
 

 

Theoretical Analysis of Nonlinear partial differential equations with Mixed 

Boundary Conditions  

  

                   

Abstract  
           The solution of author’s mathematical model of Magnetohydrodynamics (MHD) flow of a 

Casson fluid is discussed.  The given nonlinear partial differential equations are converted into 

nonlinear ordinary differential equations using similarity transformations. The simple and closed 

form analytical expression for concentration profiles is provided. The compatibility of analytical 

results with simulation results can be observed from the graphs and table presented. 
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1 Introduction 
                  Magnetohydrodynamics (MHD) is the study of the flow of electrically conducting 

fluids, which has important applications in polymer industry and engineering fields, observed 

K.Sharada and B.Shankar [1]. Casson Fluid Model is one of the non-Newtonian models. Casson 

fluid was originally introduced by Casson. The model finds the rate of shear stress and strain 

relationships nonlinear. Examples of such are sauce, honey, soup, jelly etc. For the analysis of 

boundary layer flows, this model is one of the best rheological models.       

                Casson fluid’s Magnetohydrodynamics (MHD) flow over a shrinking sheet and 

Stretching Sheet has been experimented by S. Nadeem et al. [2] and Krishnendu Bhattacharyya 

[3]. Ishak [4 – 6] has explained about MHD stagnation point flow on vertical, linearly stretching 

sheet. T. Hayat et al. [7 – 9] have discussed mixed convection flow of Casson nanofluid with 

mixed boundary condition. 

 

 

         By applying keller box method, K. Sharada and B. Shankar [1] have obtained the numerical 

solution of MHD flow of a Casson fluid with mixed boundary condition. In this manuscript, the 

analytical solution by Homotopy Analysis Method has been derived [10 – 13]. 



 

 

 

   

Fig. 1:  Physical sketch of the flow [1] 

 

2 Mathematical Formulation  

  The governing equations of continuity, momentum, energy and concentration are [1]:  
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where 𝑢 and 𝑣 are velocity components in the directions of 𝑥 and 𝑦  respectively. 

The boundary conditions are defined as [1]: 

At  𝑦 → 0 

𝑢 = 𝑢𝑤 +  𝐿
𝜕𝑢

𝜕𝑦
   

𝑣 = 0  

−𝐾
𝜕𝑇

𝜕𝑦
(𝑥, 0) =  ℎ𝑓(𝑇𝑓 − 𝑇𝑤)  

At  𝑦 → ∞ 

𝑢 → 0  



 

 

𝑇 →  𝑇∞  

where 𝑇𝑓, ℎ𝑓 , L, 𝑇𝑤 are defined in [1]. 

Introducing the similarity transformations [1]: 

𝜂 = √
𝑎

𝑣
 𝑦,   𝜓 = √𝑣𝑎  𝑥𝑓(𝜂), 𝜃(𝜂) =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
 , 𝑢 = 𝑎𝑥𝑓′(𝜂), 𝑣 =  −√𝑎𝑣 [𝑓(𝜂)]    

By using the above similarity transformations Eqs. (2.1) to (2.3) are transformed into 

dimensionless, nonlinear differential equations as follows [1]: 

(1 +
1

𝛽
) 𝑓′′′ +  𝑓 𝑓′′ + 𝜆𝜃 − 𝑀𝑓′ = 0                                                                                  (2.4) 

1

𝑃𝑟
𝜃′′ + 𝑓𝜃′ + 𝐻𝑓′2 = 0                                                                                                        (2.5) 
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𝜎 𝐵0

2

𝜌𝑎
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𝜈

𝛼
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𝑎2𝑥
  , 𝐸𝑐 =  

𝑢𝑊𝑥

𝐶𝑝(𝑇𝑓− 𝑇∞)
 , H = M. Ec are the dimensionless 

parameters [1].  

The boundary conditions are 

𝜂 = 0:  𝑓(0) = 0, 𝑓′(0) = 1 + 𝜆𝑣 𝑓′′(0), 𝜃′(0) = −𝛾 (1 − 𝜃(0))                                       (2.6) 

𝜂 =  ∞:  𝑓′(∞) = 0, 𝜃(∞) = 0                                                                                               (2.7)                                                    

where 𝜆𝑣 = 𝐿 (
𝑎

𝑣
) , 𝛾 = {

𝑐

𝐾
 (√

𝑣

𝑢∞
 ) }  are in [1].  

