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Abstract

The fixed point theory is essential to various theoretical and applied fields,
such as approximation theory, nonlinear analysis, integral and differential
equations, dynamic systems theory, mathematics of fractals, mathematical
economics and mathematical modelling. The goal of this paper is to intro-
duce cubic type generalized (1) — ¢) weak contraction condition in b-metric
spaces and using this condition, we prove common fixed point theorem for
compatible mappings. Present results generalize the results of Kumar et al.

[21] and some other related work in the literature.
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1 Introduction and Preliminaries

Fixed point theory is one of the most progressive and fascinating research area in
nonlinear functional analysis and it is useful for demonstrating the existence the-
orems for nonlinear differential and integral equations. The Banach contraction
principle [7] is the crucial result in fixed point theory, which has numerous applica-

tions in different branches of mathematics such as differential and integral equation,



numerical analysis etc. Several researchers established some new type contraction
and proved numerous fixed point theorems in order to generalize the Banach fixed
point theorem (see [12],[5],[23],[24],[25]). In 1976, for generalization of Banach’s
fixed point theorem, Jungck [15] used the notion of commuting maps to prove a
common fixed point theorem. In 1982, Sessa [31] generalized the notion of commu-
tativity to weak commutativity and proved some common fixed point theorems for
weakly commuting mappings.

In 1986, Jungck [17] extended the notion of weakly commuting mappings to a

larger class of mappings known as compatible mappings.

Definition 1.1. [17] A pair of self mappings (£, () on a metric space (9, A) is said
to be compatible if lim,, o, A(&Cwy,, (€w,) = 0, whenever {w,} € M is a sequence

such that lim,, . fw, = lim,, .o, (w, = s, for some » € M.

In 1969, Boyd and Wong [10] introduced ¢-contraction condition of the form
d(éu, &v) < ¢(d(u,v)), for all u,v € M, where £ is a self map on a complete metric
space M and ¢ : [0,00) — [0,00) is an uppper semi continuous function from
right such that 0 < ¢(t) < t, for all ¢ > 0. In 1977, Alber and Guerre-Delabriere [4]
generalized ¢-contraction to ¢-weak contraction in Hilbert spaces, which was further
extended and proved by Rhoades [29] in complete metric spaces .

A self map & on a complete metric space is said to be a weak contraction if for each
u,v € M, there exists a continuous non-decreasing function ¢ : [0,00) — [0, 00)

satisfying ¢(t) > 0, for all t > 0 and ¢(¢) = 0 if and only if £ = 0 such that

d(€u, €0) < d(u,v) — 9(d(u,v)).

The function ¢ in the above inequality is known as control function or altering
distance function. The notion of control function was given by Khan et al. [20] as

follows.

Definition 1.2. [20] An altering distance is a function ¢ : [0, c0) — [0, 00) satisfying
the following:

(i) ¢ is an increasing and continuous function,
(ii) ¢(t) =0 if and only of t = 0.

In 2021, Kumar et al. [21] introduced weak contraction condition involving cubic

terms of distance functions and proved the following theorem:
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Theorem 1.3. [21] Assume that f, g, h and k are self mappings defined on a

complete metric space (X, d) satisfying the following conditions:

(C1) d(fu, gv) <pmax { [d*(hu, fu)d(kv, gv) —;— d(hu, fu)d2(kv,gv)]7

d(hu, fu)d(hu, gv)d(kv, fu),d(hu, gv)d(kv,fu)d(kv,gv)}

—p(m(hu, kv)),
for all u,v € X, where

m(hu, kv) =max {dQ(hu, kv),d(hu, fu)d(kv, gv), d(hu, gv)d(kv, fu),
1
Sld(hu, fu)d(hu, gv) + d(kv, fud(ko, gv)) .
Further p is a real number such that 0 < p < 1 and ¢ : [0,00) — [0,00) is a
continuous function with ¢(0) = 0 and ¢(¢) > 0 for each ¢t > 0.
(C2) f(X) Ck(X), g(X) C h(X);
(C3) there is one continuous mapping among f, g, h and k.

Also, assume the pairs (f, h) and (g, k) to be compatible, then f, g, h and k possess
a unique CFP in X.

In 1989, Bakhtin [6] introduced in the theory of metric fixed point the concept
of b-metric spaces, as a generalization of usual metric spaces and shows the BCP in

this setting.

