

Dynamic Scaling and Performance Optimization for Microservices

Using Kubernetes

ABSTRACT

The article discusses the capabilities of Kubernetes software in the process of

managing microservice architecture. The tools of this software used in the scaling

process were studied, which, for example, include: Horizontal Pod Autoscaler (HPA),

and Cluster Autoscaler. Load balancing mechanisms were also described, including

using Ingress controllers and network proxies to optimize traffic between workloads.

The methodology of the article includes an analysis of various approaches to the

management of containerized microservices by Kubernetes, for example: automation

of scaling processes, monitoring, security, and access control. The results of the

research demonstrate that by using Kubernetes, the flexibility of the system increases,

stable operation of services is maintained, the risk of failures is reduced, and prompt

response to requests is provided with an increase in the number of users. The

problems faced by developers when implementing this software were also

considered, namely: security settings, optimization of auto-scaling, and configuration

scheme of network interaction between components.The article is aimed at

developers and architects of software systems that optimize microservice

applications. In conclusion, recommendations are given on using Kubernetes to

create a flexible, fault-tolerant microservice structure ready for high loads.

Keywords: Kubernetes, microservice architecture, automatic scaling, fault tolerance,

load balancing, controllers, security, monitoring.

Introduction

The advancement of information technologies has led to increasing demands

for application performance. Microservices architecture is becoming a significant

approach in software system design. This method involves dividing software into

independent modules—microservices. Each module operates autonomously,

simplifying the adaptation of applications to various operational conditions.

As Kubernetes, being a container orchestration platform, provides tools that

automate scaling processes, load balancing, and resource distribution, its mechanisms

ensure software stability regardless of load levels.

Microservices-based applications impose specific requirements on

performance and fault tolerance. Kubernetes offers developers functionality for

resource management, module interaction, and application adaptation to dynamic

loads. Implementing the platform involves configuring auto-scaling, optimizing

network connections, and ensuring secure data transmission [10].

The purpose of this article is to explore the application of Kubernetes in the

microservices architecture. The paper analyzes load management mechanisms,

resolves bottlenecks, and establishes a robust structure capable of functioning

efficiently under significant request volumes.

Materials and Method

Various methods were utilized to analyze the Kubernetes architecture and

microservices management mechanisms. System analysis was employed to study the

platform's structure and examine its functional features. As part of the research,

comparisons were conducted on approaches to microservices orchestration,

identifying the distinctive characteristics of Kubernetes and clarifying its differences

from alternative solutions. A comprehensive approach ensured an accurate

assessment of the platform's capabilities and facilitated the formulation of

recommendations for improving the performance of microservices applications.

The following scientific works were considered as sources. The study by Sun

Y. et al. [1] focuses on scheduling methods and load balancing in Kubernetes. The

authors emphasize the importance of selecting algorithms that consider the dynamic

nature of microservices and the ability to flexibly allocate resources to ensure system

reliability.

The articles by Rossi F., Cardellini V., and Presti F. L. [2, 7] discuss the

hierarchical scaling of microservices in Kubernetes, which enables adaptation to

variable load conditions. It is argued that hierarchical scaling methods increase

flexibility and enhance efficiency.

The research by Vayghan L. A. et al. [3] describes a Kubernetes controller for

state management of microservices. The developed controller improves the system’s

fault tolerance, which is essential for applications with specific availability

requirements.

Ding Z., Wang S., and Jiang C. [4] study the placement of microservices with

consideration of dynamic resource allocation, demonstrating an approach that

optimizes resource usage.

Jian Z. et al. [5] proposed a reinforcement learning-based method to enhance

the Kubernetes scheduler. This method improves scheduling efficiency, reducing

delays under high-load conditions.

The practical research is based on works [6-9]. The research by Nurzhankyzy

Asem [6] focuses on best practices for containerization in deploying microservices

under heavy load, offering recommendations for container optimization to enhance

system performance. Shulyak A. V. [8] provides practical guidelines for scaling

resources using Kubernetes. Rathi G. et al. [9] analyze the performance of various

Ingress controllers in a Kubernetes cluster, noting that the choice of controller

impacts throughput.

The reviewed literature highlights the need for a deliberate selection of tools

and methods for microservice management, with an emphasis on scalability,

reliability, and efficiency under high-load conditions.

Results and Discussion

The command-line tool `kubectl` is used for managing applications in

Kubernetes, enabling the deployment of containers based on prepared OCI images.

The system employs pods, which are logical units that group containers within a

shared context. Containers with close interdependencies are placed within the same

pod, allowing them to share resources, including network namespaces and volumes.

Each pod has its IP address, facilitating communication between containers

within the pod as well as with external systems. A volume serves as an immutable

data storage shared among all containers in the pod, simplifying information

exchange. Pod configurations are defined using YAML files, which specify

operational parameters in detail.

The readiness probe procedure determines a pod’s ability to handle incoming

traffic. The system monitors container health and restarts them in case of failures to

maintain application stability.

In a microservices architecture, each service is isolated in its container. This

approach creates independent environments for operation, simplifying component

configuration, system updates, and maintenance tasks. Containers also support

running multiple versions of services simultaneously, preventing conflicts during

updates.

