
1

AComprehensiveReviewofShortestPathAlgorithmsfor Network
Routing

Abstract
Therapiddevelopmentofdigitaltechnologyandtheincreasinginterconnectionofdeviceshavemade
computer networks indispensable to modern life. Global data movement, communication, and
applications like cloud computing, IoT, e-commerce, and smart cities are all made possible by these
networks.Routingalgorithms particularlyshortest path algorithms arecrucial fordeterminingthemost
effective data transmission routes and are largely responsible for the dependability and efficiency of
these networks. Because these algorithms maintain stability and reliability while lowering latency,
costs, and energy consumption, they are crucial to network operation.
Shortestpathproblemsolvinghaslongreliedonfundamentalalgorithmswithoriginsingraphtheory, such
as Bellman-Ford and Dijkstra's. Despite their successes, the growing complexity and dynamic nature
of contemporarynetworks have exposed their shortcomings. Advanced approaches, including
heuristic, hybrid, and AI-driven methods, have been developed to get around these challenges.
Innovationslikeantcolonyoptimizationandblockchain-basedalgorithmshaveimprovedcomputing
efficiency, security, and adaptability.
The Internet of Things, VANETs, and SDNs are just a few of the domains that use these algorithms;
each has specific requirements, like real-time adaptation and energy efficiency. Reinforcement
learningandpredictionmodelsdrivenbymachinelearninghave furtherincreasedroutingefficiency, while
simulation tools such as Mininet and OMNeT++ have been essential for evaluating algorithm
performanceinpracticalscenarios.Asemergingtechnologieslikeblockchainandquantumcomputing
become more widely accepted, shortest path algorithms will continue to advance, ensuring their
suitabilityin the rapidly evolving digital environment. This study, which looks at their development,
applications,andpossiblefuturedirections,emphasizestheirimportanceincreatingmodernnetworks.

Keywords:ShortestPathAlgorithms,NetworkOptimization,Dijkstra’sAlgorithm,Bellman-Ford
Algorithm, Heuristic Algorithms, A*, Ant Colony Optimization (ACO), Hybrid Algorithms.

2

1. Introduction

As digital technology has grown exponentially and gadgets have become increasingly networked,
computer networks have become indispensable to modern life. These networks are essential for
internationalcommunicationanddatatransferinavarietyofapplications,includingcloudcomputing, e-
commerce, the Internet ofThings, and smart cities.Theefficiencyand reliabilityofthesenetworks
depend heavily on routing algorithms, and shortest path techniques are necessary to reach optimal
performance. These algorithms determine optimal data transmission channels by reducing critical
characteristics such as latency, cost, and energy consumption while maintaining network reliability
and stability [1], [2]. Shortest path algorithms are based on the foundation of graph theory, which
depicts networks as graphs composed of nodes (representing devices) and edges (representing
connections).BasicalgorithmssuchasBellman-Ford[4]andDijkstra's[3]werethefirsttotacklethe single-
source shortest path problem. Due to their efficiency and ease of use, these conventional
techniquesarestillwidelyusedtodayandhaveformedthebasisofmodernroutingprotocols.Bellman-
Ford,forinstance,hasproventoberobustinsituationswhenedgeweightsarenegative,andDijkstra's
technique is crucial for link-state routing protocols [4],]. With the increasing sophistication and
breadth of networks, traditional shortest path approaches have faced challenges in handling resource
constraints, large datasets, and shifting topologies. To address these problems, researchers have
developed complex algorithms that incorporate heuristics, hybrid approaches, and artificial
intelligence (AI). While ant colony optimization [6] takes advantage of natural foraging behavior to
determine the optimal routes, block chain-based solutions enhance routing security by providing
transparentandunchangeablepathdecisions[7].Withtheseadvancements,algorithmsmaynowadapt
dynamically to changing network conditions and increase computational efficiency.

Many diverse fields, each with its own set of requirements and restrictions, use the shortest path
algorithm. In InternetofThingssystems,energy-efficientalgorithmsarecrucialforextendingdevice
lifetimesandensuringsustainablenetworkoperation,asdevicesoftenhavelimitedresources[8].Ina similar
vein, real-time decision-making algorithms are required for vehicle ad hoc networks (VANETs) to
manage high mobility and traffic. Software-defined networks (SDNs) benefit from adaptive routing
algorithms because they can adjust routes dynamically in response to network congestion and traffic
patterns [5]. Advances in AI have further changed the methods used for the shortest paths. Thanks to
reinforcement learning (RL) models, routing algorithms can now adapt dynamically to changes in
the network in real time, improving efficiency and reducing latency [10]. Additionally, machine
learning (ML)-powered prediction models have simplified anticipatory congestion management by
optimizing routing decisions even in highly dynamic scenarios [11]. Researchers have tested and
assessed these algorithms in simulation environments such as Mininet and OMNeT++ [12], which
allow them to see how well they perform in practical settings.
Therearestillfewproblemsdespitetheseadvancements.Modernnetworkalgorithmsmustbeableto
processvastvolumesofreal-timedata,handletremendoussizes,andadapttoshiftingsecuritythreats.