3 The Approximate Analytical Expression of Fluid and Temperature using 

Homotopy Analysis Method   

          The homotopy analysis method is used to solve nonlinear differential equations. This 

method was introduced by Liao [10]. For few iterations, HAM gives a easy way to converge the 

solution. The basic idea of Homotopy Analysis Method is furnished in (Appendix A). By 

solving the nonlinear differential Eqs. (2.4) to (2.7) using the HAM, the approximate analytical 

expression of the fluid and temperature of casson fluid can be obtained as follows:  

𝑓(𝜂) =
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4 Result and Discussion 

               Eqs. (3.1) and (3.2) are the new analytical expression of the fluid and temperature for 

the different values of  𝑀, 𝜆, 𝛽, 𝜆𝑣, 𝑃𝑟 , 𝛾, 𝐻. Analytical results are compared with the previous 

result and numerical result in Figs. (2) – (8) for different values of parameters. 

𝐼𝑡 𝑔𝑖𝑣𝑒𝑠 𝑔𝑜𝑜𝑑 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑟𝑒𝑠𝑢𝑙𝑡 𝑎𝑛𝑑 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑟𝑒𝑠𝑢𝑙𝑡. 

             The velocity profiles are presented in Figs. (2) – (4) for the values of 𝑀, 𝜆 and 𝛽. From 

this Fig. (2), it is inferred that when 𝑀 increases, the velocity decreases. In Fig. (3), it is clear 

that the velocity profile decreases and reaches the steady state value when 𝜂 = 2. As 𝛽 increases, 

the boundary layer thickness decreases as shown in Fig. (4). Fig. (5), indicates that the profile of 

velocity for various values of 𝜆𝑣. It is noted velocity decreases when 𝜆𝑣 increases. Figs. (6), (7) 

and (8) demonstrates that profile of temperature for various values of 𝑃𝑟 , 𝛾 and 𝐻. From these 

Figs. (6), (7) and (8), it is understood that 𝑃𝑟 , 𝛾 and 𝐻 increases when the temperature profile 

increases.     

           The analytical expression of velocity and temperature obtained from Homotopy Analysis 

Method is compared with numerical results in Table 1 and Table 2 satisfactory agreement is 

noted. The average error percentage between numerical results and analytical results is less than 

or equal to 0.13.     

5 Conclusion    

           In this paper, theoretical analysis of nonlinear partial differential equations with mixed 

boundary condition has been investigated. The dimensionless nonlinear differential equations 

are solved analytical by Homotopy Analysis Method (HAM). Homotopy analysis method is 

powerful analytical technique for solving other nonlinear differential equations. It is 

demonstrated that the obtained results are in good agreement with simulation result and previous 

result.   
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    Fig. 2: Velocity profile for various values of M.                           Fig. 3: Velocity profile for various values of λ. 

 

  

   Fig. 4: Velocity profile for various values of β.                   Fig. 5: Velocity profile for various values of λv.  

 

 



 

 

                  

Fig. 6: Temperature profile for various values of Pr.                       Fig. 7: Temperature profile for various values of γ. 

 

 

                                     

Fig. 8: Temperature profile for various values of H. 

 



 

 

Table 1: Comparison of velocity with numerical results for β = 10, Pr = 1.0, H = 1.0, 

M = 1.0, λv = 0.2, γ = 0.1, and λ = 0.5.    

η Analytical 

(Eqs. 3.1) 

Numerical  % of deviation  

0 0.8100 0.8112 0.1481 

0.2 0.6304 0.6314 0.1586 

0.4 0.4699 0.4704 0.1064 

0.6 0.3730 0.3132 0.0639 

0.8 0.1595 0.1597 0.1254 

1.0 0.0000 0.0000 0.0000 

Average of % deviation 0.1004 

      

 

Table 2: Comparison of temperature with numerical results for β = 10, Pr = 1.0, M 

= 1.0, λv = 0.2, γ = 0.1, and H = 1.0. 

