
Dynamical analysis of delayed autonomous and

non-autonomous oscillators

Abstract: In this paper, the oscillatory behavior of the solutions for a five-dimensional

system of coupled van der Pol-Hamiltonian-Duffing oscillator with delays is investigated.

We extend the existing result in the literature from mathematical point of view. Some

sufficient conditions to guarantee the oscillation of the solutions are provided and computer

simulations are given to support the present criteria.
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1 Introduction

It is known that various van der Pol oscillators, Duffing equations, Hamiltonian-Duffing

oscillators which discribe many kinds of nonlinear oscillatory systems in various biological,

physical and engineering systems. Recently, Ma and Zhang have investigated the following

hybrid van der Pol-Duffing-Rayleigh system[1]:

x′′ − x+ γx3 − (α− β1x
2 − β2x

4)x′ + (k − γx2)x cos(2ωt) = (f + g cos(nωt)) cos(ωt), (1)

where γ, α, β1, β2, and k are system parameters. A bursting oscillation with two pulse-

shaped explosions has been observed. By treating the cosine function cos(ωt) as a slowly

varying variable δ, system (1) can be rewritten as a generalized autonomous system,

expressed as

x′′ − x+ γx3 − (α− β1x
2 − β2x

4)x′ + (k − γx2)x(2δ2 − 1) = fδ. (2)
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A bifurcation structure has been obsevered for the given parameter conditions α = 0.5, β1 =

β2 = 0.2, γ = k = 1, f = 3, and ω = 0.005. A coupled system of simple oscillators may

often exhibit many interesting phenomena different from their behavior in isolation. For

example, Jiang et al. have studied a coupled four dimensional coupled Mathieu-van der

Pol system[2]: 

x
′
= y,

y
′
= −(h+ bu)x− (h+ bu)x3 − cy + (d+ w)u,

u
′
= v,

v
′
= −cu+ f(1− u2)v + gx.

(3)

Using the bifurcation theory and fast-slow analysis, the bifurcation diagrams and an in-

triguing phenomenon were observed in model (2) as the parameters of the fast and slow

systems change in the orbits. Savostianov et al. investigated the synchronized dynamics

of two coupled van der Pol oscillators[3]. Liu and Zhang have discussed multiple Hopf

bifurcations of four coupled van der Pol oscillators with delay as follows:

x
′′
1(t) = α(p2 − x21)x

′
1 − x1 + ax

′
1(t− τ) + bx

′
2(t− τ) + cx

′
3(t− τ) + x

′
4(t− τ),

x
′′
2(t) = α(p2 − x22)x

′
2 − x2 + ax

′
2(t− τ) + bx

′
3(t− τ) + cx

′
4(t− τ) + x

′
1(t− τ),

x
′′
3(t) = α(p2 − x23)x

′
3 − x3 + ax

′
3(t− τ) + bx

′
4(t− τ) + cx

′
1(t− τ) + x

′
2(t− τ),

x
′′
4(t) = α(p2 − x24)x

′
4 − x4 + ax

′
4(t− τ) + bx

′
1(t− τ) + cx

′
2(t− τ) + x

′
3(t− τ).

(4)

The multiple periodic solutions of spatiotemporal patterns of the system (4) were obtained

by using symmetric Hopf bifurcation theory. The normal form of the system on the central

manifold and numerical simulations were also derived[4]. Sabarathinam and Thamilmaran

proposed the following coupled hamiltonian Duffing oscillators:
x

′′
1(t) + bx

′
1(t) + wx1(t) + βx31(t) = ϵa12(x2(t)− x1(t)) + ϵa13(x3(t)− x1(t)),

x
′′
2(t) + bx

′
2(t) + wx2(t) + βx32(t) = ϵa21(x1(t)− x2(t)) + ϵa23(x3(t)− x2(t)),

x
′′
3(t) + bx

′
3(t) + wx3(t) + βx33(t) = ϵa31(x1(t)− x3(t)) + ϵa32(x2(t)− x3(t)).