Definition 1.4. [6] Let M be a non-empty set and s > 1 be given real number. A
function A : M x M — R, is said to b-metric if and only if for all u, v, w € M the

following properties are satisfied:
(i) A(u,v) =0iff u=w,
(i) A(u,v) = A(v,u),
(iil) A(u,w) < s(A(u,v) + A(v,w)).

In such a case, the pair (M, A) is called a b-metric space and the real number s > 1

is called the coefficient of (M, A).

Aghajani et al. [3] proved the following simple lemma about b-convergent se-

quences.



Lemma 1.5. [3] Let (M, A) be a b-metric space with s > 1, and suppose that {u,}
and {v,} are b-convergent sequences converging to u and v respectively. Then, we

have,

1
—A(u,v) < lim inf A(tun,v,) < lim sup A(uy,, v,) < s°A(u, v).

In particular, if u = v, then lim, . A(u,,v,). Moreover, for each w € M, we
have

1A(u,v) < lim inf A(uy,, w) < lim sup A(ug,, w) < sA(u, w).
s

n—-+o00 n—-+o0o

In 2021, Morales et al. [22] introduced the class of (¢ — ¢) weak contraction
type mappings in the framework of b-metric spaces and prove common fixed point

theorems.

Definition 1.6. [22] Let (M, A) be a b-metric space with s > 1 and let f and
g be self-mapings of M. The mappings f and g are said to be of (¢p — ¢)-weak
contractions type if there exist ¢ € ¥ and ¢ € ® such that for all u,v € M,

Y[sA(fu, gv)] < ¢Y(A(gu, gv)) — d(A(gu, gv)).

In this paper, we introduce cubic type generalized (¢ — ¢) weak contraction con-
dition in b-metric spaces and proved a fixed point theorem for compatible mappings.
Assume that f, g, h and k are self mappings defined on a b-metric space (M, A)

satisfying the following condition:
(C4)  A%(fu, gv) Sp@b{[ﬁz(hu,fU)A(kwgv%A(hu,fU)N(k‘v,gv)],
A(hu, fu)A(hu, gv)A(kv, fu), A(hu, go)A(kv, fu) Ak, gv)}
—p(m(hu, kv)),
for all u,v € X, where
m(h, kv) = max {A?(hu, kv), A(hu, fu)A(kv, gv), Alhu, go)A(kv, fu),
o (A, Fu)A (s, go) + A(ke, fu) Ak, go)]

2s
Further p is a real number such that 0 < p < 1 and ¢ : [0,00) — [0,00) is a

continuous function with ¢(0) = 0 and ¢(t) > 0 for each t > 0 and ¢ € ¥, where ¥

is a collection of all functions ¢ : [0, 00)* — [0, 00) satisfying the following conditions:

(i) ® is non decreasing and upper semi continuous in each coordinate variables.

(ii) max{w(t,t,0,0),1(0,0,0,t),%(0,0,t,0),9(t,t,t,t)} < t, for each t > 0 and
¥(0,0,0,0) = 0.



2 Fixed Point for Compatible Mappings

We prove common fixed point theorem for compatible mappings satisfying cubic

type generalized (1) — ¢) weak contraction condition (C4).

Theorem 2.1. Assume that f, g, h and k are self mappings defined on a complete
b-metric space (M, A) satisfying (C4) and the following conditions:

(C5) f(M) C k(M), g(M) C h(M);

(C6) there is one continuous mapping among f, g, h and k.

Also, assume the pairs (f, h) and (g, k) to be compatible, then f, g, h and k possess

a unique common fixed point in M.

Proof. Assume that uy € M represents any point and using condition (C5), we can
find f(ug) = k(uy) = vy, for some u; € X. For this u;, there exists us € M such
that g(u;) = h(ug) = v;. Approaching like this, we can derive a sequence {v,} € M
such that

Vo = f(U2n) = k(U2ns1),  Vans1 = g(Uony1) = h(ug,ss) for each n > 0. (2.1.1)

Let p, = A(vn, vpt1). First, we establish that the sequence {y,} is non-increasing
and converges to zero.
Case I. If n is even, ie., n = 27, j = 0,1,2..., then on putting u = uy; and

U = ugjy1 in (C1), we get
A3 (fugj, guajvi) SP%D{AQ(hUzj, Jugj) A(kugji1, gusjy1),