System reliability is ensured through monitoring and backup mechanisms. Data

stored in the `etcd` controller is backed up to enable workload recovery. Monitoring

tools such as Prometheus and Grafana provide insights into container status, resource

utilization, and performance metrics. These tools assist in identifying and resolving

issues, optimizing processes, and maintaining application stability without

disruptions [6].

Additionally, the tools such as Horizontal Pod Autoscaler (HPA) and Cluster

Autoscaler should be noted, as they enable automatic resource adjustment, providing

intelligent scaling capabilities for the microservice architecture and increasing its

adaptability to fluctuating load conditions. These tools facilitate interaction between

application layers, contributing to resilient and efficient task management in a

distributed environment.

Horizontal Pod Autoscaler (HPA) is a component focused on adjusting the

number of pods based on specific load metrics, such as CPU and memory usage, or

application-specific metrics (e.g., request volume per second). A key feature of HPA

is its ability to autonomously monitor system status and react to changes, scaling up

the number of pods during periods of high traffic and scaling down as the load

decreases. While on the other hand, Cluster Autoscaler manages infrastructure at the

node level, acting as a balancing mechanism.

The combined operation of these tools forms a multi-level, coordinated scaling

system. Such interaction enables the creation of a highly adaptive system capable of

effectively handling peak loads, optimizing both available computational resources

and overall performance [7].

Security in this software is implemented through two main mechanisms. The

first includes RBAC (Role-Based Access Control) and Network Policies, which

restrict access at the network level and define the boundaries of service interactions,

ensuring network segmentation and data isolation. The second mechanism

implements mTLS (mutual Transport Layer Security) authentication, which mitigates

the risk of data interception by enforcing mutual authentication between services.

The mTLS implementation automates certificate lifecycle management - including

creation, rotation, and revocation - which minimizes human error and reduces the

likelihood of security-compromising misconfigurations.

Service Mesh tools enable the definition and enforcement of access rules,

isolating unauthorized interactions between services and preventing the escalation of

attacks within the system. For instance, mesh-level policies restrict access to

authorized clients only, even in cases where vulnerabilities exist within the

application code itself. This adaptability, combined with centralized control,

strengthens the security of the Kubernetes cluster, making it more resilient to threats.

Containerization reduces the number of physical systems, lowering operational

costs. The evaluation of microservice architecture efficiency considers parameters

such as the number of simultaneous requests and response time for single server and

cluster configurations. Testing is conducted in two scenarios: the first involves

10,000 connections with 10,000 requests each, and the second involves 100,000

connections with 1,000 requests per connection. Each scenario is repeated three times

to minimize errors. The threshold load for automatic scaling is set at 80% of the echo

server load. The results for different scenarios are presented in Tables 1 and 2.

Table 1. Scenario 1: CPU load (in milli-cores) [8].

Stage Single Server (no scaling) Multiple Servers (with scaling)

1 619 210

2 591 217

3 609 230

Average 606.34 219.00

Table 2. Scenario 2: CPU load (in milli-cores) [8].

Stage Single Server (no scaling) Multiple Servers (with scaling)

1 580 215

2 484 340

3 552 324

Average 555.00 293.00

In addition to CPU load, server response time was also measured. Table 3

presents the average response times.

Table 3. Average response times [8].

Response Time (ms) Single Server (no scaling) Multiple Servers (with scaling)

Scenario 1 43 ms 12 ms

Scenario 2 58 ms 32 ms

These data indicate that enabling automatic scaling reduces both CPU load and

response time, ensuring high microservice performance even with a significant

increase in the number of requests [8].

For secure external access to the workload, ingress controllers support

SSL/TLS termination at the controller level, offloading decryption tasks from the

services. The controllers also support path-based routing, allowing flexible request

distribution to different services based on the URL structure:

paths:
 - path: /v1
 pathType: Prefix
 backend:
 service:
 name: v1-service
 port:
 number: 80

Kubernetes ingress controllers provide efficient management of external access

and load balancing between services within a cluster. Understanding the architecture,

functions, and mechanisms of ingress controllers enables the creation of flexible and

scalable solutions for managing containerized applications. In-depth analysis of

different controller capabilities allows for configuration adaptation based on

workload characteristics, ensuring optimal performance [9].

Below, Table 4 describes the advantages and disadvantages of using

Kubernetes for managing microservices under high-load conditions.

Table 4. Advantages and disadvantages of using Kubernetes for microservice

management under high-load conditions [9].

Category Advantages Disadvantages

Scalability

- Automatic scaling efficiently distributes load
and optimizes resources based on current
demands.

- Complex configurations are
needed to ensure proper scaling
and operation.

- Simplifies management of multiple
microservices and their interactions under
fluctuating traffic.

- High-load conditions may
introduce delays during
deployment and scaling
processes.

- Enables horizontal scaling to handle increased
load, minimizing downtimes.

Resilience

- Automatic container recovery and traffic
redistribution during failures maintain system
stability.

- Misconfigurations or resource
shortages may hinder recovery
efforts, causing delays.

- Supports load balancing, evenly distributing
requests among containers to reduce failure
risks.