3

With billions of devices connecting simultaneously in scenarios like smart cities and industrial IoT,
ensuring efficient and safe routing is a difficult undertaking. Strong security measures must also be
included in routing algorithms to combat risks like data interception and route hijacking [7]. As the
digitalworldevolves,thesearchforthebestpathalgorithmsisattheforefrontofnetworkingresearch.
Futuretechnologiessuchasquantum computingcouldrevolutionizepathoptimizationbyfacilitating faster
and more scalable solutions. New decentralized and secure routing paradigms are being presented by
blockchain technology. By overcoming current limitations and leveraging these developments,
shortest path algorithms are poised to remain at the forefront of the development of both modern and
future networks. This study investigates the concepts, historical development, and recent
advancements in shortest path algorithms for network routing. Through the resolution of significant
problems, the presentation of innovative solutions, and the discussion of practical applications, this
book highlights the significance of these algorithms in assessing the dependability and effectiveness
of contemporary computer networks.

2. Backgroundtheory

2.1 ShortestPathAlgorithmClassification
Thethreeprimarycategoriesofshortestpathalgorithmsarehybrid,heuristic,andclassical.traditional
algorithms,suchasFloyd-Warshall,Johnson's,andDijkstra'sBellman-Ford.Heuristicalgorithmslike
GreedyBest-FirstSearch,AntColonyOptimization,andA*.Theadvantagesofheuristicandclassical
approaches are combined in hybrid algorithms.

2.1.1 classicalAlgorithmsfortheShortest Path.
Deterministictechniquesknownasclassicalalgorithmsensurethebestanswerstoshortestpathissues.
Examples include Bellman-Ford, which can handle distributed computations with negative weights,
and Dijkstra's, which is appropriate for graphs with non-negative weights. They serve as the
cornerstone of reliable and effective network routing.

A-TheDijkstra Algorithm
Findingtheshortest paths in networkgraphs is acommon useofDijkstra's Algorithm, abasictool in
computer networking. Its ability to determine the optimal data transmission routes while lowering
characteristics like cost, latency, or resource consumption accounts for its significance in network
routing. Edsger W. Dijkstra developed the method in 1959 with the goal of figuring out the shortest
path between a single source node and each other node in a network with non-negative edge weights
[3].Itiscurrentlyabasicpartofmanyroutingprotocolsduetoitsfeatures,whichenablereliableand efficient
communication in a range of network scenarios [1]. In the context of network routing,
networksaredepictedasgraphs,wherenodesrepresenthardwaresuchasswitchesorroutersandedges
representlinksorconnectionsbetweenthem.Eachedgehasaweight,whichcouldrepresentlatency,
bandwidth use, orphysical distance. Dijkstra's Algorithm finds the shortest path treefrom the source
node to all other nodes, allowing network devices to forward data packets along the most efficient
paths [2].

4

Classical Heuristic Hybrid

Dijkstra’s

Bellman-

Ford

A*

ML-Based

Path
finding

Floyd-

Warshall

Johnson’s

Greedy

Best-First
Search

ACO

Dynamic

A*

GA-based

Path
finding

Figure1-Shortestpath Algorithmsclassification

The method involves keeping a set of nodes with known shortest paths and another set of nodes that
havenotbeenvisited.Initially,itassignsadistanceofzerotothesourcenodeandaninfinitedistance
toeachsubsequentnode.Usingapriorityqueue,itselectstheunvisitednodewiththeshortestdistance,
markingitasvisitedandupdatingthedistancesofitsneighborsifashorterpathisfound.Thismethod
isdonerecursivelyuntilallnodesarevisitedorthefastestpathtoaspecifictargetnodeisfound.The greedy
technique expands the shortest paths at each step, ensuring optimal solutions for graphs with non-
negative edge weights [2], [3]. Dijkstra's Algorithm is heavily utilized in network routing
protocols,particularlylink-stateprotocolssuchasOpenShortestPathFirst(OSPF).InOSPF,routers use
Dijkstra's Algorithm to find the shortest path tree using link-state ads that show the current
conditionofthenetwork.Byprovidingrouterswiththeoptimalpathsforforwardingdatapackets,this tree
guarantees efficient and loop-free routing. Outside of OSPF, the technique serves as the
foundationfortrafficengineeringapplicationsandothernetworkoptimizationinitiatives,whereitaids
indynamictrafficmanagementtominimizecongestionandoptimizeresourceuse[5].Theabilityof

ShortestPathAlgorithms

5

Dijkstra's Algorithm to generate reliable and deterministic results, ensuring consistent routing
decisions,isoneofitsbenefitsinnetworkrouting. Itsefficiencyallowsittoscaletomedium-to-large
networks, particularly when combined with complex data structures like Fibonacci heaps [13].
However,themethodhascertain limitations,especiallyin dynamicnetworks with dynamictopologies.
Pathways must be fully recalculated by the program after changes in these settings, which can be
computationally expensive. Furthermore, its limitation to graphs with non-negative edge weights
limitsitsapplicabilityincertainnetworkscenarioswherecostsmayfluctuateinanunpredictableway [9].
Despite these challenges, Dijkstra's Algorithm remains an essential tool for network routing because
it forms the foundation of increasingly complex and adaptable routing systems. As demonstrated by
its continued applicability in modern networking, it is a crucial algorithm for understanding and
enhancing network communication [11][16].