A(hugg, fugg) A (Kugjs, gusgia)),
A(hugg, fug;) A(hug;, gugji) A(kugji1, fus;),
A(hugg, guajir) Alkugjir, fuzg) Alkugsi, 9u2j+1)}
— ¢(m(hug;, kugji1)),

where

m(hug;j, kugji1) =max {AZ(hqu, kugj1), Alhugg, fuz;) A(kugji1, gusjia),

A(hug;, gugjs1)A(kug v, fus;), %[A(hugj,quj)A(hugj,gung)

+ A(kugjir, fugj) A(kugjiq, gu2j+1>]}-



Using (2.1.1), we obtain

A3 (vg, v9541) Sp@b{ [A% (Vg1 V25) Ao, V2j41),
A(vgj-1,02j) A (05, v2541)],
A(vzj-1,v2) Avgj-1, V2541) A(va;, va5),
A(vaj-1,v9541) AV, va;) A(vyy, Uzjﬂ)}
— p(m(vzj-1,v2)), (2.1.2)
where

m(UQj—la ’lj2j) =max {A2(U2j_1, UQj), A(UQj—h UZj)A<U2j7 U2j+1)7
1

) %[

+ A(va), v25) A5, Vaj41)] }

A(vgj-1,V2511) Avz), va5), 7= [A(vaj-1, v2;) A(va;-1, V2j41)

Using po; = A(vaj, v241) in (2.1.2), we obtain

pi; < P?/){ng_lmjv pi2j 14135, 0, 0} = p(m(vaj—1,v25)), (2.1.3)

where

,U2jflA(772j717 U2j+1> }

2
m(va;j-1, v2;) = max {MQj—la fh2;—1H2;5, 0, 95

By using triangular inequality and property of ¢, we get

A(vgj1,v2541) < s{A(vgj1,va5) + Alvgj, vaj11) } = s{pj—1 + pi2;}

Paj—1(f2j—1 + o) }
5 .

If igj_1 < pig;, then (2.1.3) reduces to p3; < puj; — ¢(u3;), which is a contradiction

2
and m(vyj_1,vz;) < max {sz_l, fh2;j—1H2;, 0,

as 0 < p < 1. Hence po; < pigj_1,i.e.; iy < fip—1 -

Case II. If n is odd, then similar to case I, we can obtain p,11 < fi,.
Thus we have the sequence {y,} is non-increasing.

Let lim,, o0 1y, = limy, o0 AV, vy1) = A, for some A > 0.

Suppose that A > 0. On substituting v = uy, and u = us,,; in (C4), we obtain

AP ( fugn, guant1) SP@/J{AQ(’IU%: fuon)Alkusni, guania),
A(Pugp, fuon) A% (ktzn 1, guonin)];
A(hugn, fuzn)A(huzn, guani1) A(kuzni1, fuzn),
A(huzn, guant1)A(kuant, fuzn) A(kuzngs, 9U2n+1)}

- ¢(m(hu2m kuQn—i—l))a



where

m(hu2n7 ku2n+1) =Inax {AQ(huzm ku2n+1)a A(hUQna fu2n)A(ku2n+1a qun—i—l)v

1
A(hu?m gu2n+l)A(ku2n+la fu2n>a % [A(hu2n7 fu2n)A(hu2na gUZn—i—l)

+ A(kuzntr, fusn) Alkuzns, 9U2n+1)]}'
Using (2.1.1), triangular inequality, property of ¢ and approaching as n — oo, we
get
A3 < pA% — ¢(A\?) < pA3, which is a contradiction and hence we have A = 0.

Next, we assert that {v,} is a Cauchy sequence. If possible, let {v,} be not a
Cauchy sequence. Then there exists € > 0, for which we can find two sequences
of positive integers {4(7)} and {7y(7)} such that for all positive integers T with
(1) > B(1) > 7, we have

AV, vyr)) 2 €
Further corresponding to 5(7), we can choose v(7) in such a manner that it is the
smallest zpositive integer with (7) > £(7) and satisfying A(vg(ry, vy(r)) > €. Then,
we get
AVs(r)s Vy(r)-1) < €.
Now, € < A(vg(r), Uy(r)) < 8A8(Us(r), Va(r)-1) + 8A(U(r) -1, Vy(r))-
< sA(vs(r), Va(r)-1) + $A(Us(r)-1, Vy(r)-1) + 5" A(Vs(r) -1, Vy(r))

