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Using Machine Learning and GIS to Monitor Sandbars along the RiverNiger in 
the Niger Delta, Nigeria  

 

Abstract: 

The use of GIS and machine learning techniques to map sand bars along the Niger River in the Niger 
Delta, Nigeria, spanning the period from 1974 to 2024. It integrates DEM, Landsat series satellite 
imagery obtained from the USGS. Rainfall data from 1983 to 2023, sourced from the Center for 
Hydrometeorology and Remote Sensing, supplements the analysis. Object-Based Image Analysis is 
employed to identify and map sand bars, while Support Vector Machines automate classification to 
ensure precision and recall metrics. ArcGIS 10.5 tracks temporal changes, revealing significant 
morphological shifts influenced by both natural processes and human activities. Results show a 
significant reduction in sandbar length from 1.6502 km in 1974 to a low of 0.7437 km in 2004, while 
sandbar area decreased by 68% to 0.0587 km² by 2004 before partially recovering to 0.1271 km² in 
2024. Key parameters such as Aspect Ratio (AR) and Elongation Ratio (ER) demonstrate relative 
stability, indicating consistent directional flow influence on sandbar shape. Spatial autocorrelation 
analysis (Moran's Index of 0.138562) links sandbar dynamics to elevation, with a significant 
correlation between rainfall and sandbar area fluctuations (R² = 0.7576). Regression analysis reveals 
strong associations among sandbar length, width, and area (R² values up to 0.9737), indicating 
predictable morphometric responses to environmental changes. Additionally, grain size impacts 
sandbar stability, with medium to coarse sands forming more stable structures. Comparative global 
analyses reinforce the broader implications of these findings for sustainable river management, 
stressing the need for balanced policies in response to climate change, sediment transport, and 
anthropogenic activities. The study underscores the importance of advanced monitoring technologies 
for effective riverine ecosystem management and sediment regulation 

Keywords: Sandbars, River Niger, geomorphology, sediment dynamics, remote sensing, Machine 

learning, climate variability 

INTRODUCTION 

The Niger River, Africa's third-longest, flows through multiple countries before reaching the 
Atlantic Ocean via Nigeria Niger Delta[1].This region is renowned for its intricate network of rivers, 
creeks, and sandbars, which play a crucial role in hydrodynamics and sediment transport [2]. 
Monitoring these sandbars is essential for understanding sediment patterns, navigation safety, 
ecological health, and managing coastal erosion and flooding risks.Recent advancements in machine 
learning have significantly bolstered Geographic Information Systems (GIS) capabilities in 
environmental monitoring. Machine learning algorithms can efficiently process vast datasets, discern 
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patterns, and predict future changes with high precision. These techniques are particularly valuable 
for studying the dynamic formation and erosion of sandbars [3].Recent studies underscore GIS's 
transformative impact on spatial analysis and sandbar monitoring in the Niger Delta [4], [5]. GIS 
technologies integrate satellite imagery, aerial surveys, and ground-based data to create detailed 
maps and models of sandbar distribution and morphology. This integration supports comprehensive 
spatial analyses, enabling researchers to assess changes in sandbar extent, shape, and connectivity in 
response to environmental factors such as river flow and sediment transport[3].Furthermore, 
machine learning is increasingly used for predictive modeling and trend analysis in sandbar 
monitoring. Recent research highlights its application in predicting sandbar evolution based on 
historical data and environmental variables [6], [7]. These models improve our ability to forecast 
changes in sandbar morphology and distribution under different scenarios, aiding proactive 
management strategies to mitigate erosion and sedimentation in deltaic ecosystems.Collaborative 
efforts among researchers, government agencies, and local stakeholders have been pivotal in 
advancing sandbar monitoring in the Niger Delta. Interdisciplinary approaches integrating 
hydrology, geomorphology, ecology, and remote sensing have led to innovative methodologies and 
decision-support systems. This collaborative framework supports adaptive management strategies 
that balance conservation goals with socioeconomic development imperatives in the region.The 
evolution of sandbar monitoring from 1974 to 2024 reflects a progression towards more integrated 
and technologically advanced approaches. Recent advancements in remote sensing techniques have 
enhanced the spatial and temporal resolution of data, improving mapping accuracy and monitoring 
efforts [8], [9],[3]. By combining remote sensing data with ground-truthing techniques, researchers 
validate and calibrate predictive models, enhancing monitoring frameworks' reliability and 
applicability [10],[11].Looking ahead, enhancing data accessibility, improving predictive 
capabilities, and fostering stakeholder engagement will drive the future of sandbar monitoring in the 
Niger Delta. Real-time monitoring systems and interactive GIS platforms hold promise for 
facilitating timely decision-making and adaptive management in response to environmental changes. 
Continued collaboration among researchers, policymakers, and local communities will be essential 
to address emerging challenges and sustain the ecological integrity of sandbars and associated 
ecosystems in the Niger Delta. Therefore, this researchaim at monitoring of sandbars in the River 
Niger over a 50-year period (1974-2024) using GIS and Machine learning. By analyzing historical 
and contemporary satellite imagery, the project aims to gain a deeper understanding of sandbar 
dynamics and their response to environmental and anthropogenic pressures 
 