B-Bellman-Ford algorithm

TheBellman-Fordalgorithmisagraphsearchtechniquethatfindstheshortestpathbetweenaspecific source
vertex and each other vertex in the graph. This method can be applied to both weighted and
unweighted graphs. Similar to Dijkstra's shortest path algorithm, the Bellman-Ford method is
guaranteedtofindtheshortestpathinagraph.Bellman-FordismoreadaptablethanDijkstra'smethod
sinceitcanhandlegraphswithnegativeedgeweights,evenifitisslower.Itiscrucialtokeepinmind that in a
graph with a negative cycle, there isn't a shortest path. If the road continued to circle the negative
cycle indefinitely, the cost would decrease even if the journeyduration increased. Bellman- Ford thus
has the added advantage of being able to recognize negative cycles. Unlike Dijkstra's algorithm,
which uses a greedy approach, Bellman-Ford uses a dynamic programming paradigm, iterating
through all edges up to |V| - 1 times, where |V| is the number of vertices in the graph.
By periodically relaxing each edge, the method continuously improves the shortest pathway
estimations. This makes it particularly suitable for applications where negative weights might be
present,suchnetworkroutingandfinancialmarketarbitragedetection.However,becausetoitshigher
temporal complexity of O(VE), where V is the number of vertices and E is the number of edges,
Bellman-Ford is usually only used when negative weights are present. Additionally, the algorithm's
ability to detect negative weight cycles ensures its reliability in scenarios when they could lead to
unstable calculations [4].

B.1HowBellmanFord'salgorithmworks

Overestimating the distance between the first vertex and each successive vertex is how the Bellman
Ford method works. It then iteratively relaxes those estimates by finding new paths that are shorter
than the previously exaggerated paths. The Bellman-Ford technique is designed to find the shortest
paths between a single source node and all other nodes, even when some edges in a network have
negativeweights.Themethodstartsbysettingthedistancetothesourcenodetozeroandthedistances to all
other nodes to infinity, signifying that theyare initiallyinaccessible. It then carefullyexamines
eachedgeinthegraphtoseewhetherusinganintermediarynodemayshortenthecurrentpathtoa

6

target node. If a shorter path is found, the distance to the destination node is updated. This process,
knownasrelaxing,iscarriedoutV−1times,whereV isthenumberofverticesinthegraph,toensure that all
possible paths are considered.
After the relaxation phases, the algorithm does a second pass across the edges to check for any
additional distance modifications. If any distance can still be shortened, there is a negative weight
cycle,suggestingthatcertainnodeslackafiniteshortestpath.TheBellman-Fordtechniqueishelpful
forgraphswithnegativeweightssinceitcannotonlydetermineshortestpathsbutalsodetectnegative weight
cycles.

Bydoingthisrepeatedlyforallvertices,we canguaranteethat theresult isoptimize

Figure2.exampleofHow BellmanFord'salgorithmwork

C-TheFloyd–Warshallalgorithm

The Floyd-Warshall algorithm is one method for figuringout the shortest paths between each pair of
nodes in a network. It uses a dynamic programmingtechnique to determine the shortest paths for the
entiregraph,progressivelycomingupwithsolutionstosmallersubproblems.Themethodisapplicable to
both directed and undirected graphs, and is particularly effective for dense graphs. However, the
graphmustnothavenegativeweightcyclesbecausethiswouldresultinundefinedshortestpaths.The process
begins by initializing a distance matrix, where each entry represents the shortest distance
betweentwonodes.Anydirectedgeconnectingtwonodeshasitsweightputintothe matrix.Ifthere

7

isn'tadirectedge,thedistanceissettoinfinity,makingthenodesinitiallyinaccessibletooneanother. The
distance to every node is set to zero since the shortest path between any two nodes is free. The core
of the algorithm is its iterative process. Along the paths that connect each other pair of nodes,
eachnodeinthenetworkissystematicallyconsideredasapotentialintermediarynode.Foreverypair
ofnodes,itassessesifusingthisintermediarynodeprovidesashorterpaththantheonethatiscurrently
knowntoexist.Inthatcase,thealgorithmadjuststhedistancematrixtotakethenew,shorterpathinto
consideration. This process is carried out for every node serving as an intermediary point to ensure
that all possible paths are considered. At the end of the process, the distance matrix contains the
shortestpathsbetweeneachpairofnodes.Additionally,ifanydiagonalmemberinthematrixbecomes
negative,thegraph'sweightcycleisshownasnegative.Thisisbecauseanegativecyclewouldrender shortest
path calculations invalid for some node pairs, allowing for an indefinitely decreasing path cost.
Despite its straightforward methodology, the Floyd-Warshall algorithm is computationally difficult
for large graphs, with a time complexity of O(N), where n is the number of nodes. Nonetheless, it is
a helpful tool in scenarios like network routing and traffic flow analysis when
understandingallpairs'shortestpathsisessentialbecausetoitsuser-friendlinessandabilitytohandle
enormous graphs.