- Configuration conflicts may
result in system downtimes.

Manageability - Allows setting CPU and memory limits to - Complex configurations may

prevent excessive resource usage and maintain
stability.

lead to opaque and challenging
resource management.

- Optimizes cluster resource allocation based on
container needs.

- Requires meticulous
monitoring and alerting to
prevent resource overload.

Containerization

- Provides service isolation, reducing the risk of
interference between microservices under heavy
load.

- High support demands for
multiple containers increase
infrastructure costs.

- Simplifies deployment and management using
standardized methods.

- Constant monitoring of
isolation is necessary to prevent
failures.

Updates

- Supports continuous deployment (CI/CD),
enabling updates without downtime under high
load.

- Transitional states during
deployments may cause
unexpected downtimes or errors.

- Rolling Updates and Blue-Green Deployment
minimize risks during updates.

- Complex update configurations
require additional resources.

Monitoring

- Integration with monitoring and logging
systems (e.g., Prometheus, Grafana) provides
real-time insights.

- Additional resources are
needed for monitoring tools,
increasing system load.

- Delivers detailed metrics essential for
performance analysis and troubleshooting.

- High metric granularity
complicates analysis under
heavy load.

Flexibility

- Supports tools and customization options
tailored to specific system needs.

- Custom configurations require
extra expenditure.

- Easily integrates with other systems, making it
a versatile solution for various infrastructure
tasks.

- Plugins and integrations add
complexity to cluster
maintenance and management.

The use of Kubernetes for managing microservices under high-load conditions

offers prospects for creating scalable systems adapted to evolving requirements. This

tool encompasses a broad range of functions, with its effective operation relying on

proper configuration. It serves as a foundation for developing architectures that

ensure the stability, performance, reliability, and adaptability of applications

operating in digital environments.

Conclusion

This study presented approaches to managing microservice architectures based

on the Kubernetes platform. Existing methods aimed at maintaining system stability

under changing loads and during the allocation of computational resources were also

described.

The research examined tools such as Horizontal Pod Autoscaler and Cluster

Autoscaler, which primarily focus on resource management. Additionally, network

policy configurations and load-balancing mechanisms were explored. This analysis

demonstrated that the use of Kubernetes facilitates the creation of a flexible

microservices infrastructure that adapts to dynamic conditions, thereby maintaining

operational stability.

Disclaimer (Artificial intelligence)

Option 1:

Author(s) hereby declare that NO generative AI technologies such as Large Language Models (ChatGPT,
COPILOT, etc.) and text-to-image generators have been used during the writing or editing of this
manuscript.

Option 2:

Author(s) hereby declare that generative AI technologies such as Large Language Models, etc. have been
used during the writing or editing of manuscripts. This explanation will include the name, version, model,
and source of the generative AI technology and as well as all input prompts provided to the generative AI
technology

Details of the AI usage are given below:

1.

2.

3.

REFERENCES

1. Sun, Yu. and others (2023). Review of planning and load balancing

methods in Kubernetes. In 4th International Conference on Computer Science,

Parallel and Distributed Systems (ISPDS). IEEE, 284-290.

2. Rossi F., Cardellini, V., Presti, F. L. (2020). Hierarchical scaling of

microservices in kubernetes. In IEEE 2020 International Conference on Autonomous

Computing and Self-organizing Systems (ACSOS). IEEE, 28-37.

3. Vaigan, L. A. et al. (2021). Kubernetes controller for managing the

availability of stateful applications based on elastic microservices. In Journal of

Systems and Software. 175, 110924.

4. Ding, Z., Wang, S., Jiang, S. (2022). Placement of Kubernetes-oriented

microservices with dynamic resource allocation. In IEEE Transactions on Cloud

Computing, 11 (2). 1777-1793.

5. Jian, Z. (2024). DRS: Advanced Kubernetes Scheduler for deep

reinforcement learning for a microservices-based system. In Software: practice and

experience, 54 (10), 2102-2126.

6. Nurzhankyzy, Asem Best Containerization practices for deploying

microservices in high-load systems. [Electronic resource] Access mode: https://na-

journal.ru/4-2024-informacionnye-tekhnologii/10854-luchshie-praktiki-

kontejnerizacii-dlya-razvertyvaniya-mikroservisov-v-sistemah-vysokoj-nagruzki

(accessed 10/27/2024).

7. Rossi, F. (2020). Geo-distributed efficient deployment of containers with

Kubernetes. In Computer Communications,159, 161-174.

8. Yulyak, A.V. (2022). Introduction of resources using Kubernetes. In

Young Scientist, 31 (426), pp. 8-13.

9. Rati, G. et al. (2024). Performance analysis of various input controllers

in the Kubernetes cluster. In IEEE 2024 International Conference on Information

Technology, Electronics and Intelligent Communication Systems (ICITEICS), pp. 1-6.

10. Kurniawan, Dedy. 2022. “Towards Migrating from Monolithic-Based

Web Application to Micro Service: A Case Study of EzScrum Product Backlog”.

Journal of Engineering Research and Reports 23 (12):252-71.

https://doi.org/10.9734/jerr/2022/v23i12782.