η Analytical 

(Eqs. 3.2) 

Numerical  % of deviation  

0 0.2115 0.2119 0.1819 

0.2 0.1840 0.1843 0.1630 

0.4 0.1430 0.1432 0.1399 

0.6 0.0937 0.0938 0.1067 

0.8 0.0463 0.0464 0.2160 

1.0 0.0000 0.0000 0.0000 

Average of % deviation 0.1346 

 



 

 

 

List 1 : LIST OF SYMBOLS 

  

Parameters Description  

β Casson  parameter   

B Magnetic  

T Fluid temperature  

ν Kinematic viscosity 

α Thermal diffusivity 

ρ Density of the fluid  

σ Electrical conductivity 

μ Dynamic co-efficient of viscosity 

Cp Heat capacitance  

M Magnetic parameter  

λ Mixed convection parameter  

Pr Prandtl number  

Ec Eckert number  

H Joule heating parameter  

L Proportionality constant   

u, v Velocity components along x and y  directions 

hf Convective heat transfer coefficient  

Tf Temperature of fluid  

hf Heat transfer co-efficient  

λv Slip parameter 

γ Convective parameter  

Cfx and Cfy  Skin friction along the x and y directions 

τwx  and τwy  Wall shear stress along x and y directions  

Rex Local Reynolds number  

 

 



 

 

 

Appendix A   

Basic concept of the Homotopy Analysis method (HAM) [14]  

        The general form of linear (or) nonlinear differential equation is of the form    

  𝑁[𝑢 (𝑥, 𝑡)] = 0                                                                                                          (A1) 

 Zero-th order deformation of the above equation is [10] 

(1 − 𝑝)𝐿[𝜓 (𝑥, 𝑡, 𝑝) − 𝑢0 (𝑥, 𝑡)] = 𝑝ℎ 𝐻(𝑥, 𝑡)𝑁[ 𝜓(𝑥, 𝑡, 𝑝)]                                    (A2) 

where 𝑝 ∈ [0,1], h ≠ 0. 

 Substituting  𝑝 = 0 and  𝑝 = 1, in Eq.(A2), we get   

𝜓(𝑥, 𝑡, 0 ) = 𝑢0 ,  𝜓(𝑥, 𝑡, 1) = 𝑢                                                                                  (A3) 

respectively.  

By using Taylor’s Expansion 𝜓(𝑥, 𝑡, 𝑝) can be expanded as   

 𝜓(𝑥, 𝑡, 𝑝) = 𝑢0 (𝑥, 𝑡) + ∑ 𝑢𝑚 (𝑥, 𝑡)𝑝𝑚∞
𝑚=1                                                                  (A4) 

where   𝑢𝑚 (𝑥, 𝑡) =  
1

𝑚 !
 
𝜕𝑚 𝜓(𝑥,𝑡,𝑝)

𝜕𝑝𝑚  |𝑝 = 0                                                                    (A5) 

When 𝑝 = 1 , the convergent series becomes 

  𝑢(𝑥, 𝑡) = 𝑢0 (𝑥, 𝑡) + ∑ 𝑢𝑚 (𝑥, 𝑡) ∞
𝑚=1 ,                                                                        (A6) 

Appendix B 

Analytical solution of fluid f and temperature θ by solving the Eqs. (2.4) and 

(2.5) using HAM   

(1 +
1

𝛽
) 𝑓′′′ +  𝑓 𝑓′′ + 𝜆𝜃 − 𝑀𝑓′ = 0                                                                                  (B1) 

 
1

𝑃𝑟
𝜃′′ + 𝑓𝜃′ + 𝐻𝑓′2 = 0                                                                                                       (B2) 

The homotopy analysis method for the Eq. (B1) and (B2) can be written as follows: 

(1 − 𝑝) [(1 +
1

𝛽
) 𝑓′′′ − 𝑀𝑓′] = 𝑝ℎ [(1 +

1

𝛽
) 𝑓′′′ +  𝑓 𝑓′′ + 𝜆𝜃 − 𝑀𝑓′ = 0  ]                    (B3) 