From lemma 1.5, we have

? <l A(vge)-1,vy-1) < _Hm supA(Use-1,vy)-1)

< s lim A(Uﬁ (r)— 1,U7(T)> + s lim A(UB )5 Uy(1)-1 1) < se

Y—+00 Y—r+00

Thus, we have

€
=2 < VEIJPOO infA(Vg(r)—1, Vy(r)—1) < ngnoo SUPA(Vg(r)—1, Vy(r)—1) < S€

Applying condition (2.1.1) with v = ug(-) and v = u, (), we have

AP (fup(r), gin(r )<p¢{ *(hug(ry, fusm) Ak m), gusm),
A(hug(ry, fugm) A (ks q), gty (r)),
A(hug(ry, fus) Alhug(ry, gus () Ak, fug)),
A(hug(r), gt (r)) ARty ), fsm)) Ak o), 9“7(7))}

= d(m(hugr), kus()),



where

m(hug(r), kit (r)) = max {AQ(hww ko)), Alhuges fusm) Ak @), 9ty @),

1

Ahugey, g o)) Akt ), fupe), 5[AMRuse), fuse)

Ahugery, guam) + Akt @), fuse) Ak, gty m)] }

Using (2.1.1), we have

A (g, Vo)) Spmax { [A2(vgte) -1, V0) D031 1, Vo)
+ A(Us(r)-15 V() A (Uy(r) 1, V3],
A(vs(r)-1, Va(r) ) AVs(r)-1, Uy(r) ) A(vy(r)-1, Va(r))
AVp(r) -1, V() AUy () -1, V() ) A (03 ) -1 me)}

— o(m(Vs(r); Vy(n)),
where

M(Vg(r), Us(r)) = max {A2(UB(T)—17 Uy(r)=1)s B(U5(r)-1, V() AlUy(m)-1, V()

1

AVs(r)-1, Uy(n)) A7) -1, Us(r)), 5[ AWs(r) -1, Va(r) ) AVs(r) -1, V()

+ A(Uy(r)-1, V() ) A (U ()1 me)]}-

0 < s* < —¢(se?), a contradiction.

Thus {v,} is a Cauchy sequence in M. As (M, A) is a complete b-metric space,
{vn} converges to w € M as n — oo. Consequently, the gsubsequences {fua,},
{huon}, {gusns1} and {kug,i1} of the sequence {v,} also converge to w.

Now, let the map h be continuous. Then {hhug,} and {hfus,} converge to hw as
n — oo. Using the compatibility of the pair (f, h), we have, {fhus,} converges to
hw as n — oo.

First, we assert that w = hw. Let w # hw. On substituting u = hus, and v = ug, 1

in condition (C4), we ghave

A3(fhu2n7 gu?n—l—l) §P¢{ [A2(h/hu2n7 fhu2n)A(ku2n+la gu2n+1)7

A(hhu?ru thQn)A2(ku2n+la gu2n+1)]’
A(hhu2n7 thZn)A<hhu2na 9U2n+1)A(k7U2n+17 thQn)a

A(hhu2n7 gu2n+1)A(ku2n+la thZn)A<ku2n+la gu2n+l)}

- ¢(m(hhu2m ku2n+1))7



where

m(thQm ku2n+1> = max {A2(hhu2m ku2n+1); A(hhuzm fhu2n)A(ku2n+la 9U2n+1),
1
A(hhﬂam 9U2n+1)A(l€U2n+1, thQn)> Q—S[A(h}wzm fhuzn)A(thQm 9U2n+1)

+ A(Kugnt1, fhuon) A(kugn 1, 9U2n+1)]}-

Approaching as n — oo, we have

A (hw, w) <puod A2 (hw, w)A(w, w), A(hw, hw) A w, ),
A(hw, hw) A (hw, w)A(w, hw),
A, w)Aw, hw) Aw, w) | = é(m(lhuw, w)),
where
m(hw, w) = max { A2 (b, w), A, hw)Aw, w), Alhw, w)Afw, hw),