(5)

The stability and transient chaos for model (5) were investigated [5]. In [6], the authors

concerned the synchronization in a ring of four mutually coupled van der Pol oscillators.

Brechtl et al. investigated the chaos and memory effects in the Bonhoeffer-van der Pol

oscillator with a non-ideal capacitor[7]. Sysoev considered the reconstruction of ensembles

of generalized van der Pol oscillators from vector time series[8]. The existence of islands

of quasiperiodic regimes on the parameter plane of period and amplitude of the external

force was considered for a pulse driven coupled van der Pol oscillators, and a number of
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different types of oscillations in this system were illustrated[9]. The oscillatory behavior

of a van der Pol oscillator powered by a DC excitation source was shown numerically

and experimentally[10]. Stability and bifurcation analysis in the delay-coupled van der

Pol oscillators were studied by Zhang et al. [11, 12]. The two coupled van der Pol oscil-

lators system with attractive and repulsive interactions indicated competitive tendencies

of being complete synchronization and anti-synchronization resulting in the stabilization

of the fixed point[13]. The coupled bi-stable van der Pol oscillators revealed regimes of

nonconventional synchronization[14]. The pitchfork bifurcation and Hopf bifurcation for

different van der Pol-Duffing oscillators were studied[15-19]. Qualitative analysis has been

shown in a delayed van der Pol oscillator[20]. Spiral and arget wave chimeras in a cou-

pled van der Pol oscillator were discussed[21]. A novel variational formulation of Duffing

equation using the extended framework of Hamilton’s principle was provided, it recovered

all the governing differential equations as its Euler–Lagrange equation[22]. The stability

and instability of rapidly oscillating solutions for the hard spring delayed Duffing oscil-

lator were explored[23]. By introducing the concept of the discriminant for the Duffing

equation, one can solve the equation in three cases depending on sign of the discriminant

and apply it in soliton theory[24]. To suppress the nonlinearity vibration in an excited

van der Pol–Duffing oscillator, a supplemental time delay was added[25]. In this paper,

we shall concern the following coupled multiple time delays nonlinear model:

x
′′
1 − β1x1 + γ1x

3
1 − (α1 − β11x

2
1 − β12x

4
1)x

′
1 + (k1 − r1x

2
1)x1 +

∑5
j=1 a1jx

′
j(t− τj)

=
∑5

i=2, b1i[xi(t− τi)− x1(t− τ1)],

x
′′
2 − β2x2 + γ2x

3
2 − (α2 − β21x

2
2 − β22x

4
2)x

′
2 + (k2 − r2x

2
2)x2 +

∑5
j=1 a2jx

′
j(t− τj)

=
∑5

i=1,i ̸=2 b2i[xi(t− τi)− x2(t− τ2)],

x
′′
3 − β3x3 + γ3x

3
3 − (α3 − β31x

2
3 − β32x

4
3)x

′
3 + (k3 − r3x

2
3)x3 +

∑5
j=1 a3jx

′
j(t− τj)

=
∑5

i=1,i ̸=3, b3i[xi(t− τi)− x3(t− τ3)],

x
′′
4 − β4x4 + γ4x

3
4 − (α4 − β41x

2
4 − β42x

4
4)x

′
4 + (k4 − r4x

2
4)x4 +

∑5
j=1 a4jx

′
j(t− τj)

=
∑5

i=1,i ̸=4, b4i[xi(t− τi)− x4(t− τ4)],

x
′′
5 − β5x5 + γ5x

3
5 − (α5 − β51x

2
5 − β52x

4
5)x

′
5 + (k5 − r5x

2
5)x5 +

∑5
j=1 a5jx

′
j(t− τj)

=
∑4

i=1, b5i[xi(t− τi)− x5(t− τ5)],

(6)
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where γi, αi, βi1, βi2, ki, aij , and bij are system parameters. It is convenient to write (6) as

an equivalent ten dimensional first order system:

x
′
1(t) = x2(t),

x
′
2(t) = (β1 − k1)x1 + α1x2 −

∑5
j=1 a2,2jx2j(t− τ2j) +

∑5
i=2, b1,2i−1[x2i−1(t− τ2i−1)