D-Johnson’sAlgorithm

Johnson'sAlgorithmisatechniqueforfiguringouttheshortestpathsbetweeneachpairofnodesin a weighted
graph. Because it combines the benefits of Bellman-Ford's and Dijkstra's algorithms, it works
particularly well with sparse graphs. The unique feature of Johnson's Algorithm is that it can
handlegraphswithnegativeedgeweightsaslongastherearenonegativeweightcycles.Thealgorithm first
reweights the edges of the graph to eliminate negative weights. The Bellman-Ford algorithm is used
to determine the "potential" value of each node, and then all of the graph's edge weights are adjusted.
This reweighting ensures that all edge weights become non-negative while preserving the relative
order of shortest pathways. The approach uses Dijkstra's algorithm to determine the shortest
pathways from each node after reweighting. Since Dijkstra's algorithm works well for networks with
non-negative weights, this technique allows Johnson's Algorithm to perform better for sparse graphs
than other all-pairs shortest path techniques.
The benefits and drawbacks of traditional shortest path methods are outlined in Table 1. Although it
is ineffective with negative edges, Dijkstra's Algorithm works well with dense graphs and non-
negative weights. Bellman-Ford is slower and less effective for big, dense graphs, but it can handle
negative weights and identify cycles. Floyd-Warshall has a high time and memory complexity for
large graphs, yet it can detect cycles and calculate all-pairs shortest paths. Although Johnson's
Algorithm works well for sparse networks with negative weights, its reweightingproceduremakes it
difficult to use.

8

Table1.Advantagesand DisadvantagesofClassicalShortestpathalgorithms types.

Algorithm Advantages Disadvantages

Dijkstra’sAlgorithm

Efficientforgraphswithnon-negative
weights. Cannothandlenegativeedge weights.

Guaranteesoptimalsolutionsforsingle-
source shortest paths.

Inefficientforverylargeorsparsegraphs
without optimizations. Suitablefordensegraphswithnon-negative

weights.

Bellman-Ford
Algorithm

Handlesgraphs withnegativeedge weights. SlowerthanDijkstra’s(O(VE))forlarge

graphs.

Detectsnegativeweight cycles.

Inefficientfordense graphs.

Suitablefordistributedsystems

Floyd-Warshall

Algorithm

Computesall-pairsshortestpathsinone
execution.

Inefficientforlargegraphsdueto
O(ܸ3)time complexity.

Simpleandeasyto implement.

Memory-intensivefordense graphs.
Detectsnegativeweight cycles.

Johnson’sAlgorithm

Efficientforsparsegraphs. Complextoimplementdueto
reweighting.

Handlesnegativeweightswithoutcycles.
Requiresextracomputationfor
reweighting,addingoverhead. CombinesthebenefitsofDijkstra’sand

Bellman-Ford.

9

2.1.2 HeuristicShortestPathAlgorithms
Heuristicshortestpathalgorithmsareoptimizationmethodsthatprioritizespeedandefficiencyabove
thorough exploration by using heuristic functions to direct the search for paths in a graph. Heuristic
approaches aim to approximate optimal paths bymaking well-informed decisions based on expected
costs, in contrast to classical algorithms that ensure exact answers.

A-A*Algorithm
A popular heuristic-based approach for determining the shortest path between a source node and a
target node in a graph is the A* algorithm. It works especially well in applications with wide search
spaces, such game development, robotics, and navigation systems. The A* algorithm balances
computational efficiency and optimality by combining the advantages of Greedy Best-First Search
and Dijkstra's Algorithm. [13]

A*achieves its performancebyusingacost function to guideits search. Thecost function is defined as:

݂(݊)=݃(݊)+ℎ(݊)

 ݃(݊)is theactual cost from the start node to the currentnode݊.
 ℎ(݊)istheheuristicestimateofthecost from݊tothetarget node.

The heuristic h(n) is a crucial component that establishes the algorithm's efficiency. It must be
acceptable (never overstate the genuine cost) in order to guarantee optimal solutions. The method
iterativelyinvestigatesnodeswiththelowestf(n)valuetoensurethattheroutesmostlikelytoleadto the target
are examined first. If the heuristic is well-designed, A* can significantlyreduce the search
spacewhencomparedtoothershortestpathalgorithms.Becauseitenablestheheuristictobetailored
forspecificapplications,A*'sversatilityishighlyvaluedbymany.Forexample,in2Dgridnavigation, the
Manhattan or Euclidean distance is commonly used as a heuristic. However, the efficacy of the
heuristic may decrease in cases where the graph is abnormally large or when the heuristic is poorly
chosen [13].

B-GreedyBest-FirstSearchalgorithm
Greedy Best-First Search is a heuristic-based pathfinding method that looks into nodes that seem to
be closest to the objective based on a heuristic assessment. "Greedy" refers to its method of
continuously choosing the node with the lowest heuristic value in an attempt to reach the goal as
quicklyasfeasible.Unlikeotheralgorithms,suchasA*orDijkstra's,whichconsiderboththeexpected cost
to theobjectiveandtheactual cost ofaccessinganode, GreedyBest-First Search aloneemploys the
heuristic function to guide its decisions. The algorithm evaluates its neighbors based on their
heuristic values, starting at the source node. After selecting the neighbor that appears to be closest to
thegoal, it movesto thatnode. Duringthis process, thealgorithm iterativelygrows thenodewith the
smallest estimated distance to the destination. Because of its simple, goal-oriented approach, the
algorithmcanoftenfindapathtotheobjectivequickly,especiallyinsimpleorwell-structuredgraphs.
However,becausegreedybest-firstsearchdisregardstheactualcostofreachinganode,itdoesnot

10

yield the shortest path. In other cases, the heuristic function may even select a longer, less optimal
pathifitproducesestimatesthatarenotcorrect.Forexample,inagraphwithobstaclesordetours,the
algorithm can focus on a node that appears closer to the goal but takes a much longer path to get it.
This method is particularly useful when speed is more important than precision. In video games, for
instance,itiscommonlyemployedtoquicklyguidecharacterstowardadestination.Similarly,inearly
searchesorscenarioswithsimpleheuristics,itcanprovideafastestimateofthedesiredpath.Despite
itsshortcomings,GreedyBest-FirstSearchiscommendedforitssimplicityandspeedypathdiscovery in
large search fields [13].

