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ABSTRACT 

The article discusses the capabilities of Kubernetes software in the process of 

managing microservice architecture. The tools of this software used in the scaling 

process were studied, which, for example, include: Horizontal Pod Autoscaler (HPA), 

and Cluster Autoscaler. Load balancing mechanisms were also described, including 

using Ingress controllers and network proxies to optimize traffic between workloads. 

The methodology of the article includes an analysis of various approaches to the 

management of containerized microservices by Kubernetes, for example: automation 

of scaling processes, monitoring, security, and access control. The results of the 

research demonstrate that by using Kubernetes, the flexibility of the system increases, 

stable operation of services is maintained, the risk of failures is reduced, and prompt 

response to requests is provided with an increase in the number of users. The 

problems faced by developers when implementing this software were also 

considered, namely: security settings, optimization of auto-scaling, and configuration 

scheme of network interaction between components.The article is aimed at 

developers and architects of software systems that optimize microservice 

applications. In conclusion, recommendations are given on using Kubernetes to 

create a flexible, fault-tolerant microservice structure ready for high loads. 

Keywords: Kubernetes, microservice architecture, automatic scaling, fault tolerance, 

load balancing, controllers, security, monitoring. 

 

Introduction 

The advancement of information technologies has led to increasing demands 

for application performance. Microservices architecture is becoming a significant 

approach in software system design. This method involves dividing software into 



 

 

independent modules—microservices. Each module operates autonomously, 

simplifying the adaptation of applications to various operational conditions. 

As Kubernetes, being a container orchestration platform, provides tools that 

automate scaling processes, load balancing, and resource distribution, its mechanisms 

ensure software stability regardless of load levels. 

Microservices-based applications impose specific requirements on 

performance and fault tolerance. Kubernetes offers developers functionality for 

resource management, module interaction, and application adaptation to dynamic 

loads. Implementing the platform involves configuring auto-scaling, optimizing 

network connections, and ensuring secure data transmission [10]. 

The purpose of this article is to explore the application of Kubernetes in the 

microservices architecture. The paper analyzes load management mechanisms, 

resolves bottlenecks, and establishes a robust structure capable of functioning 

efficiently under significant request volumes. 

 

Materials and Method 

Various methods were utilized to analyze the Kubernetes architecture and 

microservices management mechanisms. System analysis was employed to study the 

platform's structure and examine its functional features. As part of the research, 

comparisons were conducted on approaches to microservices orchestration, 

identifying the distinctive characteristics of Kubernetes and clarifying its differences 

from alternative solutions. A comprehensive approach ensured an accurate 

assessment of the platform's capabilities and facilitated the formulation of 

recommendations for improving the performance of microservices applications. 

The following scientific works were considered as sources. The study by Sun 

Y. et al. [1] focuses on scheduling methods and load balancing in Kubernetes. The 

authors emphasize the importance of selecting algorithms that consider the dynamic 

nature of microservices and the ability to flexibly allocate resources to ensure system 

reliability. 



 

 

The articles by Rossi F., Cardellini V., and Presti F. L. [2, 7] discuss the 

hierarchical scaling of microservices in Kubernetes, which enables adaptation to 

variable load conditions. It is argued that hierarchical scaling methods increase 

flexibility and enhance efficiency. 

The research by Vayghan L. A. et al. [3] describes a Kubernetes controller for 

state management of microservices. The developed controller improves the system’s 

fault tolerance, which is essential for applications with specific availability 

requirements. 

Ding Z., Wang S., and Jiang C. [4] study the placement of microservices with 

consideration of dynamic resource allocation, demonstrating an approach that 

optimizes resource usage. 

Jian Z. et al. [5] proposed a reinforcement learning-based method to enhance 

the Kubernetes scheduler. This method improves scheduling efficiency, reducing 

delays under high-load conditions. 

The practical research is based on works [6-9]. The research by Nurzhankyzy 

Asem [6] focuses on best practices for containerization in deploying microservices 

under heavy load, offering recommendations for container optimization to enhance 

system performance. Shulyak A. V. [8] provides practical guidelines for scaling 

resources using Kubernetes. Rathi G. et al. [9] analyze the performance of various 

Ingress controllers in a Kubernetes cluster, noting that the choice of controller 

impacts throughput. 

The reviewed literature highlights the need for a deliberate selection of tools 

and methods for microservice management, with an emphasis on scalability, 

reliability, and efficiency under high-load conditions. 