− x1(t− τ1)]− γ1x
3
1 − β11x

2
1x2 − β12x

4
1x2 + r1x

3
1,

x
′
3(t) = x4(t),

x
′
4(t) = (β2 − k2)x3 + α2x4 −

∑5
j=1 a4,2jx2j(t− τ2j) +

∑5
i=1,i ̸=2 b3,2i−1[x2i−1(t− τ2i−1)

− x3(t− τ3)]− γ2x
3
3 − β21x

2
3x4 − β22x

4
3x4 + r2x

3
3,

x
′
5(t) = x6(t),

x
′
6(t) = (β3 − k3)x5 + α3x6 −

∑5
j=1 a6,2jx2j(t− τ2j) +

∑5
i=1,i ̸=3 b5,2i−1[x2i−1(t− τ2i−1)

− x5(t− τ5)]− γ3x
3
5 − β31x

2
5x6 − β32x

4
5x6 + r3x

3
5,

x
′
7(t) = x8(t),

x
′
8(t) = (β4 − k4)x7 + α4x8 −

∑5
j=1 a8,2jx2j(t− τ2j) +

∑5
i=1,i ̸=4 b7,2i−1[x2i−1(t− τ2i−1)

− x7(t− τ7)]− γ4x
3
7 − β41x

2
7x8 − β42x

4
7x8 + r4x

3
7,

x
′
9(t) = x10(t),

x
′
10(t) = (β5 − k5)x9 + α5x10 −

∑5
j=1 a10,2jx2j(t− τ2j) +

∑4
i=1 b9,2i−1[x2i−1(t− τ2i−1)

− x9(t− τ9)]− γ5x
3
9 − β51x

2
9x10 − β52x

4
9x10 + r5x

3
9,

(7)

where aij = a2i,2j , bij = b2i−1,2j−1, τ2i = τi, τ2j−1 = τj , i, j = 1, 2, · · · , 5. The matrix form

of the system (7) is as the following:

x′(t) = Cx(t) +Dx(t− τ) + f(x(t)) (8)

where x(t) = [x1(t), x2(t), · · · , x10(t)]T , x(t− τ) = [x1(t− τ1), x2(t− τ2), · · · , x10(t− τ10)]
T ,

f(x(t)) is a 10× 1 vector, C and D both are 10× 10 matrices as the following: f(x(t)) =

[0,−γ1x31−β11x
2
1x2−β12x

4
1x2+ r1x

3
1, 0,−γ2x33−β21x

2
3x4−β22x

4
3x4+ r2x

3
3, · · · , 0,−γ5x39−
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β51x
2
9x10 − β52x

4
9x10 + r5x

3
9]
T ,

C = (cij)10×10 =



0 1 0 0 0 0 0 0 0 0

c21 α1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 c43 α2 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 c65 α3 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 c87 α4 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 c10,9 α5



,

D = (dij)10×10 =



0 0 0 0 0 0 0 0 0 0

n21 a22 b13 a24 b15 a26 b17 a28 b19 a2,10

0 0 0 0 0 0 0 0 0 0

b31 a42 n43 a44 b35 a46 b37 a48 b39 a4,10

0 0 0 0 0 0 0 0 0 0

b51 a62 b53 a64 n65 a66 b57 a68 b59 a6,10

0 0 0 0 0 0 0 0 0 0

b71 a82 b73 a84 b75 a86 n87 a88 b79 a8,10

0 0 0 0 0 0 0 0 0 0

b91 a10,2 b93 a10,4 b95 a10,6 b97 a10,8 n10,9 a10,10



,

where c21 = β1 − k1, c43 = β2 − k2, c65 = β3 − k3, c87 = β4 − k4, c10,9 = β5 − k5, n21 =

−
∑5

i=2, b1,2i−1, n43 = −
∑5

i=1,i ̸=2 b3,2i−1, n65 = −
∑5

i=1,i ̸=3 b5,2i−1, n87 =
∑5

i=1,i ̸=4 b7,2i−1, n10,9 =

−
∑4

i=1 b9,2i−1. The linearized system of (8) is as the following:

x′(t) = Cx(t) +Dx(t− τ) (9)

2 Preliminaries

Lemma 1 If matrix M(= C +D) is a nonsingular matrix for selected parameters, then

there exists a unique zero equilibrium point for system (6) (or (7)).