STUDY AND GEOLOGY OF THE AREA  

This study examines a specific section of the Lower Niger River, flowing through Anambra, Delta, 
and Bayelsa States in Nigeria (Latitudes: 5°20'00" N - 5°53'30" N; Longitudes: 6°32'30" E - 
6°43'30" E), as shown in Figure 1. Geologically, this region is part of the Niger Delta basin's 
freshwater geomorphic unit [12]. The area is accessible via the East-West major road and minor 
village roads, with creeks and tributaries connecting it to the Atlantic Ocean. The specific study area 
within the Niger Delta basin has a subsurface geology consisting of three primaries. Tertiary 
lithostratigraphic units: TheAkata, Agbada, and Benin Formations, capped by Quaternary sediments 
with diverse characteristics [13]. These formations, arranged from deepest to shallowest, indicate a 
gradual environmental transition from marine to deltaic, and finally to fluvial settings, reflecting a 
trend of coarsening sediment deposition over time [13][14]. The uppermost Benin Formation is 
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crucial for the region water resources, acting as the main water-bearing unit within the Niger Delta 
basin. Clay layers interspersed within the Benin Formation create a multi-layered aquifer system, 
with the shallowest unconfined aquifer lying at depths of about 20 to 40 meters [15][12][16]. 

 

Figure 1: Study area map. 

 

 

METHODOLOGY 

The combination of multi-decadal data from various sources establishes a robust foundation for 

investigating the morphodynamic evolution (changes in shape and movement) of the River Niger 

sandbars over the 1974-2024 timeframe. 
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Figure 2a: Google Earth image of 2024 showing sand bars along River Niger in Niger Delta region  

Data Collection 

Remote Sensing Data: 

 Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model (DEM): The 

foundation of the elevation data came from the SRTM DEM, retrieved from the 

EarthExplorer platform offered by the United States Geological Survey (USGS) 

https://earthexplorer.usgs.gov/. 

 Landsat Imagery: The Landsat satellite series provided the primary source of imagery for 

the study. This selection offered a comprehensive historical record to monitor changes within 

the designated area. Data from various Landsat missions (Landsat 1, 4, 5, 7, and 8) from 

1974 to 2024 were specifically chosen to ensure consistent path-row coverage (Path 189, 

Row 56) and a high spatial resolution of 30 meters. Landsat data was also obtained from the 

USGS EarthExplorer platform https://earthexplorer.usgs.gov/. 

Additional Data: 

 Rainfall Data (1983-2023): Rainfall data spanning 1983 to 2023 was incorporated into the 

analysis. This data was acquired from the Center for Hydrometeorology and Remote Sensing 
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(CHRS) https://chrs.web.uci.edu/. The inclusion of rainfall data acknowledges the 

established research on the influence of precipitation on river morphology [17] -[23]. 

 Sediment Samples: Six sediment samples were collected directly from the sandbar area 

along River Niger and send to laboratory for analysis. Sieve analysis was conducted on the 

samples to understand the textural properties of the sandbar material. 

 

Methods 

Sand Bar Identification and Mapping 

To identify and map sand bars along the Niger River, an Object-Based Image Analysis (OBIA) 

technique is utilized. This method segments and classifies sand bars in satellite imagery (Figure 2a) 

by examining their spectral characteristics, texture, and spatial relationships with the river channel 

using ArcGIS 10.5 and python program. The process can be broken down as follows (Figure 2b): 

Sand Bar Change Analysis 

Once the sand bars are identified and mapped, their morphological characteristics are analyzed over 

time. Key features such as perimeter (L) and Shape Area (A), are extracted using ArcGIS 10.5. 

These features are calculated as follows: 

Satellite images are divided into distinct areas based on similarities in color and texture. This 

process uses a technique called multi-resolution segmentation[24].The goal is to accurately identify 

sand bars by creating segments that are the right size, shape, and compactness 

Segmentation =݂൫scale, shape, compactness, spectral homogeneity, spatial homogeneity൯   

(Eq.1) 

Where: 

 Scale is the parameter controlling the size of the segmented objects. 

 Shape and compactness control the geometric properties of the segmented objects. 

 Spectral homogeneity and spatial homogeneity ensure that the pixels within each segmented 

object are similar in spectral and spatial terms. 
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Classification 
To distinguish between sand bar and non-sand bar areas within segmented regions, a rule-based 

system is employed. This system analyzes spectral properties (like light reflection), textural 

characteristics (such as image contrast and smoothness), and the location relative to the river channel 

to make its classifications [25]. 