 

Results and Discussion 

The command-line tool `kubectl` is used for managing applications in 

Kubernetes, enabling the deployment of containers based on prepared OCI images. 

The system employs pods, which are logical units that group containers within a 



 

 

shared context. Containers with close interdependencies are placed within the same 

pod, allowing them to share resources, including network namespaces and volumes. 

Each pod has its IP address, facilitating communication between containers 

within the pod as well as with external systems. A volume serves as an immutable 

data storage shared among all containers in the pod, simplifying information 

exchange. Pod configurations are defined using YAML files, which specify 

operational parameters in detail. 

The readiness probe procedure determines a pod’s ability to handle incoming 

traffic. The system monitors container health and restarts them in case of failures to 

maintain application stability. 

In a microservices architecture, each service is isolated in its container. This 

approach creates independent environments for operation, simplifying component 

configuration, system updates, and maintenance tasks. Containers also support 

running multiple versions of services simultaneously, preventing conflicts during 

updates. 

System reliability is ensured through monitoring and backup mechanisms. Data 

stored in the `etcd` controller is backed up to enable workload recovery. Monitoring 

tools such as Prometheus and Grafana provide insights into container status, resource 

utilization, and performance metrics. These tools assist in identifying and resolving 

issues, optimizing processes, and maintaining application stability without 

disruptions [6]. 

Additionally, the tools such as Horizontal Pod Autoscaler (HPA) and Cluster 

Autoscaler should be noted, as they enable automatic resource adjustment, providing 

intelligent scaling capabilities for the microservice architecture and increasing its 

adaptability to fluctuating load conditions. These tools facilitate interaction between 

application layers, contributing to resilient and efficient task management in a 

distributed environment. 

Horizontal Pod Autoscaler (HPA) is a component focused on adjusting the 

number of pods based on specific load metrics, such as CPU and memory usage, or 

application-specific metrics (e.g., request volume per second). A key feature of HPA 



 

 

is its ability to autonomously monitor system status and react to changes, scaling up 

the number of pods during periods of high traffic and scaling down as the load 

decreases. While on the other hand, Cluster Autoscaler manages infrastructure at the 

node level, acting as a balancing mechanism. 

The combined operation of these tools forms a multi-level, coordinated scaling 

system. Such interaction enables the creation of a highly adaptive system capable of 

effectively handling peak loads, optimizing both available computational resources 

and overall performance [7]. 

Security in this software is implemented through two main mechanisms. The 

first includes RBAC (Role-Based Access Control) and Network Policies, which 

restrict access at the network level and define the boundaries of service interactions, 

ensuring network segmentation and data isolation. The second mechanism 

implements mTLS (mutual Transport Layer Security) authentication, which mitigates 

the risk of data interception by enforcing mutual authentication between services.  

The mTLS implementation automates certificate lifecycle management - including 

creation, rotation, and revocation - which minimizes human error and reduces the 

likelihood of security-compromising misconfigurations. 

Service Mesh tools enable the definition and enforcement of access rules, 

isolating unauthorized interactions between services and preventing the escalation of 

attacks within the system. For instance, mesh-level policies restrict access to 

authorized clients only, even in cases where vulnerabilities exist within the 

application code itself. This adaptability, combined with centralized control, 

strengthens the security of the Kubernetes cluster, making it more resilient to threats. 

Containerization reduces the number of physical systems, lowering operational 

costs. The evaluation of microservice architecture efficiency considers parameters 

such as the number of simultaneous requests and response time for single server and 

cluster configurations. Testing is conducted in two scenarios: the first involves 

10,000 connections with 10,000 requests each, and the second involves 100,000 

connections with 1,000 requests per connection. Each scenario is repeated three times 



 

 

to minimize errors. The threshold load for automatic scaling is set at 80% of the echo 

server load. The results for different scenarios are presented in Tables 1 and 2. 

 

Table 1. Scenario 1: CPU load (in milli-cores) [8]. 

Stage Single Server (no scaling) Multiple Servers (with scaling) 

1 619 210 

2 591 217 

3 609 230 

Average 606.34 219.00 

 

Table 2. Scenario 2: CPU load (in milli-cores) [8]. 

Stage Single Server (no scaling) Multiple Servers (with scaling) 

1 580 215 

2 484 340 

3 552 324 

Average 555.00 293.00 

 

In addition to CPU load, server response time was also measured. Table 3 

presents the average response times. 

 

Table 3. Average response times [8]. 