Proof Obviously, system (9) has a trivial solution. Since f(0) = 0, so the system (8) has
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a trivial solution. Note that M is a nonsingular matrix for selected parameters, implying

that system (9) has a unique trivial solution. Ihis suggests that the system (6) or (7) has

a unique trivial solution.

Lemma 2 All solutions of system (6) (or (7)) are bounded assuming that βi2 > 0.i =

1, 2, · · · , 5.

Proof To prove the boundedness of the solutions in system (7), we construct a Lyapunov

function V (t) =
∑10

i=1
1
2x

2
i (t). Calculating the derivative of V (t) through system (7) we

have

V ′(t)|(7) =
10∑
i=1

x′i(t)xi(t)

≤ B1

9∑
i=1

|xi||xi+1|+B2

5∑
i=1

x22i −
5∑

i=1

(γi − ri)x
3
2i−1x2i −

5∑
i=1

βi1x
2
2i−1x

2
2i

−
5∑

i=1

βi2x
4
2i−1x

2
2i (10)

where B1, B2 are same positive constants. Obviously, when x2i−1 → +∞, x2i → +∞(1 ≤

i ≤ 5, ) x42i−1x
2
2i are higher order infinity than x22i−1x

2
2i, x

3
2i−1x2i and |xi||xi+1|, respec-

tively. Since βi2 > 0.i = 1, 2, · · · , 5, therefore, there exists suitably large K > 0 such that

V ′(t)|(7) < 0 as |x2i−1| > K, |x2i| > K(i = 1, 2, · · · , 5). This means that all solutions of the

system (7) are bounded.

3 The existence of oscillatory solutions

Theorem 1 Assume that zero is the unique equilibrium point of the system (7) for selected

parameter values. Let γ1, γ2, · · · , γ10 and 0, δ2, 0, δ4, · · · , 0, δ10 are characteristic values of

matrix C and matrix D, respectively. If the real part of each γi(i = 1, 2, · · · , 10) and

δj(j = 2, 4, · · · , 10) are nonpositive, then the trivial solution of system (7) is stable. If

each γi has positive real part, or there exists a characteristic value, say γk, Re(γk) < 0

with |Re(γk)| < Re(δk), then the unique trivial solution of system (7) is unstable, implying

that there exists a periodic oscillatory solution in system (7).

Proof According to the time delay basic differential equation theory, if the real part of

each γi(i = 1, 2, · · · , 10) and δj(i = 2, 4, · · · , 10) are nonpositive, then the trivial solution

of system (9) is stable. Noting that the nonlinear term f(z) of system (7) is a higher order

infinitesimal as xi → 0. Therefore, the stability of the trivial solution of system (9) ensures

the stability of the trivial solution of system (7). Obviously, if the trivial solution of system
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(9) is unstable, then the trivial solution of system (7) is also unstable. Therefore, in order

to discuss the instability of the trivial solution of system (7) we only need to deal with

the instability of the trivial solution of system (9). Firstly, consider an auxiliary system

of (9) as follows:

x′(t) = Cx(t) +Dx(t− τ∗) (11)

where τ∗ = min1≤i≤5{τ2i, τ2i−1} and x(t − τ∗) = [x1(t − τ∗), x2(t − τ∗), · · · , x10(t − τ∗)]
T .