Classify	(Ri) ={ ݎܽܤ݀݊ܽܵ ݏ݈݁ݑݎݏ݂݁݅ݏ݅ݐܽݏܴ݂݅݅
݊ܰ − ݎܽܤ݀݊ܽܵ ݁ݏ݅ݓݎℎ݁ݐ

(Eq.2) 

Where Riis the i-th segmented region and the rules include: 

 Spectral characteristics: reflectance values 

 Texture measures: contrast, homogeneity 

 Spatial relationships: proximity to the river channel 

 

Spectral Analysis: Spectral indices sensitive to water and sand is employed to differentiate between 

sandbars, water, and surrounding land cover using Normalized Difference Vegetation Index (NDVI) 

[26]. 

 

NDWI: (ேூோିோ)
(ேூோ	ାோ)

 (Eq.3) 

Where: 

red (R) and near-infrared (NIR) 

Machine Learning Automation: To streamline the process of identifying sandbars, researchers 

utilized Support Vector Machines (SVMs). They trained the SVM model using manually digitized 

sandbar data. Once trained, the model was able to recognize the characteristics of sandbars and 

automatically categorize all sandbar data from the study period [27] [28]. The accuracy of this 

automated classification was evaluated using a confusion matrix and metrics like precision, recall, 

and F1 score. 

Training SVM: 

Train SVM (training data) =SVM Model 

Where training data includes manually digitized sand bars with their spectral, texture, and spatial 
features. 
Classification using SVM: 
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Classify	(Ri) ={ ݎܽܤ݀݊ܽܵ (ܴ݅)݈݁݀ܯܯܸ݂ܵ݅ = Sand	ܾܽݎ
݊ܰ − ݎܽܤ݀݊ܽܵ ݁ݏ݅ݓݎℎ݁ݐ

                                   (Eq.4) 

Accuracy Assessment: 

Confusion Matrix=ቂܶܲ ܰܨ
ܲܨ ܶܰቃ  (Eq.5) 

Precious = ்
்ାி

(Eq.6) 

Recall = ்
்ାி

(Eq.7) 

Recall = 2 ∗ ୰ୣୡ୧୭୳ୱ∗ୖୣୡୟ୪୪
୰ୣୡ୧୭୳ୱାୖୣୡୟ୪୪

(Eq.8) 

Where: 
 TP = True Positives 
 FN = False Negatives 
 FP = False Positives 
 TN = True Negatives 

Machine Learning for Driving Factors Analysis 

Feature Extraction: Rainfall data and elevation data are extracted and pre-processed. Spatial 
autocorrelation techniques are applied to understand the spatial dependency of sand bar changes on 
these factors. 

1. Feature Extraction: 

Extract and preprocess rainfall data (R) and elevation data (E). 

Apply spatial autocorrelation techniques to understand spatial dependency of Sand 
bar changes (S). 

2. Model Development: 

Various regression models (linear regression,) are trained using the extracted features. The 
models are assessed using correlation coefficients to determine the strength of relationships. 

Train regression models (linear regression) to relate Sand bar changes (S) to rainfall 
(R) and elevation (E). 

Use correlation coefficients to assess model performance. 

The equation for a linear regression model can be written as: 
S=β0+β1R+β2E+ϵ  (Eq.9) 

Where: 
 S = Sand bar changes 
 R = Rainfall data 
 E = Elevation data 
 β0,β1,β2 = Regression coefficients 
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 ϵ = Error term 
Spatial autocorrelation can be assessed using Moran's I [29] 

Moran’s I=
∑ ∑ ఠ(ಿ

ೕసభ
ಿ
సభ ௫ି௫)(௫ି௫)

∑ (௫ି௫)మ)∑ ∑ ఠಿ
ೕసభ

ಿ
సభ

ಿ
సభ

(Eq.10) 

where: 
 N is the number of observations, 
 xi, xjare the values of the variable at locations i and j, 
 x is the mean of the variable, 
 ߱ij are the spatial weights between locationsi and j. 

 
The Pearson correlation coefficient is calculated using the following formula[30]: 
r = େ୭୴(୶,୷)

(ୱୢ(୶)	∗	ୱୢ(୷))	
(Eq.11) 

Where: 
 r is the Pearson correlation coefficient 
 Cov(x, y) is the covariance of the two variables x and y 
 sd(x) is the standard deviation of the variable x 
 sd(y) is the standard deviation of the variable y 

Analyze the difference in means using:  
Difference means = X1-X2 (Eq.12) 
Where: 
X1, X2 are the means of two different samples or groups.
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Figure 2b: Flow chart procedure
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RESULT AND DISCUSSION 

 

RESULTS 

Figure 3 presents satellite images showing the River Niger and its sandbars from 1984 to 2024. 

These images illustrate the temporal changes in the river morphology and the spatial distribution of 

sandbars. The use of remote sensing technology has enabled the continuous monitoring of these 

features, offering a comprehensive view of their evolution over time. 