Q—Z[A(hw, hw)A(hw, w) + A(w, hw)A(w, w)]},

which gives that A%(hw,w) < —¢(A?(hw,w)), a contradiction and hence hw = w.
Next, we assert that fw = w. On taking u = w and v = ug,1; in (C4),
A3(fw7 gu2n+1) Spw{Az(hw7 fw)A(ku2n+17 gu2n+1)7 A<hw7 fU))
-A2(ku2n+17 gu2n+l)7 TA(hwa fw)A(hw7 gu2n+1)A(ku2n+la fw)7
A(htign, gugn1) A(kuon g1, fw) A(Kugn, 9u2n+1)}
- ¢(m(hw) ku2n+1))a
where
m(hw, kug, 1) = max {AQ(hw, kugni1), A(hw fw)A(kug,i1, guoni),
1
A(hw7 gu2n+1)A(ku2n+17 fU)), %[A(hwu flU)A(hU), gu2n+1)
+ A(kugpgr, fw)A(Ktong1, guoni1)] }
Approaching as n — oo and after simplifying, we get A3(fw,w) <0, i.e., fw = w.
Using condition f(M) C k(M), we get p € X such that w = fw = kp.
Next, we show that w = gp. Using condition (C4) for u = w and v = p, we obtain
A¥(fuw, gp) <pud A%(huw, fw)A(kp, gp), Alhw, fuw) A* (kp, gp).
A(hw, fw)A(hw, gp) A(kp, fw), Ahp, gp)
A(kp, fw)A(kp, gp)} — ¢(m(hw, kp)),



where

m(w, kp) = max { A (hw, kp), Ao, f)A(kp, gp), A(hw, gp) Akp, fu),

%[A(hw, fw)A(hw, gp) + A(kp, fw)A(kp, gp)]}-

Using w = fw = hw = kp and on simplifying, we have

which implies that A?(w, gp) = 0 and hence w = gp. Due to the compatibility of the
pair (g, k) and kp = gp = w, we have, kgp = gkp and hence kw = kgp = gkp = gw.
Now, suppose that w # kw. On putting v = v = w in (C4), we have
AY(w, kw) = A%(fw, gw) <po{ [A3(huo, fu)A(kw, gu),
A(hw, fw)A2(kw, gw], A(hw, fw)A(hw, gu)
Alkw, fu), A(hw, gu)Akw, fw)Alkw, gu)}
— ¢(m(hw, kw)),
where
m(hw, kw) = max {AQ(hw, kw), A(hw, fw)A(kw, gw), A(hw, gw)A(kw, fw),
1
Q—S[A(hw, fw)A(hw, gw) + A(kw, fw)A(kw,gw)]} = A% (w, kw).
On simplifying, we get A3(w,kw) < —¢(A?*(w,kw)), a contradiction and hence
w = kw. Thus w = kw = hw = fw = gw. Therefore, w is a common fixed point of
f, g, hand k.
In a similar manner, continuity of k£ can be used to complete the proof.
Next, consider f to be continuous map. Then {f fus,} and { fhus,} converge to fw
as n — 00. Since the pair (f, h) is compatible, therefore,, {hfus,} converges to fw
as n tends to co.

Now, we show that w = fw. Assume that w # fw. For this, on taking fus, for u

and g, 11 for v in (C4), we get

A*(f fugn, guani1) S/ﬂ/J{ (AR fugn, f fuon) A(kugn 1, guznir),
A(h fugn, f fuon) A (kg 1, guans1)],
A(hfuon, ffuon) A(hfusn, gusns1) A(kuanir, [ fuzn),
A(hfuzn, guanir) Alkuznir, fuzn) Alkuzp, gu2n+1)}

_ ¢(m(th2m ku2n+1))7

10



where

m(hfu%, k«‘u2n+1) =Inax {AQ(thQn, k‘u2n+1), A(thZna foQn)A(kUZn-l-la 9U2n+1),
1
A(hfu2na gu2n+1)A<ku2n+l7 foQn)a %[A(hfu?m ffu2n>
A(hfugy, guant1) + A(kugni1, | uon) A(kugni1, qun-‘rl)]}'

Letting n — oo, we have A?(fw,w) < —¢(A?(fw,w)), a contradiction. Hence

w = fw.

Using condition f(M) C k(M), we get w = fw = kq, for some g € M.

