	2018-19
	1987.9
	192.7
	2396.5
	216.7
	2318.6
	228.1

	2019-20
	2169.2
	202.6
	5658.9
	582.3
	3530.3
	383.3

	2020-21
	3310.8
	355.4
	5853.3
	569.0
	4787.0
	481.3

	2021-22
	3035.2
	325.1
	6165.3
	605.7
	4652.0
	489.9

	2022-23
	3238.9
	326.1
	5262.0
	517.0
	4521.5
	443.9

	2023-24
	3373.9
	333.5
	3452.7
	339.3
	N/A
	N/A

	Maximum
	3373.9
	355.4
	6165.3
	605.7
	4787.0
	489.9

	Mean
	2852.7
	289.2
	4798.1
	471.7
	3961.9
	405.3



3.1.2 Tank Ayacuts in Lower Palar Sub Basin
The digitized cadastral boundaries of Lower Palar sub-basin villages were used to delineate tank ayacut maps, obtained from the Public Works Department (PWD) – Water Resource Department (WRD). Challenges arose from including permanent features like settlements and greenery. 95 tank ayacuts were delineated and detailed in Table 5. 

Table 5. Major tank ayacuts of Lower Palar sub-basin
	S.No
	Tank Name
	Village
	Block
	Area (ha)

	1.
	Oothukadu Peria Eri
	Oothukadu
	Kancheepuram
	512.9

	2.
	Enadur Tank
	Enadur
	Kancheepuram
	417.6

	3.
	Siruvakkam Big Tank
	Siruvakkam
	Kancheepuram
	396.8

	4.
	Singadivakkam Tank
	Singadivakkam
	Kancheepuram
	256.5

	5.
	Kooram Big Tank
	Kooram
	Kancheepuram
	254.5

	6.
	Nelvoy Tank
	Nelvoy
	Kancheepuram
	250.3

	7.
	Ullavur Peria Eri and Ullavur Chitheri
	Ullavur
	Kancheepuram
	244.8

	8.
	Konnerikuppam Tank
	Konnerikuppam
	Kancheepuram
	243.7

	9.
	Vedal Tank
	Vedal
	Kancheepuram
	198.7

	10.
	Thodur Tank
	Thodur
	Kancheepuram
	198.2

	11.
	Injambakkam Chitheri
	Injambakkam
	Kancheepuram
	187.6

	13.
	Kuthirambakkam Tank
	Kuthirambakkam
	Kancheepuram
	185.3

	14.
	Podavoor Melthangal
	Podavoor
	Kancheepuram
	181.8

	15.
	Vaiyavur Tank
	Vaiyavur
	Kancheepuram
	158.4

	16.
	Nathapettai Tank
	Nathapettai
	Kancheepuram
	151.4

	17.
	Sembarambakkam Tank
	Sembarambakkam
	Kancheepuram
	137.5

	18.
	Ariyaperumbakkam Tank Thangal
	Ariyaperumbakkam
	Kancheepuram
	115.9

	19.
	Thandalam Tank
	Thandalam
	Kancheepuram
	114.5

	20.
	Kaliyanur Peria Eri
	Kaliyanur
	Kancheepuram
	111.2

	21.
	Illuppapattu Mananthangal
	Illuppapattu
	Kancheepuram
	101.8

	22.
	Nirvalur Tank
	Nirvalur
	Kancheepuram
	100.7

	23.
	Sitiambakkam Tank
	Sitiambakkam
	Kancheepuram
	94.2

	24.
	Nathanallur Tank
	Nathanallur
	Kancheepuram
	88.7

	25.
	Siruvedal Tank
	Siruvedal
	Kancheepuram
	82.7

	26.
	Kovalavedu Tank
	Kovalavedu
	Kancheepuram
	82.1

	27.
	Peria Karumbur Malattu Thangal
	Peria Karumbur
	Kancheepuram
	77.6

	28.
	Athivakkam Vadaku Thangal
	Athivakkam
	Kancheepuram
	74.9

	29.
	Sinnivakkam Tank
	Sinnivakkam
	Kancheepuram
	71.4

	30.
	Alappakkam Tank
	Alappakkam
	Kancheepuram
	71.2

	31.
	Seeyati Tank
	Seeyati
	Kancheepuram
	64.8

	32.
	Palur Chitheri And Peria Eri
	Palur
	Chengalpattu
	259.8

	33.
	Villiambakkam Tank
	Villiambakkam
	Chengalpattu
	121.6

	34.
	Venbakkam Thangal and Guruvanmedu 