C-AntColonyOptimization(ACO) algorithm
Ant Colony Optimization (ACO) is a technique that was inspired by the way ants forage for food in
the wild. In the wild, ants initially roam around aimlessly, but when they return to the colony after
locating food, they leave behind pheromone trails. Other ants, who are more likely to follow paths
withhigherpheromoneconcentrations,pickupthesetracks.Eventually,moreantsprefertheshortest road
since it gathers the most pheromone from frequent use. ACO computationally simulates this
behavior to address complex optimization problems, especially those involving paths, such the
traveling salesman problem or network routing [14].
Thealgorithminitiallyvisualizestheproblemasagraph,wherenodesrepresentdecisionpoints(e.g., cities
on a route) and edges reflect relationships with associated costs (e.g., distances). The graph is
traversedbyartificial"ants"thatconstructsolutions.Eachantmakesprobabilisticdecisionsonwhich
pathtofollownextbasedontwofactors:problem-specificheuristicinformation,suchasthedistance to the
next node, and the quantity of pheromone on each edge, which reflects the cumulative desirability of
that path. As the ants complete their journeys, the algorithm evaluates the quality of their solutions.
The pheromone on less appealing paths is allowed to progressively fade away, while more
pheromone is introduced to the edges of paths that lead to better solutions. This evaporation prevents
the algorithm from becomingstuck in less-than-ideal solutions byreducingthe influence of
suboptimal paths. Over the course of numerous repetitions, the pheromone dynamics guide the ants
toward more ideal solutions because shorter or better roads inherently accumulate more pheromone
and draw in more ants. One of ACO's primary advantages is its ability to balance exploration and
exploitation. At first, the ants' probabilistic decision-making process allows them to explore a range
ofoptions,butthepheromonereinforcementgraduallyfocuses onthemostpromisingsolutions.Asa result,
ACO performs particularly effectively in problems with complex constraints or large search
spaces.Inthetravelingsalesmanproblem,forexample,wherethegoalistofindtheshortestroutethat visits
every city exactly once, ACO can iteratively improve solutions by utilizing the collective behavior of
the ants. In a similar vein, network routing can find efficient data transmission paths and adapt
dynamically to network changes.

All things considered, Ant Colony Optimization is an intriguing illustration of how strong
computational methods can be inspired by natural systems. It is a powerful and adaptable tool for
resolving optimization issues in a variety of fields since it can replicate the decentralized and self-
organizing behavior of actual ants [14].

11

Table2outlinestheadvantagesanddisadvantagesofheuristicshortestpathalgorithms.A*guarantees
optimal solutions with admissible heuristics but is memory-intensive and heavily reliant on heuristic
quality. Greedy Best-First Search is fast and goal-oriented but may produce suboptimal paths and
struggle with misleading heuristics. Ant Colony Optimization (ACO) excels in complex, dynamic
problems but is computationally intensive and requires careful parameter tuning.

Table2.Advantagesand Disadvantages ofHeuristicShortestPathAlgorithms types.

Algorithm Advantages Disadvantages

A*

Combinesactualcostandheuristicfor
optimal solutions.

Performanceheavilydependsonthe
quality of the heuristic.

Guaranteesshortestpathiftheheuristic is
admissible and consistent.

Memory-intensiveforlargegraphs.

Reducessearchspacecomparedto
Dijkstra’s.

GreedyBest-First Search

Fastandgoal-oriented,oftenreaching the
target quickly. Doesnotguaranteeshortestpath.

Simple to implement. Cangetstuckinlocalminimaifthe
heuristic is misleading.

AntColonyOptimization

(ACO)

Effectiveforcomplexoptimization
problems.

Computationallyexpensiveforlarge
problems.

Flexibleandadaptabletodynamic
environments.

Performance depends on parameter
tuning(e.g.,pheromoneevaporation

rate). Avoids premature convergence by
balancingexplorationandexploitation.

2.1.3 HybridShortestPathAlgorithms
Hybridshortestpathalgorithmsareanadvancedclassofoptimizationtechniquesthatcombineaspects of
heuristic and adaptive strategies like machine learning, genetic algorithms, or dynamic changes with
traditional deterministic approaches like Dijkstra's or Bellman-Ford. These algorithms combine the
best aspects of heuristic and classical methodologies to achieve the optimal balance between
computing efficiency, adaptability, and scalability. They are hence highly effective at addressing
difficult pathfinding problems in dynamic and uncertain scenarios.