(1 − 𝑝)[𝜃′′ + 𝑇𝜃′] = 𝑝ℎ [𝜃′′ + 𝑇𝜃′ − 𝑇 𝑒(−√𝑘 𝜂)𝜃′ + 𝑃𝑟 𝐻𝑓′2 ]                                         (B4) 

The approximate solution of the Eq. (B1) and (B2) are as follows:  

𝑓 = 𝑓0 + 𝑓1𝑝 + 𝑓2𝑝2 + ⋯                                                                                                      (B5) 

𝜃 = 𝜃0 + 𝜃1𝑝 + 𝜃2𝑝2 + ⋯                                                                                                     (B6) 

where 𝑝 is the embedding parameters and 𝑝 ∈ [0,1]. Substituting Eqs.(B5) and (B6) in Eqs.(B3)  



 

 

and (B4) and equating the like coefficients of 𝑝 on both sides we get, 

𝑝0 : (1 +
1

𝛽
) 𝑓0

′′′ − 𝑀𝑓0
′ = 0                                                                                                   (B7) 

𝑝1 : (1 +
1

𝛽
) 𝑓1

′′′ − 𝑀𝑓1
′ −  (1 +

1

𝛽
) 𝑓0

′′′ + 𝑀𝑓0
′ = ℎ [  (1 +

1

𝛽
) 𝑓0

′′′ − 𝑀𝑓0
′ + 𝑓0𝑓0

′′ + 𝜆 𝜃0 ]  (B8) 

𝑝0: 𝜃0
′′ + 𝑇𝜃0

′ = 0                                                                                                                    (B9) 

𝑝1: 𝜃1
′′ + 𝑇𝜃1

′ −  𝜃0
′′ − 𝑇𝜃0

′ = ℎ [  𝜃0
′′ + 𝑇𝜃0

′ − 𝑇𝑒(−√𝑘 𝜂)𝜃0
′ + 𝑃𝑟 𝐻 𝑓0

′2]                              (B10) 

With the boundary conditions, 

 𝑓0(0) = 0, 𝑓0
′(0) = 1 + 𝜆𝑣 𝑓0

′′(0), 𝑓0
′(∞) = 0                                                                      (B11) 

𝑓1(0) = 0,  𝑓1
′(0) = 0,  𝑓1

′(∞) = 0                                                                                          (B12) 

𝜃(∞) = 0,  𝜃′(0) = −𝛾 (1 − 𝜃(0))                                                                                        (B13) 

𝜃(∞) = 0,  𝜃′(0) = 0                                                                                                              (B14) 

Solving the Eqs.(B7) to (B10) with the boundary conditions Eqs.(B11) to (B14) we get, 

approximate solution of the Eqs. (3.1) and (3.2) in the text. 

Appendix C 

Using MATLAB program simulation of Eqs. (2.4) and (2.5).   

function sol = ex1 
solinit=bvpinit (linspace(0,1,9),[0 -1 1 -2.5 1]); 
sol = bvp4c(@ex1ode,@ex1bc,solinit); 
xint = linspace( 0,1,9); 
yint = deval(sol,xint); 
plot(xint,yint(2,:)); 
end 
function dydx = ex1ode(x,y) 
N=0.1; 
p=1.0; 
H=1.0; 
M=1.0; 
A=1.1; 
dydx=[y(2) 
    y(3) 
    1/A*(y(3)*y(1)-(y(4)*N)+ (M*y(2))) 
    y(5) 
    -p*(y(1)*y(5))-p*(H*(y(2)*y(2))) 
    ]; 
end 
function res = ex1bc(ya,yb) 
v=0.2; 
r=0.1; 
res=[ 
ya(1) 
ya(2)-(1+v*ya(3)) 
yb(2) 
ya(5)+r*(1-ya(4)) 



 

 

yb(4) 
]; 
end 

 

To be typed in the command window 

solution=ex5; 

x=solution.x; 

y=solution.y; 

y2=solution.y(2,:); 

y4=solution.y(4,:); 

Plot(x,y2,'r',x,y4,'g');               

           

 

  

 

 

 

 

 

 

 

 

 

                                                                                                                                     

 

 

 