	Venbakkam & Guruvanmedu
	Chengalpattu
	108.6

	35.
	Ozhalur Pudupakkam Hissa Tank
	Ozhalur Pudupakkam
	Chengalpattu
	61.4

	36.
	Settipunniyam Tank
	Settipuniyam
	Chengalpattu
	47.8

	37.
	Vallam Tank and Thenur Tank
	Vallam, Thenur
	Chengalpattu
	32.9

	38.
	Pandur Peria Eri
	Pandur
	Tirukalukundram
	189.6

	39.
	Veerapuram Tank & Thangal
	Virapuram
	Tirukalukundram
	148.0

	40.
	Vazhuvadur Tank
	Vazhuvadur
	Tirukalukundram
	143.5

	41.
	Perumbakkam Maduvu, Thangal
	Vittilapuram
	Tirukalukundram
	138.7

	42.
	Pattarai Kazhani Tank
	Nerumbur
	Tirukalukundram
	133.3

	43.
	Vitalapuram Tank
	Vitalapuram
	Tirukalukundram
	129.1

	44.
	Sooradimangalam Peria Eri
	Mangalam
	Tirukalukundram
	123.1

	45.
	Thathalur Big Tank
	Thathalur
	Tirukalukundram
	121.1

	46.
	Vayalur Tank
	Voyalur
	Tirukalukundram
	117.8

	47.
	Ayapakkam Periya and Chitheri
	Ayapakkam
	Tirukalukundram
	113.8

	48.
	Aminjikarai Tank and Thangal
	Aminjikarai
	Tirukalukundram
	108.5

	49.
	Vasuvasamuthiram Tank
	Pudupatnam
	Tirukalukundram
	105.2

	50.
	Muthigai Nallankuppam Chitheri
	Muthigai Nallankuppam
	Tirukalukundram
	104.1

	51.
	Nerumbur Peria Eri and Thangal
	Nerumbur
	Tirukalukundram
	103.6

	52.
	Edaiyur Peria Eri and Edaiyur thangal
	Idaiyur
	Tirukalukundram
	101.2

	53.
	Manapakkam Tank
	Manapakkam
	Tirukalukundram
	99.2

	54.
	Udhayambakkam Tank
	Udhayambakkam
	Tirukalukundram
	84.9

	55.
	Neikuppi Peria Eri
	Neikuppi
	Tirukalukundram
	84.5

	56.
	Nenmeli Peria Eri and Chitheri
	Nemali
	Tirukalukundram
	84.0

	57.
	Ponpadirkudam Tank
	Ponpadirkudam
	Tirukalukundram
	77.5

	58.
	Salur Tank
	Salur
	Tirukalukundram
	76.8

	59.
	Vellappanthal Tank
	Vellappanthal
	Tirukalukundram
	75.8

	60.
	Ayapakkam Kokorai Odai
	Ayapakkam
	Tirukalukundram
	75.7

	61.
	Thalambedu Tank
	Thalambedu
	Tirukalukundram
	75.7

	62.
	Bommarajapuram Tank
	Nallathur
	Tirukalukundram
	73.9

	63.
	Merkandai Tank
	Merkandai
	Tirukalukundram
	70.9

	64.
	Naduvakkarai Tank
	Naduvakkarai
	Tirukalukundram
	68.9

	65.
	Mullikolathur Mulleri
	Mullikolathur
	Tirukalukundram
	68.0

	66.
	Mudaiyur Peria Eri and Thangal
	Mudaiyur
	Tirukalukundram
	63.8

	67.
	Chitlambakkam Tank
	Vittilapuram
	Tirukalukundram
	63.0

	68.
	Echur Peria Eri
	Echur
	Tirukalukundram
	62.5

	69.
	Korapattu Tank
	Korapattu
	Tirukalukundram
	61.1

	70.
	Kondanganeri and Melperumalcheri Tank
	Pudupatnam
	Tirukalukundram
	60.9

	71.
	Patti Kadu Tank
	Pattikadu
	Tirukalukundram
	59.6

	72.
	Nallanpettral Peria Eri, Chitheri
	Perumaleri
	Tirukalukundram
	58.7

	73.
	Perumaleri tank
	Perumaleri
	Tirukalukundram
	57.3

	74.
	Soorakuppam Thangal & Peria Eri
	Mangalam
	Tirukalukundram
	53.7

	75.
	Narapakkam Tank
	Narapakkam
	Tirukalukundram
	53.4

	76.
	Thirumani Peria Eri
	Tirumani
	Tirukalukundram
	53.2

	77.
	Echangaranai Tank
	Mangalam