12

A-MachineLearning(ML)-BasedPathfinding

One of the best-known examples is the hybrid method called Machine Learning (ML)-Based
Pathfinding. This approach dynamically selects the optimal routes by utilizing prediction algorithms
that have been trained on massive amounts of data. Machine learning algorithms analyze both
historical data, such recurring traffic patterns, and real-time inputs, like the amount of congestion at
anygiventime,toproducewell-informedroutingdecisions.Forinstance,ML-basedalgorithmsinan
intelligent transportation system predict the quickest routes based on real-time traffic, weather, and
road closure data. Similarly, by adapting to shifting network conditions, including node failures or
bandwidthfluctuations,machinelearning(ML) modelsinInternetofThings(IoT)networksenhance data
flow. By incorporating reinforcement learning (RL), a branch of machine learning that enables
thesystemtolearnfrompastdecisionsandmakemoreaccuratepredictionsgoingforward,thesystem
caniterativelyenhanceitspathfindingtactics.However,thesuccessofML-basedpathfindingdepends on
the quality of the training data and the processing capacity available for real-time inference. [15]

B-DynamicA*

AnothercrucialhybridtechniqueisdynamicA*(D*),avariantoftheclassicA*algorithmthatadjusts to
modifications in network architecture or edge weights while it is being run. While traditional A*
operates on static graphs, D* is designed to adapt in real time. In autonomous robotics, for example,
when environmental factors can change abruptly, D* merely recalculates the portions of the path
affectedbynewobstaclesorupdatedterraincosts.Insteadofrepeatingtheentireprocess,D*gradually
modifiesthesolutiontomaintaincomputingefficiency[17].D*isparticularlywell-suitedfordynamic
environments that require continuous adjustment, such urban navigation or disaster response
scenarios, because of this feature.

C-GeneticAlgorithm(GA)-BasedPathfinding

GeneticAlgorithm(GA)-BasedPathfindingisanotherinstanceofhybridoptimizationthattakescues from
evolution and natural selection. In GA-based pathfinding, which uses a population of potential
solutions (paths) that evolves over time, more successful solutions are selected for reproduction and
lesssuccessfulonesarerejected.Geneticoperationsthatintroducevarietyandenabletheexploration
ofavastsolutionspaceincludemutationandcrossover.Forlargeandcomplexnetworks,suchsupply chain
optimization, logisticsplanning, and network routing, wherethesheernumberofvariablesand
constraints may render typical methods impractical, this approach performs very well. GA-based
methods require careful parameter tuning, including population size and mutation rate, to ensure
convergence to a perfect or nearly ideal solution [16].

13

The advantages and disadvantages of hybrid shortest route methods are shown in Table 3. Although
ML-Based Pathfindingis computationallydemandingand dependent on high-qualitytrainingdata, it
can adjust to real-time conditions and learn from past data. Dynamic A* is less appropriate for static
graphssinceitintroducescomplexityforincrementalupdateswhileupdatingpathwayseffectivelyin
changing settings. Although GA-Based Pathfinding avoids local optima and explores wide solution
spaces, it has a slow convergence rate and necessitates exact parameter tweaking.

Table3.theadvantagesanddisadvantagesofdifferenttypesofhybridshortestpath
algorithms:

AlgorithmType Advantages Disadvantages

ML-Based Pathfinding

-Adaptsdynamicallytoreal-time
conditions, such as traffic or

network changes.

Computationallyintensive,requiring
substantialresources fortraining and

inference.

Learnsfromhistoricaldatato
improveaccuracyovertime.

Performancedependsheavilyonthe
qualityandvolumeof training data. Handlescomplex,multi-variable

environments effectively.

DynamicA*

Efficiently handles changes in
graph structure or edge weights

withoutrecalculatingfromscratch.

Requires additional logic for
incrementalupdates,increasing
implementation complexity.

Maintainshighcomputational
efficiency in dynamic

environments.

Notidealforstaticgraphsdueto added
overhead. Suitableforreal-timenavigation and

robotics.

GA-Based Pathfinding

Capableofexploringlarge,
complex solution spaces.

Slow convergence in large-scale
problemsduetotheiterativenature.

Avoidslocaloptimathrough
crossover and mutation.

Requires careful parameter tuning

(e.g.,mutationrate,populationsize)to
ensure efficiency. Flexibleandadaptabletoawide range

of optimization problems.

14

2.2 PerformanceEvaluationofShortestPath Algorithms
Theperformanceofshortestpathalgorithmsisevaluatedusingbenchmarkssuchasconvergencetime,
computational complexity, scalability, and fault tolerance, which makes it a crucial area of study.
Convergence time quantifies how quickly an algorithm stabilizes routing decisions after network
changes. Dijkstra'salgorithmisrenowned foritsdeterministicconvergence,butheuristicapproaches
suchasA*concentrateontenableroutestogeneratequickeranswersinspecificsituations[9].Another
important statistic is computational complexity. The complexity of Dijkstra's algorithm is O(V)^2,
however with sophisticated data structures like Fibonacci heaps, it can be lowered to O(V+E) log(V)
[13]. By eliminating pointless explorations, heuristic techniques such as A* further optimize this
process. Heuristic and hybrid algorithms outperform classical approaches in addressing the problem
of scalability, especially in large-scale networks [9]. Fault tolerance is essential in dynamic or
disrupted environments. While algorithms like Bellman-Ford are robust to changes in topology,
heuristic techniques excel at adapting to changing conditions. Simulation tools such as ns-3 and
OPNEThaveenabledtheevaluationofthesemetricsunderrealisticconditionsandhavealsoprovided insight
into the behavior of the algorithms in different scenarios [15].