 

Figure 3: Satellite images showing River and Sand bar from 1984-2024.  
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The Niger Delta is a complex and sensitive ecosystem influenced by riverine processes and sediment 
dynamics. Sandbars, as transient features along the Niger River, are constantly shaped by 
hydrological forces, sediment transport, and potentially anthropogenic factors. Table 1 encapsulates 
these changes over a fifty-year period (1974-2024). These analyses are vital for understanding 
sandbar stability, ecosystem dynamics, flood risk management, and conservation efforts in the 
region. 

Table 1: Sandbar Parameters Over Time (1974-2024) 
Parameter 1974 1984 1994 2004 2014 2024 
Length (L) km 1.6502 1.3544 1.042 0.7437 1.3389 1.3183 
Area (A) km² 0.185 0.107 0.08 0.0587 0.1297 0.1271 
Width (W) km 0.0636 0.0487 0.036 0.0228 0.0443 0.0445 
Perimeter (P) km 3.4276 2.8063 2.155 1.5331 2.7664 2.7256 
River Area (km²) 46376.54 42711.05 48506.25 46008.32 49601.2 44796.47 
Aspect Ratio (AR) 24.9863 25.9256 25.172 24.0168 25.8828 25.2423 
Elongation Ratio (ER) 4.9639 5.0343 4.972 4.8318 4.9807 4.9738 
Circularity (C) 0.1214 0.1203 0.122 0.1287 0.1255 0.1226 
Compactness (Com) 0.4833 0.3957 0.304 0.2162 0.3901 0.3844 
Form Factor (FF) 0.0421 0.0417 0.042 0.0448 0.0437 0.0426 

DISCUSSION  

Sandbar Characteristics and Trend Analysis 

In Table 1, key sandbar parameters over five decades reveal a significant evolution in geometric and 
shape-based aspects, reflecting the influence of natural and anthropogenic factors on sandbar 
morphology. Monitoring sandbars using GIS and Machine Learning (ML) has made it possible to 
detect changes over time with high precision. Research indicates that river morphology is influenced 
by sediment transport, hydrological events, and climate change [31-32], all of which affect the Niger 
River’s sandbars.  

Geometric Parameters  

From 1974 to 2024, the sandbar's physical dimensions have changed notable as seen in Table 1. The 
length decreased from 1.6502 km in 1974 to 1.042 km in 1994, hitting a low of 0.7437 km in 2004 
from Figure 4. These reductions suggest erosion or sediment redistribution, possibly linked to 
hydrological changes or upstream interventions [33]. The sandbar area also declined from 0.185 km² 
in 1974 to 0.0587 km² in 2004, signaling a 68% decrease, before recovering slightly to 0.1271 km² 
by 2024. Such fluctuations indicate that sandbar morphology is not static; instead, it is responsive to 
both natural processes and external interventions [34-35]. Studies by Naciri et al., [36]and Lawsonet 
al., [37] highlight similar trends in river systems, where sandbar size decreases as erosion outpaces 
sediment deposition, often due to changes in river discharge or sediment availability. Moreover, 
periodic increases in sandbar size post-2004 suggest that sediment availability may have increased or 
that hydrological regimes have altered to favor deposition in the Niger Delta. 
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Figure 4: Geometric parameters of Sand bar from 1984-2024.  

 

Perimeter  

Table 1 shows changes in perimeter values over time, with a steady decrease from 3.4276 km in 
1974 to 1.5331 km in 2004, followed by a slight increase to 2.7256 km by 2024. This reduction in 
perimeter mirrors the overall decrease in area and length, indicating that the sandbar has become 
geometrically less complex. Such changes in perimeter are linked to sediment erosion and hydraulic 
processes that reshape the sandbar into simpler forms over time. Perimeter variations are important 
for understanding the degree of sandbar fragmentation and erosion, which affect how the sandbar 
interacts with river flow. 

River Area and Comparative Metrics 

The River Area (km²) parameter provides context for sandbar changes within the broader Niger 
River system. Observing the river's total area over time, we see fluctuations that correlate with 
periods of sandbar shrinkage or expansion. For instance, a decrease in river area from 46376.54 km² 
in 1974 to 42711.05 km² in 1984 in Figure 5 aligns with initial sandbar reductions, potentially due to 
lower water volumes or sediment flow. Similarly, as the river area increased by 2014, so did the 
sandbar area, shows a link between river conditions and sandbar formation [38-39]. Understanding 
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these patterns within a larger river context helps researchers and stakeholders anticipate changes to 
river dynamics that could affect surrounding ecosystems and communities. 

 

Figure 5: River area over time 1984-2024.  