	Tirukalukundram
	53.1

	78.
	Karumarapakkam Periya Eri and Thangal
	Mangalam
	Tirukalukundram
	52.0

	79.
	Venpakkam Tank
	Venbakkam
	Tirukalukundram
	51.8

	80.
	Thunjam Tank
	Thunjam
	Tirukalukundram
	49.9

	81.
	Meyyur Tank
	Meyyur
	Tirukalukundram
	48.9

	82.
	Irumbuli Cheri Tank
	Irumbuli Cheri
	Tirukalukundram
	46.2

	83.
	Pulikundram Peria Eri and Chitheri
	Pulikundram
	Tirukalukundram
	45.7

	84.
	Kilavedu Tank
	Kilvedu
	Tirukalukundram
	41.5

	85.
	Kalkulam Tank
	Kalkulam
	Cheyyur
	171.4

	86.
	Pavinjur Tank
	Pavinjur
	Cheyyur
	113.7

	87.
	Neelamangalam Tank
	Nilamangalam
	Cheyyur
	99.0

	88.
	Kumarakuppam Tank
	Thondamanallur
	Cheyyur
	83.0

	89.
	Sivadi tank
	Sivadi
	Cheyyur
	62.5

	90.
	Uludamangalam tank
	Uludamangalam
	Cheyyur
	57.4

	91.
	Lathur Tank
	Lattur
	Cheyyur
	57.4

	92.
	Punnammai Tank
	Punnamai
	Cheyyur
	51.9

	93.
	Pachayambakkam Tank
	Pachayambakkam
	Cheyyur
	48.2

	94.
	Agaram Tank
	Pavanjur
	Cheyyur
	17.1

	95.
	Kalkulam Tank
	Kalkulam
	Cheyyur
	171.4
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3.2.1 Water spread assessment during 2018 and 2021
Water spread in the tanks of the Lower Palar sub-basin was examined across Kharif, Rabi, and Summer seasons in both 2018 and 2021, utilizing data from the multi-temporal Sentinel 1A Synthetic Aperture Radar. In Kharif 2018, 903.49 hectares of water spread were recorded across 262 tanks, with varying spread areas ranging from less than 0.01 ha to over 50 ha. The Rabi season saw an increase to 1124.09 ha of water spread, correlated with previous rainfall, and Summer recorded 1186.25 ha of water spread, also linked to preceding rainfall (Figure 7 and Table 6 and 7). In 2021, the Rabi season experienced the highest rainfall at 1530.9 mm, leading to increased water spread in the subsequent Summer season, reaching 2715.82 ha due to North East monsoon rains. The highest water spread across all six seasons was recorded in Summer 2021 at 2715.82 ha, significantly influenced by the previous season's rainfall of 1530.09 mm from the North East monsoon. 

Table 6. Seasonal SoS, EoS and Cumulative Water Spread during 2018 and 2021
	
Particulars
	Water Spread (ha)

	
	Kharif,
2018
	Rabi,
2018
	Summer, 2018
	Kharif,
2021
	Rabi,
2021
	Summer, 2021

	Start of the season (SoS)
	880.13
	965.21
	1360.37
	1877.75
	1327.87
	3693.64

	End of the season (EoS)
	717.26
	1342.02
	895.17
	1145.69
	2826.36
	2524.66

	Cumulative Water Spread
	903.49
	1124.09
	1186.25
	1378.22
	2391.58
	2715.82



Table 7. Seasonal Water Spread assessment during 2018 and 2021
	Water spread range (ha)
	Kharif, 2018
	Rabi, 2018
	Summer, 2018
	Kharif, 2021
	Rabi, 2021
	Summer, 2021

	
	Tank
(Nos.)
	Tank
(%)
	Tank
(Nos.)
	Tank
(%)
	Tank
(Nos.)
	Tank
(%)
	Tank
(Nos.)
	Tank
(%)
	Tank
(Nos.)
	Tank
(%)
	Tank
(Nos.)
	Tank
(%)