2.3 EmergingTrends inShortest Path Algorithms
Advancesintechnologyhaveledtochangesinalgorithmsfortheshortestpath.Machinelearningand
artificial intelligence are increasingly being used to dynamically optimize routing decisions. For
example, by adaptively learning the optimal routes based on both history and current data,
reinforcement learning models improve flexibility in dynamic networks [11]. Thanks to Software-
Defined Networking's (SDN) centralized routing control, global shortest path optimization is now
feasible. SDN simplifies complex configurations and provides real-time traffic control capabilities,
making it a groundbreaking technique in modern networking [15]. Blockchain technology is also
changingthegameinthedomainofsecurerouting.Bydecentralizingpowerandensuringtheaccuracy of
routing data, blockchain-based protocols minimize securityvulnerabilities, particularlyin IoT and
edge networks [6]. Additionally, IoT-specific energy-efficient algorithms address the unique
constraints of these devices by emphasizing minimal resource use [8].

2.4 ApplicationsofShortestPath AlgorithmsinModernNetworks
Shortest path algorithms, which offer efficient resource management, communication optimization,
and routing for a variety of applications, are at the heart of modern networks. These algorithms have
evolved to meet the needs of several situations, ranging from traditional wired networks to complex
IoT ecosystems and dynamic wireless systems. In traditional wired networks, protocols like RIP
(Routing Information Protocol) and OSPF (Open Shortest Path First) heavily rely on shortest path
algorithms to maintain optimal routing tables. For example, OSPF uses Dijkstra's algorithm to
determine the shortest path tree for each node, ensuringefficient and loop-free data delivery. Similar
tothis,RIPfindstheshortestpathsusingtheBellman-Fordalgorithmandhopcounts.Theseclassical
methodsareidealfornetworksthatarestaticorsemi-staticandhaverelativelyfewtopologychanges. Node
mobility, bandwidth limitations, and dynamic topologies make wireless network challenges
morecomplex.Inthiscase,heuristicandhybridalgorithmsworkeffectivelyandadaptquicklyto

15

changes. Mobile Ad-Hoc Networks (MANETs), for instance, use protocols such as AODV (Ad Hoc
On-Demand Distance Vector) to dynamically discover routes only when required. Energy-efficient
techniques, such as Ant Colony Optimization or Genetic techniques, are used by Wireless Sensor
Networks (WSNs) to enable reliable data transport and prolong the life of devices with limited
resources [18]. In the context of the Internet of Things and smart cities, shortest path algorithms are
especiallymadetodealwithconstraintslikeenergysavingandadaptation.Algorithmsthatcanpredict and
dynamically adapt to network conditions are required since IoT networks usually have limited
resources. Due to their ability to learn from historical data and generate real-time routing decisions,
machine learning-based pathfinding algorithms are growing in popularity in these scenarios [19].
Applications such as traffic control in smart cities and public transportation depend on shortest path
algorithms. For instance, real-time navigation systems include algorithms like A* that dynamically
adjust to traffic conditions in order to provide the optimal travel routes. To optimize internal
communication, cloud computing and data center environments commonly employ shortest path
methods. These systems require efficient routing in order to balance traffic flows and lower latency.
Modern data center topologies, such as Clos networks or fat-tree designs, use algorithms like ECMP
(Equal-Cost Multi-Path) to effectively distribute traffic across multiple channels [20].

Autonomous systems, including self-driving automobiles, robotic swarms, and drones, use shortest
pathalgorithmstonavigateandcompletetasks.AlgorithmslikeDynamicA*(D*)arehighlyhelpful
inthiscasebecausetheycanadapttochangesintheenvironmentinrealtime,suchasthepresenceof obstacles
or dynamic variations in goals. This adaptability ensures safe and efficient travel in
unpredictablesituations.Byselectingroutesthatmaximizethroughputandminimizelatency,shortest path
algorithms optimize data flow in telecommunication networks. For example, MPLS (Multiprotocol
Label Switching) networks use shortest path techniques to establish efficient data channels across
big, interconnected systems. Critical infrastructure, such as electricity grids and emergency response
systems, can also benefit from these algorithms. Power networks use shortest
pathalgorithmstominimizetransmissionlossesandensurereliabledistributionofelectricity.During
emergencies, these algorithms help determine the optimal escape routes and prioritize the restoration
of communication networks. Moreover, shortest path methods are crucial to applications in artificial
intelligenceandmachinelearning.Theyareusedinrecommendationsystemstoanalyzerelationships
inuser-itemgraphsandinsocialnetworkanalysistomeasureindividualinfluenceandconnectedness [20].
In these diverse applications, the value and versatility of shortest path approaches are demonstrated.
They enable systems to adapt, enhance, and function reliably even in complex and dynamic
environments. By combining classical, heuristic, and hybrid approaches, these algorithms continue
to encourage innovation and ensure the seamless operation of modern networks.

16

3Literature Review
S.JohnsonandM.Keller,[13]suggestedsimulationtoolstoassesstheeffectivenessofshortestpath
algorithms,likeMininetandOMNeT++.Thesetoolsofferaccuratesettingsfortestingfaulttolerance,
scalability, and efficiency in a range of network scenarios. Their research emphasizes how crucial
simulation is for connecting theoretical models with practical applications.

R.Floyd,[14]presentedtechniquesfordynamicprogrammingtoaddressall-pairsshortestpathissues.
Thisseminalworkestablishedthefoundationforcontemporaryalgorithmsusedintrafficanalysisand
worldwide connection by demonstrating effective processing in dense graphs. Floyd's approach
continues to have an impact on the development of comprehensive pathfinding applications.