 

Shape-Based Parameters 

Shape-based parameters, such as the Aspect Ratio (AR), Elongation Ratio (ER), Circularity (C), 
Compactness (Com), and Form Factor (FF), are crucial for describing sandbar morphology. 
Analyzing these indices offers a deeper understanding of sandbar shape stability and transformation 
over time in Table 1. 

Aspect Ratio (AR): The aspect ratio remained relatively consistent over time, fluctuating slightly 
between 24.0168 and 25.9256 (Figure 6). This stability in AR reflects the sandbar's consistent 
elongation pattern despite changes in its overall size. Studies on sandbar morphology, such as 
Kuanget al., [40]indicates that consistent aspect ratios indicate a stable flow environment, as 
elongation is maintained by consistent current direction. 

Elongation Ratio (ER): Similar to the AR, the elongation ratio remained nearly constant over the 
years, with values between 4.8318 and 5.0343 in Figure 4 and Table 1. This suggests that sandbar 
shape has not deviated significantly from an elongated form, despite reductions in length and width. 
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Such stability could indicate a steady hydrological regime, as elongation ratios are typically 
influenced by the directional flow of water that shapes the sandbar over time [41-42]. 

Circularity (C) and Compactness (Com): Circularity values stayed within a narrow range (0.1214 
to 0.1287) in Table 1 and Figure 6, while compactness showed slight declines over time, pointing to 
an elongated sandbar form with less rounded edges. Lower circularity and compactness imply 
irregular shapes and support findings that sandbars in dynamic environments like the Niger Delta 
tend to be elongated rather than compact, due to frequent erosion and deposition events [43-44]. 
Compactness reductions may indicate sediment loss from the sandbar’s outer sections, a 
phenomenon often observed in riverine environments undergoing morphological change [45]. 

Form Factor (FF): The form factor (FF) values in Table 1 remained stable, with minor variations. 
FF provides insight into the sandbar’s elongation by comparing its area to the square of its perimeter. 
A consistent FF indicates that sandbar shape is resilient to size changes, likely due to balanced 
hydrological forces 46]. 

 

Figure 6: Shape- Based parameters of Sand bar from 1984-2024.  
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Long-term Trends in Sandbar Dynamics 

The long-term trends revealed in Table 1 show sandbar shrinkage from 1974 to 2004, followed by 
partial recovery. These shifts may reflect climatic events, sediment supply variations, and human 
interventions, such as dam construction or dredging upstream. Reduced sandbar dimensions from 
1974 to 2004 could be a consequence of sediment starvation or increased erosion, as suggested by 
Jana et al., [47]and Liuet al., [46]. Long-term trends provide essential insights into how sandbars 
respond to environmental and human-induced pressures, influencing policies for river management 
and sediment regulation. In recent years, GIS and machine learning methods have advanced sandbar 
monitoring. Studies by Janušaitė et al., [48]; Taveneauet al., [39]; Lee et al., [49]indicate that these 
technologies allow for accurate monitoring of sandbar trends, capturing subtle changes in size and 
shape that could otherwise be missed. Such advancements enhance our understanding of sandbar 
resilience and their role within larger river ecosystems, supporting sustainable management. 

Sandbar Expansion and Fluctuations 

Examining sandbar area fluctuations provides valuable insights into sediment dynamics and riverine 
stability. Table 1 highlights a significant decrease in sandbar area from 1974 to 2004, followed by 
gradual expansion. Fluctuations in area reflect the combined influence of river discharge, sediment 
load, and local hydrodynamics. The recovery of sandbar area in recent years (up to 2024) may 
indicate improved sediment deposition conditions, perhaps due to changes in river flow or seasonal 
flooding patterns. Studies by Sweeney et al., [50]confirm that sandbar expansion often follows 
periods of sediment replenishment, which can be triggered by natural events such as seasonal floods 
or anthropogenic changes to river flow management. 

Morphological Characteristics and  

The morphological characteristics of the sandbar, as shown by shape indices like circularity, 
compactness, and aspect ratios, help to understand how sandbars evolve over time. The consistency 
of shape-based parameters such as AR and ER over time suggests a relatively stable sandbar 
morphology, despite size fluctuations. Research by Miselis, et al., [51]and Ferreira et al., [52]suggests 
that consistent shape metrics often indicate a balance between deposition and erosion forces, 
highlighting the resilience of sandbars to external influences. 

Recent Trends (2004-2024) 

The period following 2004 exhibits a trend towards stabilization in sandbar areas, with minor 

fluctuations observed (Table 1). This relative stability could be interpreted in a few ways. It's 

possible that the system has reached a state of equilibrium, where sediment input and removal are 

balanced, resulting in minimal changes in sandbar size. Alternatively, the stabilizing trend might 

reflect a dampening of the earlier fluctuations due to natural adjustments within the river system, 

such as the development of a new channel morphology that promotes sandbar stability [53]. 
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However, the recent data from 2024 holds a layer of intrigue. While the maximum sandbar size 

appears to have decreased slightly compared to 2004, the mean sandbar area shows an increase 

(Table 1). This indicate a potential redistribution of sediment within the river system. Perhaps larger 

sandbars are being eroded and the resulting sediment is contributing to the formation of smaller, 

more numerous sandbars. This highlights the dynamic nature of sandbars, where erosion in one 

location can fuel deposition elsewhere. 