	0
	30
	11.45
	43
	16.41
	29
	11.07
	44
	16.79
	20
	7.63
	23
	8.78

	0.01-10
	224
	85.5
	208
	79.39
	222
	84.73
	197
	75.19
	197
	75.19
	183
	69.85

	10-25
	4
	1.53
	6
	2.29
	5
	1.91
	12
	4.58
	28
	10.69
	36
	13.74

	25-50
	0
	0
	1
	0.38
	2
	0.76
	4
	1.53
	11
	4.2
	14
	5.34

	> 50
	4
	1.53
	4
	1.53
	4
	1.53
	5
	1.91
	6
	2.29
	6
	2.29

	Total
	262
	100
	262
	100
	262
	100
	262
	100
	262
	100
	262
	100


[image: ]
a. Kharif, Rabi and Summer 2018

[image: ]

b. Kharif, Rabi and Summer 2021
Figure 7 (a-b). Seasonal Water Spread assessment in Lower Palar Sub Basin
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The crop classifications were estimated among all three seasons of 2018 and 2021 (Table 8). Based on the results, the Paddy crop recorded the highest area of 24176.3 ha during Rabi season, followed by 15879.6 ha in kharif and 13606.5 ha in summer. Sugarcane crop recorded 4367.5 ha during Kharif, 4099.2 ha in rabi and 3325.5 ha in summer. Groundnut crop recorded 3254.6 ha, and watermelon occupies 2558.2 ha during Summer. In 2021, the paddy crop recorded the highest area of 29,973.7 ha during the Rabi season, followed by 26,450.0 ha in Summer and 24,809.7 ha in Kharif. Sugarcane crop recorded 4747.9 ha during Summer, 4099.2 ha in Rabi and 3578.6 ha in Kharif. Groundnut and watermelon crops recorded an area of 3254.6 and 6846.2 ha, respectively, during Summer seasons. The crop class maps were generated for all the seasons and the overall accuracy of 87, 90 and 90 per cent was registered in kharif, rabi and summer 2018, respectively with kappa index of 0.87, 0.89 and 0.89. Similarly, kharif, rabi and summer 2021, the overall accuracy is 89, 82 and 88 per cent with kappa index of 0.88, 0.79 and 0.86 achieved respectively.
[bookmark: _bookmark237]Table 8. Crop classification classes for Kharif, Rabi, and Summer of 2018 and 2021
	Land Cover /Crop Class
	Area (ha)

	
	2018
	2021

	
	Kharif
	Rabi
	Summer
	Kharif
	Rabi
	Summer

	Barren land
	30286.3
	29825.4
	29987.2
	25278.5
	24864.3
	24787.5

	Casuarina
	2033.8
	1987.5
	2023.5
	998.6
	1003.3
	990.8

	Coconut
	903.3
	921.2
	962.6
	1008.6
	1106.8
	1101.9

	Fallow land
	26962.9
	18428.5
	23257.2
	19982.1
	16416.2
	8229.3

	Forest
	8947.3
	8997.4
	9002.3
	8724.9
	8802.7
	8890.1

	Groundnut
	-
	-
	3254.6
	-
	-
	3965.8

	Mango
	1989.3
	1965.2
	1967.6
	2018.9
	2010.6
	2012.9

	Paddy
	15879.6
	24176.3
	13606.5
	24809.7
	29973.7
	26450.0

	Settlement
	6220.1
	6266.0
	6426.3
	7350.3
	7389.2
	7389.7

	Sugarcane
	4367.2
	4099.2
	3325.5
	3578.6
	3998.7
	4747.9

	Waterbody
	6879.8
	7803.5
	8098.7
	8633.6
	8904.5
	9057.9

	Watermelon
	-
	-
	2558.2
	2086.3
	-
	6846.2

	Total
	104470.0
	104470.0
	104470.0
	104470.0
	104470.0
	104470.0



Between 2018 and 2021, Paddy cultivation was prominent, notably with the largest cropping areas during Rabi 2021 (29,973.7 ha), Summer 2021 (26,450.0 ha), and Rabi 2018 (24,176.3 ha) (Table 9). Watermelon had a substantial area in Summer 2021 (6,846.2 ha), followed by sugarcane (4,747.9 ha). Sugarcane and casuarina crops persisted annually. Changes in mango and coconut plantations were observed between Kharif 2018 and Summer 2021, with varying areas. Barren land decreased from Kharif 2018 (30,286.3 ha) to Summer 2021 (24,787.5 ha), possibly influenced by increased rainfall in 2021. Urbanization led to conversions of barren land to settlements, notably in Summer 2021 (7389.7 ha).