Response Time (ms) Single Server (no scaling) Multiple Servers (with scaling) 

Scenario 1 43 ms 12 ms 

Scenario 2 58 ms 32 ms 

 

These data indicate that enabling automatic scaling reduces both CPU load and 

response time, ensuring high microservice performance even with a significant 

increase in the number of requests [8]. 

For secure external access to the workload, ingress controllers support 

SSL/TLS termination at the controller level, offloading decryption tasks from the 

services. The controllers also support path-based routing, allowing flexible request 

distribution to different services based on the URL structure: 



 

 

paths: 
  - path: /v1 
    pathType: Prefix 
    backend: 
      service: 
        name: v1-service 
        port: 
          number: 80 

 

Kubernetes ingress controllers provide efficient management of external access 

and load balancing between services within a cluster. Understanding the architecture, 

functions, and mechanisms of ingress controllers enables the creation of flexible and 

scalable solutions for managing containerized applications. In-depth analysis of 

different controller capabilities allows for configuration adaptation based on 

workload characteristics, ensuring optimal performance [9]. 

Below, Table 4 describes the advantages and disadvantages of using 

Kubernetes for managing microservices under high-load conditions. 

 

Table 4. Advantages and disadvantages of using Kubernetes for microservice 

management under high-load conditions [9]. 

Category Advantages Disadvantages 

Scalability 

- Automatic scaling efficiently distributes load 
and optimizes resources based on current 
demands. 

- Complex configurations are 
needed to ensure proper scaling 
and operation. 

- Simplifies management of multiple 
microservices and their interactions under 
fluctuating traffic. 

- High-load conditions may 
introduce delays during 
deployment and scaling 
processes. 

- Enables horizontal scaling to handle increased 
load, minimizing downtimes.  

Resilience 

- Automatic container recovery and traffic 
redistribution during failures maintain system 
stability. 

- Misconfigurations or resource 
shortages may hinder recovery 
efforts, causing delays. 

- Supports load balancing, evenly distributing 
requests among containers to reduce failure 
risks. 

- Configuration conflicts may 
result in system downtimes. 

Manageability - Allows setting CPU and memory limits to - Complex configurations may 



 

 

prevent excessive resource usage and maintain 
stability. 

lead to opaque and challenging 
resource management. 

- Optimizes cluster resource allocation based on 
container needs. 

- Requires meticulous 
monitoring and alerting to 
prevent resource overload. 

Containerization 

- Provides service isolation, reducing the risk of 
interference between microservices under heavy 
load. 

- High support demands for 
multiple containers increase 
infrastructure costs. 

- Simplifies deployment and management using 
standardized methods. 

- Constant monitoring of 
isolation is necessary to prevent 
failures. 

Updates 

- Supports continuous deployment (CI/CD), 
enabling updates without downtime under high 
load. 

- Transitional states during 
deployments may cause 
unexpected downtimes or errors. 

- Rolling Updates and Blue-Green Deployment 
minimize risks during updates. 

- Complex update configurations 
require additional resources. 

Monitoring 

- Integration with monitoring and logging 
systems (e.g., Prometheus, Grafana) provides 
real-time insights. 

- Additional resources are 
needed for monitoring tools, 
increasing system load. 

- Delivers detailed metrics essential for 
performance analysis and troubleshooting. 

- High metric granularity 
complicates analysis under 
heavy load. 

Flexibility 

- Supports tools and customization options 
tailored to specific system needs. 

- Custom configurations require 
extra expenditure. 

- Easily integrates with other systems, making it 
a versatile solution for various infrastructure 
tasks. 

- Plugins and integrations add 
complexity to cluster 
maintenance and management. 

 

The use of Kubernetes for managing microservices under high-load conditions 

offers prospects for creating scalable systems adapted to evolving requirements. This 

tool encompasses a broad range of functions, with its effective operation relying on 

proper configuration. It serves as a foundation for developing architectures that 

ensure the stability, performance, reliability, and adaptability of applications 

operating in digital environments. 

 

Conclusion 



 

 

This study presented approaches to managing microservice architectures based 

on the Kubernetes platform. Existing methods aimed at maintaining system stability 

under changing loads and during the allocation of computational resources were also 

described. 

The research examined tools such as Horizontal Pod Autoscaler and Cluster 

Autoscaler, which primarily focus on resource management. Additionally, network 

policy configurations and load-balancing mechanisms were explored. This analysis 

demonstrated that the use of Kubernetes facilitates the creation of a flexible 

microservices infrastructure that adapts to dynamic conditions, thereby maintaining 

operational stability. 
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