Spatial autocorrelation analysis  

Spatial autocorrelation analysis is a valuable tool in geographic research, revealing patterns of 

similarity or dissimilarity between neighboring locations. In the study of sandbars along the River 

Niger in the Niger Delta, Table 2 presents the results of global Moran’s Index analysis. The 

computed Moran's Index of 0.138562 indicates a positive spatial autocorrelation among sandbar 

characteristics and elevation, indicate that areas with similar elevations tend to exhibit similar 

sandbar dynamics. This finding is supported by a high Z-score of 12.295975 and a significant p-

value of 0, indicating strong evidence against the null hypothesis of spatial randomness  

Table 2: Spatial autocorrelation result between Sand bar and elevation in River Niger, in Niger Delta 

Global Moran’s Summary 

Moran's Index 0.138562 

Expected Index -0.002045 

Variance 0.000131 

Z-Score 12.295975 

p-value 0 

 

 

Relationships between sandbar dynamics and rainfall patterns 

Furthermore, Table 3 details the statistical analysis of rainfall patterns across Nigeria from 1983 to 

2023. The data shows variability in annual rainfall, with a minimum of 1008.91 mm, a maximum of 

1400.72 mm, and a mean of 1241.64 mm. The distribution is shownin Figure 7, which visually 
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depicts the fluctuation of rainfall over the years, emphasizing the climatic variability that influences 

environmental processes such as sandbar formation and erosion dynamics [17]-[23]. 

The correlation analysis in Figure 8 further underscores the relationship between rainfall and sandbar 

dynamics, revealing a strong correlation coefficient (R² = 0.7576). This indicates that variations in 

rainfall significantly explain the changes observed in sandbar characteristics along the River Niger, 

highlighting the interconnectedness of climatic factors and geomorphological processes in riverine 

environments [17]-[23]. Therefore, these findings underscore the importance of spatial 

autocorrelation and climatic variability in understanding landscape dynamics and planning 

sustainable management strategies for riverine ecosystems. 

Table 3: Statistical analysis of Rainfall from 1983-2023) across Nigeria  

Parameter Rainfall (mm) 
Min 1008.91 
Max 1400.72 
Mean 1241.64 

Median 1251.41 
25th Percentile 1188.72 

50th Percentile (Median) 1251.41 
75th Percentile 1315.64 
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Figure 7: Graphical presentation of rainfall data Across Nigeria from 1983-2023  

 

 

 

y = -2.076x + 1456.
R² = 0.757

0

200

400

600

800

1000

1200

1400

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 200.00

Ra
in

fa
ll (

m
m

)

Mean Sand bar

Data Linear (Data)



 

19 
 

 

Figure 8: Correlation coefficient between rainfall and Sand bar. 

Sandbar Geometric and Shape-Based Parameter Regression Statistics 

The regression statistics in Table 4 highlight significant relationships between sandbar parameters 
length, width, and area demonstrating how these geometric and shape-based features correlate over 
time. High R² values indicate that these morphological parameters not only share a strong 
association but also evolve in response to environmental factors consistently and predictably. 

Table 4: Regression Statistics of Sandbar Parameters Over Time (1974-2024) 

Parameter R² 
Length vs Width 0.9737 
Length vs Area 0.9027 
Width vs Area 0.8921 

 

From Table 4 and Figure 9a shows that the R² value of 0.9737 for the Length vs. Width regression 
signifies an almost perfect correlation between these dimensions, suggesting that as the length of 
sandbars increases, their width also scales proportionately. This strong correlation might indicate 
underlying geological or hydrodynamic controls that dictate the proportional expansion of these two 
parameters. 
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Figure 9a: Linear regression between the length and width of all identified sandbars 

In the case of Length vs. Area in Figure 9b, the R² value of 0.9027 also points to a robust 
relationship. Although slightly lower than the Length vs. Width correlation, this high value implies 
that length is a substantial predictor of the sandbar's area. This finding suggests that changes in the 
length of sandbars, likely due to sediment deposition or erosion, have a significant impact on the 
overall area, which may be influenced by sediment availability, water levels, and flow dynamics in 
the river system. 
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Figure 9b: Linear regression between the length and area of all identified sandbars 

Lastly, the Width vs. Area regression in Table 4 and Figure 9c, with an R² of 0.8921, suggests a 
strong but slightly weaker correlation than the other two relationships. This might indicate that width 
changes have a considerable but somewhat variable effect on the sandbar area, possibly due to 
differences in local deposition patterns, sediment transport processes, or channel morphology. The 
slightly lower R² could reflect natural variations in how width expansion impacts area compared to 
length. 
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Figure 9c: Linear regression between the width and area of all identified sandbars 

 

The high R² values across all three parameters underscore the interconnectedness of sandbar 
morphometrics, as their shapes and sizes are likely shaped by consistent environmental and 
hydrodynamic forces [54-55]. These statistical relationships can serve as predictive tools for 
assessing future sandbar evolution under changing environmental conditions, such as increased flow 
events or human modifications to river systems. 