Next, we assert that w = gq. On replacing u by fus, and v by ¢ in (C4), we get

D (f fuzn,ga) < po{ A2 frtz, £ Fuan) Ak, 9a), Alhfuza, f Fruzn) A kg, g9)
A(h Stz £ F120) AU iz, gO)A(KG, f f1uza), AR 1z, 90) Ak, | Fuzn) Ak, 9a) |
— ¢(m(h fuan, kq)),

where

m(hfu2na ’{7(]) =max {AQ(than kQ)> A(hfu2n7 foQn)A(kqa gQ)a
Az, 90)D (K, f ftzn)s - Az, f Ftzn AR, )
+ A(kq, f fugn)A(kg, QC])]}'

Approaching as n — oo, we have

A% (w, gq) Spw{[AQ(w,w)A(wﬂQLA(ww)N(w,gq)],
Aw, w)A(w, gq)A(w, fw),
A(WQQ)A(U%UJ)A(U%QQ)} — ¢(m(w, kq)),

where
m(w, kq) =max { A2(w, kq), Alw, w)A(w, g9), Alw, gg) Alw, fu),
1

%[A(w, w)A(w, gq) + A(w, fw)A(w, QQ)]} =0,

which implies that A3(w, gg) = 0 and hence w = gq. Using the compatibility of the
pair (g, k) and kq = gqg = w, we have kgq = gkq. Thus kw = kgq = gkq = gw.
Next, we claim that w = gw. Assume that w # gw. For this, on replacing u by us,
and v by w in (C4), we get
Ag(fu2n7 gw) SPQ/J{[AQ(}W%’ qun)A(kwa gw)a A<hu2n7 fUQn)AZ(kU)? QUJ)],
A(hu2n7 fu2n)A<hu2n7 gw)A(kwv fu2n)7 A(hUQnJ gUJ)A(kU), fUQTL)

A(kw, gw)} — ¢p(m(hugn, kw)),

11



where

m(hUQn) kw) =Imax {A2(fu2n7 kw)? A(hUQnu fu2n)A<kw7 gw)7 A(hu2n7 gw)A(kw7 fu2n)7
1

Atz fuuz) Altizn, guw) + Alkw, Fuz) Akw, gw)]}.

Approaching as n — oo and on simplifying, we have A3(w, gw) < —¢(A%(w, gw)),
a contradiction and hence w = gw. Using condition g(M) C h(M), we get w =
gw = hr, for some r in M.

Finally, to show w = fr, we replace u by r and v by w in (C4),
A (fr. gu) <pv{ [A2(hr, fr) A ko, gw), Alhr, 1) A% (kw, gu),
A(hr, fr)A(hr, gw) Ak, fr), Alhw, gw)Alkw, fr)Akw, gw) }

— ¢(m(hr, kw)),

where
m(hr, kw) = max {AQ(hr, kw), A(hr, fr)A(kw, gw), A(hw, gw)A(kw, fr),

%[A(hr, fr)A(hr, gw) + A(kw, f'r’)A(/fmgw)]}-

On simplifying, we conclude A3(fr,w) < 0, i.e., fr = w. Using the compatibility
of the pair (f,h) and fr = hr = w, we obtain fhr = hfr and hence hw = hfr =
fhr = fw. That is, w = hw = fw = kw = gw. Therefore, w is a common fixed
point of f, g, h and k.

In a similar pattern, proof holds for the continuity of the map ¢ .

To claim uniqueness, assume that w; and ws (w; # wsy) are two common fixed points

of the given mappings. On putting u = w; and v = wq in (C4), we obtain
AP (wy, wg) = A%(fwy, gwa) < —¢(A%(wy, wy)),

which is a contradiction and hence w; = wy. Therefore, f, g, h and k possess a

unique common fixed point in X. O

Corollary 2.2. Let f and g be two mappings of a complete b-metric space (M, A)

into itself satisfying the following condition:

A% (fu, gv) <po{ [A2(u, Fu)A (v, gv), Alu, fu) A% (v, g,

A, fu) A, g) A, fu), Au, gv)Av, fFu)A(v, gv) } = o(m(u,v)),

12



for all u,v € X, where

m(u,v) =max {AQ(u,v), A(u, fu)A(v, gv), A(u, gv)A(v, fu),

giswu, Ju)A(u, gv) + A, fu)A(v, gv)]}

and p is a real number satisfying 0 < p < 1. Further, ¢ : [0,00) — [0,00) is a

continuous function with ¢(0) = 0 and ¢(¢) > 0 for each £ > 0. Then f and g have

a unique common fixed in M.

Proof. Taking h = k = I (Identity map) in Theorem 2.1, the result holds easily. [
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