Since γ1, γ2, · · · , γ10 and 0, δ2, 0, δ4, · · · , 0, δ10 are characteristic values of matrix C and

matrix D, respectively, then the characteristic equations corresponding to system (11) are

the following:

Π10
i=1(λ− γi − δie

−λτ∗) = 0. (12)

Thus, we are led to an investigation of the nature of the roots for some k, k ∈ {1, 2, · · · , 10}

λ− γk − δke
−λτ∗ = 0. (13)

Noting that there are five characteristic values of matrix D are zeros, if each γi has positive

real part, so if δk = 0 in equation (13) we know that system (11) has a characteristic value

with positive real part, so the trivial solution of system (11) is unstable. If Re(γk) < 0

with |Re(γk)| < Re(δk), we show that there exists a characteristic value of the system

(11) with positive real part. Indeed, if Re(γk) < 0 with |Re(γk)| < Re(δk), let λ =

σ + iω, γk = γk1 + iγk2, δk = δk1 + iδk2, where σ = Re(λ), γk1 = Re(γk), δk1 = Re(δk),

and ω = Im(λ), γk2 = Im(γk), δk2 = Im(δk), respectively. Separating the real part and

imaginary part of the equation (13) we get

σ = γk1 + δk1e
−στ∗ cos(ωτ∗)− δk2e

−στ∗ sin(ωτ∗) (14)

ω = γk2 + δk1e
−στ∗ sin(ωτ∗) + δk2e

−στ∗ cos(ωτ∗) (15)

Let

ψ(σ) = σ − γk1 − δk1e
−στ∗ cos(ωτ∗) + δk2e

−στ∗ sin(ωτ∗) (16)

Obviously, ψ(σ) is a continuous function of σ. Noting that Re(γk) = γk1 < 0 with

|Re(γk)| < Re(δk) = δk1. If there is a whole number n such that ωτ∗ ≈ 2nπ, then

ψ(0) = −γk1 − δk1 cos(ωτ∗) + δk2 sin(ωτ∗) ≈ |γk1| − δk1 < 0. Since limσ→+∞ e−στ∗ = 0, so
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there exists a suitably large σ, say σ1(> 0) such that ψ(σ1) = σ1−γk1−δk1e−σ1τ∗ cos(ωτ∗)+

δk2e
σ1τ∗ sin(ωτ∗) > 0. By the Intermediate Value Theorem, there exists a σ, say σ0 ∈ (0, σ1)

such that ψ(σ0) = 0, implying that there is a positive real part characteristic value of

the equation (13). This means that the trivial solution of system (11) is unstable. It

is known that if the solution of a delayed equation is unstable for a small delay, then

the instability of the solution will be maintained as the delays increase[26]. Therefore,

the instability of the trivial solution of the system (11) implies the instability of the

trivial solution of the system (9). This suggests that the unique positive equilibrium point

(x∗1, x
∗
2, x

∗
3, · · · , x∗9, x∗10)T of system (7) is unstable. This instability of the unique positive

equilibrium point together with the boundedness of the solutions will force system(7) to

generate an oscillatory solution[27, 28]. The proof is completed.

To simplify, set µ(C) = max1≤j≤10[cjj +
∑10

i=1,i ̸=j |cij |, ∥ D ∥= max1≤j≤10
∑10

i=1 |dij |. Then

we have

Theorem 2 Assume that the conditions of Lemma 1 and Lemma 2 hold. If the following

inequality is satisfied

∥ D ∥ eτ∗
e|µ(C)|τ∗

> 1. (17)

Then the trivial solution of system (11) is unstable, implying that the system (7) has an

oscillatory solution.

Proof To prove the instability of the trivial solution of system (11), let w(t) =
∑10

i=1(|xi(t)|).

Therefore, w(t) > 0 and

w′(t) ≤ µ(C)w(t)+ ∥ D ∥ w(t− τ∗) (18)

Specifically, consider equation

v′(t) = µ(C)v(t)+ ∥ D ∥ v(t− τ∗) (19)

Obviously, w(t) ≤ v(t). If the trivial solution of the equation (19) is unstable, then the triv-

ial solution of (18) is still unstable. The characteristic equation associated with equation

(19) is given by

λ = µ(C)+ ∥ D ∥ e−λτ∗ (20)

If the trivial solution of equation (19) is stable, then the equation (20) must have a real

negative root say λ∗, and we have from (20)

|λ∗|+ |µ(C)| ≥∥ D ∥ e−λ∗τ∗ (21)