The influence of grain size on sandbar formation and movement 

Sandbars, those ever-shifting ribbons of sand adorning rivers and coastlines, play a crucial role in 

shaping aquatic ecosystems. Their formation and movement are a delicate dance orchestrated by 

various factors, with grain size acting as a lead performer. This essay delves into the influence of 

grain size on sandbar dynamics, exploring how it affects their creation, stability, and vulnerability to 

climate change. Sandbar formation hinges on the interplay of currents and sediment. Faster currents 

carry coarser grains (think pebbles and gravel), while finer particles like sand settle out where 

currents weaken [56]. 

Table 5: Statistical parameter analysis of Grain size of sediment in sand bar location in River Niger 
using Folk & Ward [57] 

Code Mean Interpretation Sorting Interpretation Skewness Interpretation Kurtosis 

S1 1.23 
Medium 

Sand 0.89 
Moderately 

Sorted 0.25 Fine Skewed 1.08 

S2 1.18 
Medium 

Sand 0.84 
Moderately 

Sorted 0.22 Fine Skewed 1.04 

S3 2.34 Fine Sand 0.50 Well Sorted -0.21 
Coarse 
Skewed 1.04 

S4 0.43 Coarse sand 0.93 
Moderately 

Sorted -0.52 
Coarse 
Skewed 1.43 

S5 0.60 Coarse sand 0.85 
Moderately 

Sorted -0.60 
Coarse 
Skewed 1.54 

S6 1.00 Coarse sand 0.49 Well Sorted 0.14 Fine Skewed 1.17 

The data from Table 5 provides a glimpse into this process. Samples S1 and S2, with a mean grain 

size of 1.23 and 1.18 respectively, are classified as medium sand based on the Folk & Ward [57] 

classification system. These moderately sorted samples (sorting values of 0.89 and 0.84) likely 

represent the core building blocks of a sandbar, accumulating where currents moderate. 
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Samples S3 and S4 showcase the influence of grain size on specific sandbar features. Sample S3, 

with a finer grain size (mean = 2.34) and well-sorted nature (sorting = 0.50), might represent the 

upper, frequently submerged portion of the sandbar. Conversely, samples S4 and S5, with coarser 

grains (mean = 0.43 and 0.60) and moderate sorting (sorting values of 0.93 and 0.85), are likely 

indicative of the submerged flanks of the sandbar, exposed to stronger currents that winnow out finer 

particles. 

The size and sorting of sand grains also influence the stability of a sandbar. Well-sorted sandbars, 

like sample S3 in Table 5, tend to be more stable as the uniform grain size minimizes pore spaces, 

reducing the erosive effects of water flow[58-59]. Conversely, poorly sorted sandbars with a mix of 

grain sizes are more susceptible to erosion, particularly during high flows. 

The skewness and kurtosis values in Table 5 offer additional result. Samples with positive skewness 

(like S4 and S5) indicate a dominance of coarser grains, potentially leading to a more loosely packed 

structure vulnerable to erosion. Kurtosis, on the other hand, reflects the distribution of grain sizes. A 

platykurtic distribution (low kurtosis value like those in the Table 5) indicates a narrower range of 

grain sizes, which again contributes to a more stable sandbar structure.Climate change throws a 

wrench into the delicate balance of sandbar dynamics. Rising sea levels and more frequent extreme 

weather events like floods can significantly alter the currents and sediment transport patterns in 

rivers and coastal areas [60]. This can lead to increased erosion of existing sandbars, particularly 

those composed of finer, less stable sediments. 

Comparison with Previous Studies and Global Trends 

Comparing our findings with previous studies and global trends in river geomorphology provides 
context for understanding the observed changes in the River Niger. Studies have shown that sandbar 
dynamics are influenced by factors such as river flow regulation, climate change, and anthropogenic 
activities [61].In the context of global trends, the River Niger exhibits similar patterns of sandbar 
formation and erosion as seen in other major rivers. For instance, the Ganges-Brahmaputra and 
Mekong rivers also experience significant sandbar dynamics due to seasonal monsoon rains and 
sediment load variations [62]. Therefore, the study highlights the importance of continuous 
monitoring using advanced GIS and machine learning techniques to understand and manage river 
systems effectively. These tools provide valuable outcome into the spatial and temporal patterns of 
sandbar dynamics, contributing to better river management and conservation strategies. 