Table 9. Seasonal cropping and Fallow land area (ha) of 2018 and 2021
	Class
	2018
	2021

	
	Kharif
	Rabi
	Summer
	Kharif
	Rabi
	Summer

	Groundnut
	-
	-
	3,254.6
	-
	-
	3,965.8

	Paddy
	15,879.6
	24,176.3
	13,606.5
	24,809.7
	29,973.7
	26,450.0

	Sugarcane
	4,367.5
	4,099.2
	3,325.5
	3,578.6
	3,998.7
	4,747.9

	Watermelon
	-
	-
	2,558.2
	2,086.3
	-
	6,846.2

	Fallow land
	26,962.9
	18,428.5
	23,257.2
	19,982.1
	16,416.2
	8,229.3

	Cultivated area (ha)
	20,247.1
	28,275.5
	22,744.8
	30,474.5
	33,972.4
	42,009.97
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	Crop classification analysis included Paddy and Sugarcane areas in Kharif, Rabi, and Summer 2018, along with Paddy, Groundnut, Sugarcane, and Watermelon in Summer. These areas were crucial for calculating the Simpson Index of Diversity across the seasons (Table 10). The Simpson Index values were 0.34, 0.25, and 0.59 for Kharif, Rabi, and Summer 2018, and 0.32, 0.21, and 0.56 for Kharif, Rabi, and Summer 2021, respectively. This index ranges from 0 to 1, where lower values suggest monoculture or limited diversification, while higher values, around 0.5 and above, indicate a more diverse crop composition. 
Table 10. Simpson Index of Diversity (SID) for Kharif, Rabi and Summer, 2018 and 2021
	
Season
	Water spread (ha)
	Total cultivated area (N) (ha)
	Fallow land (ha)
	
SID

	
	Start of
season
	End of
season
	Seasonal
spread
	
	
	