8



One can prove that ex ≥ ex. So we have

1 ≥ ∥ D ∥ e|λ∗|τ∗

|λ∗|+ |µ(C)|
=

∥ D ∥ τ∗e(|λ∗|+|µ(C)|)τ∗

(|λ∗|+ |µ(C)|)τ∗ · e|µ(C)|τ∗
≥ ∥ D ∥ eτ∗

e|µ(C)|τ∗
(22)

A contradiction with the equation (17), implying that the trivial solution of the equation

(19) is unstable. It suggests that the trivial solution of the equation (18) is unstable. Thus,

for all {τi} ≥ τ∗(i = 1, 2, · · · , 10), the trivial solution of system (11) is unstable, implying

that the equilibrium point of system (7) is unstable. Similarly to theorem 1, system (7)

generates an oscillatory solution. The proof is completed.

4 Simulation result

This simulation is based on the system (7). Firstly, the parameters are selected as

β1 = 0.45, β2 = 0.58, β3 = 0.42, β4 = 0.36, β5 = 0.38, k1 = 1.78, k2 = 1.95, k3 = 1.64, k4 =

1.85, k5 = 1.72, α1 = 0.014, α2 = 0.015, α3 = 0.012, α4 = 0.018, α5 = 0.015; a22 = 0.72,

a24 = 0.78, a26 = 0.85, a28 = 0.75, a2,10 = 0.82, a42 = 0.76, a44 = 0.68, a46 = 0.60, a48 =

0.75, a4,10 = 0.64, a62 = 0.32, a64 = 0.38, a66 = 0.30, a68 = 0.35, a6,10 = 0.28, a82 = 0.52,

a84 = 0.48, a86 = 0.50, a88 = 0.95, a8,10 = 0.16, a10,2 = 0.52, a10,4 = 0.48, a10,6 =

0.50, a10,8 = 0.65, a10,10 = 0.62, b13 = −1.78, b15 = 0.50, b17 = 0.65, b19 = 0.62, b31 =

0.52, b35 = −1.50, b37 = 0.65, b39 = 0.62, b51 = 0.42, b53 = 0.28, b57 = −1.85, b59 =

0.72, b71 = 0.32, b73 = −1.48, b75 = 0.50, b79 = −1.62, b91 = 0.36, b93 = 0.18, b95 =

1.50, b97 = −1.65, β11 = 0.12, β12 = 0.22, β21 = 0.20, β22 = 0.18, β31 = 0.34, β32 =

0.25, β41 = 0.54, β42 = 0.75, β51 = 0.32, β52 = 0.65, γ1 = 2.52, γ2 = 2.65, γ3 = 2.62, γ4 =

2.75, γ5 = 2.42, r1 = 0.80, r2 = 0.82, r3 = 0.85, r4 = 0.92, r5 = 0.95. Then the characteris-

tic values of matrix C and D in system (7) are 0.0070±0.5916i, 0.0075±0.4898i, 0.0060±

0.6557i, 0.0090± 0.7483i, 0.0075± 0.7615i and 0, 2.8683, 0,−0.0515+0.0708i, 0,−0.0515−

0.0708i, 0, 0.2545+ 0.0254i, 0, 0, 0.2545+ 0.0254i, respectively. Since all characteristic val-

ues of matrix C are complex numbers, and each characteristic value has positive real part,

the conditions of Theorem 1 are satisfied. When time delays are selected as τ1 = 1.42, τ2 =

1.28, τ3 = 1.25, τ4 = 1.35, τ5 = 1.37, τ6 = 1.40, τ7 = 1.46, τ8 = 1.24, τ9 = 1.30, τ10 = 1.32,

and τ1 = 1.72, τ2 = 1.58, τ3 = 1.55, τ4 = 1.65, τ5 = 1.67, τ6 = 1.70, τ7 = 1.76, τ8 =

1.54, τ9 = 1.60, τ10 = 1.62, respectively, the system (7) generates periodic oscillations (see

figure 1 and figure 2). When we change the parameters as β1 = 0.15, β2 = 0.18, β3 =