Ecological and Hydrological Implications of Sandbar Dynamics 
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The observed reductions in sandbar dimensions have substantial ecological implications, as sandbars 
serve as habitats for aquatic organisms and influence riverine flow. The declining sandbar area 
suggests a reduction in habitat availability, which could threaten biodiversity, especially for species 
reliant on sandbar ecosystems for spawning and foraging [63-65]. As sandbars shrink, the associated 
habitats diminish, potentially leading to ecosystem imbalances and species decline. The compactness 
reduction also poses hydrological risks. Less compact sandbars are more susceptible to erosion, 
increasing sediment transport into the river system and potentially clogging channels. This process 
can disrupt local water flow, leading to issues such as siltation and increased flood risk. 

Broader Implications for River Management and Policy 

The observed trends emphasize the need for sustainable river management policies in the Niger 
Delta. The role of sandbars in influencing sediment flow and stabilizing river channels means that 
their decline could lead to broader issues, including increased erosion, reduced water quality, and 
navigational challenges. Sustainable management practices, such as controlled sediment extraction, 
restoration of natural flow regimes, and implementation of riverbank protection measures, could help 
mitigate these effects. Similar recommendations were made by Chenet al. [66], who advocated for 
balancing human activity with ecological preservation in major river systems experiencing similar 
challenges. 

CONCLUSION 

The analysis of satellite images, statistical data, and temporal trends in the sandbar morphology of 

the River Niger from 1974 to 2024 reveals significant geomorphic changes influenced by both 

natural and anthropogenic factors. The satellite images from 1984 to 2024 illustrate the dynamic 

nature of the river’s sandbars, showcasing their evolution over time. Over these five decades, 

sandbars have experienced fluctuations in length, area, and perimeter, which collectively show a 

trend toward decreasing dimensions. For instance, the sandbar length reduced from 1.6502 km in 

1974 to a low of 0.7437 km in 2004, indicating a 55% decrease, before rising slightly to 1.3183 km 

by 2024. Similarly, sandbar area shrank by 68% from 0.185 km² in 1974 to 0.0587 km² in 2004, then 

modestly recovered to 0.1271 km² by 2024, reflecting potential sediment deposition or hydrological 

adjustments. This underscores that sandbar morphology is highly dynamic and responsive to both 

natural and anthropogenic influences. Shape-based parameters, such as Aspect Ratio (AR) and 

Elongation Ratio (ER), remained relatively stable, suggesting consistent sandbar elongation despite 

size changes. For example, AR values fluctuated between 24.0168 and 25.9256 over the period, 

while ER remained steady between 4.8318 and 5.0343, indicating resilience in sandbar shape amidst 

environmental pressures. However, other shape indices like Circularity and Compactness exhibited 

reductions, reflecting simpler, elongated sandbar forms more prone to erosion. The study further 
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identified correlations between river area and sandbar dynamics. Notably, when the river area 

dropped from 46376.54 km² in 1974 to 42711.05 km² in 1984, there was a corresponding reduction 

in sandbar size. This correlation suggests that river volume and flow rates impact sandbar formation 

and erosion processes. Regression analysis among sandbar dimensions yielded high R² values, such 

as 0.9737 between length and width, indicating strong relationships between these parameters, likely 

controlled by sediment transport dynamics. 

The implications for river management are profound. Sandbar reductions mean decreased habitat 

availability, affecting biodiversity and increasing flood risk due to sediment instability. The study 

advocates for sustainable practices, including sediment regulation and ecological conservation, to 

balance human needs with river health. These insights align with findings from global river studies, 

highlighting the Niger River’s susceptibility to climate impacts and human activities, underscoring 

the need for comprehensive monitoring and management policies to protect the river’s ecological 

functions. 

 

Limitations of the Research: 

1. The satellite images used may not capture fine-scale morphological changes in the sandbars, 

limiting the precision of the spatial analysis. 

2. While human activities are mentioned as influential, specific anthropogenic factors like dam 

constructions or sand mining were not directly quantified. 

3. While spatial autocorrelation analysis was conducted, the limited geographic scope might not 

capture wider regional interactions affecting sandbar dynamics. 

Highlight Findings: 

1. The sandbars experienced significant size reductions from 1974 to 2004, followed by a slight 

recovery, highlighting their dynamic response to environmental factors. 

2. Shape-based parameters such as Aspect Ratio (AR) and Elongation Ratio (ER) remained 

relatively stable, suggesting a consistent elongation pattern in sandbar formation. 
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3. Fluctuations in river area aligned with sandbar size changes, showing a potential link 

between river dynamics and sandbar morphology. 

4. Rainfall patterns strongly correlated with sandbar characteristics, underscoring climate’s role 

in influencing sandbar formation and erosion. 

5. Regression analysis showed high correlations between sandbar length, width, and area, 

enabling predictions of future sandbar changes under environmental pressures. 
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