	Kharif, 2018
	880.1
	717.3
	903.5
	20,247.1
	26,962.9
	0.34

	Rabi, 2018
	965.2
	1342.0
	1124.1
	28,275.5
	18,428.5
	0.25

	Summer, 2018
	1360.4
	895.2
	1186.3
	22,744.8
	23,257.2
	0.59

	Kharif, 2021
	1877.8
	1145.7
	1378.2
	30,474.5
	19,982.1
	0.32

	Rabi, 2021
	1327.9
	2826.4
	2391.6
	33,972.4
	16,416.2
	0.21

	Summer, 2021
	3693.6
	2524.7
	2715.8
	42,010.0
	8,229.3
	0.56



4. Discussion
4.1 Water Spread assessment in Lower palar Sub-basin
	Using multi-temporal Sentinel 1A Synthetic Aperture Radar data, water spread in lower palar tanks were analyzed. This analysis focused on the sub-basin’s tanks, studying their water spread area to explore the link between water spread, rainfall, and changes in cropping area due to water availability, impacting crop diversification. Comparing years, 2020-2023 showed higher water spread areas and volumes than 2018-2019, indicating more uniform and better rainfall distribution during these later years.
	The seasonal water spread in the tanks indicates the possibility of growing crops in all seasons, and rainfall received during the Northeast monsoon season has been carried forward for Summer season crops. The seasonal cumulative water spread area of the Lower Palar basin from 2018-19 to 2023 to 24 is presented in Figure 8. This analysis aimed to understand how water spread relates to rainfall, changes in cropping patterns due to water availability, and subsequent impacts on crop diversification. The Lower Palar sub-basin's tanks are interconnected based on their slope and terrain features, with a drainage pattern flowing west to east toward the coast. Factors such as slope, drainage networks, monsoon onset, and excess rainfall influence consistent water availability in these tanks.
	Remote sensing, particularly using SAR data, has seen increased application in water body mapping and disaster monitoring, as seen in various studies like those conducted by Ovakoglou et al. (2021) and Prasad et al. (2018). In Lower Palar Subbasin, water spread during the Start of the Season (SoS) peaked in Summer, followed by Rabi and Kharif seasons. Conversely, at the end of the Rabi season (EoS), water spread was higher, ensuring adequate water for agriculture during Summer. Overall, cumulative water availability was highest in Summer, followed by Rabi and Kharif seasons, highlighting the importance of Rabi and Summer for the Lower Palar subbasin.
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Figure 8 (a-f). Water Spread assessment in Lower Palar Subbasin
4.2 Crop Diversification in Lower Palar Sub basin
Remote sensing image classification, a key technique for extracting land cover details from satellite imagery, has seen extensive use. Studies by Ouattara et al. (2004), Borak (1999), and Casals-Carrasco et al. (2000) highlight various classification algorithms' effectiveness. The spectral attributes of significant crop and non-cropping regions were leveraged to identify the major crop cultivation areas, employing various machine-learning techniques supported by the ground truth data acquired during the survey. 
This study employed Random Forest (RF) machine learning algorithms for crop classification in the study area (Figure 9 and 10) with a pixel-based classification approach across the kharif, rabi and summer seasons of 2018 and 2021, respectively. Crop discrimination using a pixel-based classification approach with an RF machine learning algorithm was done by Tatsumi et al. (2015) using Landsat 7 ETM+ satellite data. Similarly, crop discrimination using various optical remote sensing datasets used random forest classifiers (Piedelobo et al., 2019; Conrad et al., 2010; Turker and Ozdarici, 2011; Yang et al., 2015). It acquired good results by classifying various crop classes in different agricultural fields. The Random Forest algorithm, detailed by Kulkarni and Lowe (2016), was employed for multisource data classification, using ensemble methods like boosting and bagging. Random Forests, popular in land cover classification, offer high accuracy, handle large datasets efficiently, and save tree structures for future use, as demonstrated by Gislason et al. (2006) in multisource data classification studies.
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a. Kharif, Rabi and Summer during 2018
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b. Kharif, Rabi and Summer during 2021
Figure 9 (a-b). Crop Classification derived from Sentinel 2 data
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Figure 10. Comparison of Crop classes in Lower Palar sub basin for 2018 and 2021
5. Conclusion 
The utilization of Sentinel-1A Synthetic Aperture Radar (SAR) satellite data presents significant potential for the continuous monitoring of tank water spread and assessing changes in agricultural landscapes. Proper maintenance of tanks throughout the year can contribute to an increased water spread area within these tanks, directly impacting groundwater levels in the region. Access to reliable information regarding water availability in tanks is crucial for effective regional planning. Unfortunately, such information is often scarce or unavailable, leading to erroneous planning decisions and the potential overuse of water from tanks. By assessing the dynamics of water spread at the tank level through the utilization of SAR satellite data, farmers can gain access to more accurate and timely information. This data can significantly aid in crop planning at both local and regional levels, facilitating better water management practices. Therefore, tracking the water spread area using Sentinel-1A SAR satellite data is essential for overcoming these challenges and improving agricultural productivity in the region. The crop diversification confirmed through diversity index. The SID value of 0.59 was obtained in the Summer 2018, due to the even distribution of (n) number of crops like paddy, groundnut, sugarcane and watermelon. The lowest SID value (0.21) was observed in Rabi 2021 due to higher water spread and the adoption of mono cropping in larger areas. The study concluded that there is a need to grow more diversified crops of both Agricultural and Horticultural crops across the Kharif and Rabi seasons. Proper maintenance of channels in the tanks might lead to crop cultivation at distal parts of ayacut areas with sufficient irrigation. By leveraging satellite-based monitoring techniques, stakeholders can make more informed decisions regarding water resource allocation, leading to sustainable agricultural practices and enhanced water conservation efforts.
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Abbreviations

	dB
	:
	Decibels

	DEM
	:
	Digital Elevation Model

	DSM
	:
	Digital Surface Model

	GIS
	:
	Geographic Information System

	ha.
	:
	Hectare

	viz.,
	:
	Namely

	%
	:
	Percentage

	LAI
	:
	Leaf Area Indec

	NDVI
	:
	Normalized Difference Vegetation Index

	NRMSE
	:
	Normalized Root Mean Square Error 

	RMSE
	:
	Root Mean Square Error 

	SAR
	:
	Synthetic Aperture Radar

	S1
	:
	Sentinel 1

	S2
	:
	Sentinel 2

	VH
	:
	Vertically Transmitted, Horizontally Received

	VV
	:
	Vertically Transmitted, Vertically Received

	UAV
	
	Unmanned Aerial Vehicle 
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