0.12, β4 = 0.16, β5 = 0.10, k1 = 0.64, k2 = 0.75, k3 = 0.82, k4 = 0.92, k5 = 0.68, α1 =
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0.22, α2 = 0.25, α3 = 0.28, α4 = 0.20, α5 = 0.26; a22 = 0.32, a24 = 0.38, a26 = 0.35, a28 =

0.36, a2,10 = 0.54, a42 = 0.58, a44 = 0.45, a46 = 0.42, a48 = 0.25, a4,10 = 0.682a62 = 0.52,

a64 = 0.14, a66 = 0.22, a68 = 0.85, a6,10 = 0.46, a82 = 0.82, a84 = 0.78, a86 = 0.12, a88 =

0.45, a8,10 = 0.36, a10,2 = 0.48, a10,4 = 0.42, a10,6 = 0.38, a10,8 = 0.15, a10,10 = 0.26, b13 =

0.78, b15 = 0.42, b17 = 0.25, b19 = 0.32, b31 = 0.72, b35 = 0.34, b37 = 0.45, b39 = 0.48, b51 =

0.12, b53 = 0.48, b57 = 0.85, b59 = 0.72, b71 = 0.62, b73 = 0.48, b75 = 0.38, b79 = 0.24, b91 =

0.36, b93 = 0.58, b95 = 1.50, b97 = 0.65, β11 = 0.18, β12 = 0.24, β21 = 0.20, β22 = 0.12, β31 =

0.15, β32 = 0.14, β41 = 0.24, β42 = 0.25, β51 = 0.28, β52 = 0.25, γ1 = 1.52, γ2 = 1.65, γ3 =

1.62, γ4 = 1.75, γ5 = 1.42, r1 = 0.46, r2 = 0.42, r3 = 0.45, r4 = 0.32, r5 = 0.35. Then we

have ∥ D ∥= 4.85, and µ(C) = 1.28. When time delays are selected as τ1 = 1.64, τ2 =

1.68, τ3 = 1.70, τ4 = 1.72, τ5 = 1.75, τ6 = 1.77, τ7 = 1.76, τ8 = 1.62, τ9 = 1.58, τ10 = 1.65,

then τ∗ = 1.58, and ∥ D ∥ eτ∗ = 4.85 × 1.58e = 20.8296, e|µ(C)|τ∗ = e1.28×1.58 = 7.5565,

the conditions of Theorem 2 are satisfied. There is a periodic oscillatory solution (see

figure 3). When time delays are selected as τ1 = 1.84, τ2 = 1.88, τ3 = 1.90, τ4 =

1.92, τ5 = 1.95, τ6 = 1.97, τ7 = 1.96, τ8 = 1.82, τ9 = 1.78, τ10 = 1.85, then τ∗ = 1.78,

and ∥ D ∥ eτ∗ = 4.85 × 1.78e = 23.4662, e|µ(C)|τ∗ = e1.28×1.78 = 9.7612, the conditions

of Theorem 2 are still satisfied. There is a periodic oscillatory solution (see figure 4).

However, the oscillatory solution is not smooth to enough due to the higher degree of the

variables in the model.

5 Conclusion

In this paper, we have discussed the oscillatory behavior of the solutions for a five-

dimensional system of coupled van der Pol-Hamiltonian-Duffing oscillator with delays.

By a mathematical analysis, we have given two theorems guaranteeing the oscillation of

the solutions. The instability of the trivial solution of the linear system implyies the in-

stability of the trivial solution of the nonlinear system. Some simulations are provided to

indicate the effectiveness of the criteria. We point out that the present criteria are only

sufficient conditions.
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Fig.1 Oscillation of the solutions, delays: 1.42, 1.28, 1.25, 1.35, 1.37, 1.40, 1.46, 1.24, 1.30, 1.32.
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Fig.3 Oscillation of the solutions, delays: 1.64, 1.68, 1.70, 1.72, 1.75, 1.77, 1.76, 1.62, 1.58, 1.65.
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Fig.4 Oscillation of the solutions, delays: 1.84, 1.88, 1.90, 1.92, 1.95, 1.97, 1.96, 1.82, 1.78, 1.85.
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