M. L. Garcia and P. Martinez, [15] examined developments in shortest path algorithm simulation
methodswithanemphasisonscalabilityinmassivedynamicnetworks.Theirworkdemonstratedhow
simulationscanbeusedtoanalyzealgorithmperformanceundervaryingnetworkloads,whichmakes it
possible to create reliable routing solutions.

M. A. Javaid,[16] gave a thorough explanation of Dijkstra's method, highlighting its effectiveness
and simplicityin static topologies. The algorithm's shortcomings in dynamic contexts wereshown
bytheanalysis,whichledtomoreinvestigationintoadaptivetechniques.Javaid'sobservationsare still
applicable in situations involving organized networks.

X. Z. Wang, [17] compared the effectiveness of the Dijkstra, Bellman-Ford, and A* algorithms in
both static and dynamic networks. Wangprovided helpful advice forchoosingthe best method for
particularnetworksettingsbyidentifyingtrade-offsbetweencomputingcomplexity,accuracy,and
flexibility.

J. Kleinberg and É. Tardos, [18] discussed sophisticated algorithmic techniques for shortest path
problemsthatarebasedongraphs.Theirresearchdemonstratedcomputationallyeffectiveandscalable
methodsthataresuitedtothegrowingneedsofcontemporarynetworks.Thestudyformsthebasisfor creating
novel routing strategies.

T.H. Cormen et al., [19] discussed thetheoretical foundations and real-worldapplications of classic
algorithms like Bellman-Ford and Dijkstra's. Their research serves as a vital resource for
comprehending the mathematical underpinnings of shortest path algorithms and how they are
implemented.

A.Orda,[20]modelsthataddress congestion and delayintime-dependent networksforshortestpath
computation. The study offered ideas for enhancing routing in both static and dynamic systems by
introducing adaptive techniques for real-time traffic and dynamic network situations.

K. R. Chowdhury and I. F. Akyildiz, [21] created a routing protocol that optimizes spectrum
consumption for cognitive radio ad hoc networks by utilizing shortest path methods. Their research
showed how flexible shortest path techniques may be in controlling limited network resources and
improving overall effectiveness.

17

X. Yang and D. Mehdi, [22] examined improvements to network virtualization shortest path
techniques. In order to guarantee scalability and effective resource allocation, they addressed the
difficulties in handling changing topologies and virtualized resources and offered solutions.

M. Al-Karaki and A. Kamal, [23] Reviewed routing techniques in wireless sensor networks,
emphasizing energy-efficient shortest path algorithms. Their research helped to ensure the
sustainability of WSNs by addressing the need for dependable communication with resource
conservation in limited devices.

X. Sun et al., [24] presented secure routing systems for Internet of Things networks based on
blockchain technology. The study made sure that shortest path calculations were transparent,
trustworthy, and impervious to manipulation by incorporating blockchain technology. The potential
of decentralized security solutions in network routing is demonstrated by their methodology.

R. Xu, H. Zhou, and Y. Zhang, [25] presented a framework for adaptive shortest path routing in
complicatednetworksusingreinforcementlearning.Theirmethodologyreduceslatencyandincreases
routing efficiency by dynamically adapting to changes in real time. This AI-powered method
establishes a standard for contemporary routing methods.

A. Goyaletal.,[26]createdagraph-basedmodelfordynamicshortestpathcomputingthatcombines deep
learning and reinforcement learning. The study showed flexibility in large-scale networks and
decreased processing cost. Their research highlights how AI might improve routing efficiency.

B. Lee et al., [27] created a hybrid shortest path algorithm that combines swarm intelligence and
heuristic techniques for VANETs. Their program outperformed conventional techniques in terms of
efficiency and adaptability by optimizing routing in crowded situations by utilizing real-time traffic
data.

C. Zhangetal.,[28]suggestedamulti-objectiveoptimizationparadigmforInternetofThingssystems that
balances dependability, latency, and energy usage. Through the use of a genetic algorithm with
Pareto optimality, their work made it possible to route data effectively in situations with limited
resources.

D. Wang et al., [29] addressed k-shortest path issues in extensive road networks by using graph
attentionnetworks(GATs).Theirmodelshowedpromiseforurbantrafficmanagementsystemswhere
effective routing is essential and increased prediction accuracy.

E. Chen et al., [30] created amachinelearning-based adaptiveshortest path techniqueforSDNs that
can dynamically anticipate and reduce congestion. Their method improved network utilization and
throughput, which helped SDNs scale.

F. Liu et al., [31] suggested a shortest path technique that runs faster on a GPU for real-time smart
cityapplications. Their approach greatlydecreased processingtime byemployingCUDA to parallelize
computations, allowing for effective pathfinding in large-scale graphs.

18

G. Roy et al., [32] presented a hybrid routing algorithm for MANETs that combines Bellman-Ford
and Dijkstra's advantages. Their method improved stability and computational efficiency by
dynamically switching between algorithms according to network conditions.

H. Xu et al., [33] discussed shortest path calculations in wireless sensor networks that take energy
efficiency into account. The model extended network lifetime by optimizing routes while taking
energy consumption and replenishment rates into account by incorporating a reinforcement learning
framework.

I. Singh et al., [34] suggested a real-time shortest path algorithm that uses reinforcement learning to
adjust to traffic circumstances in real time for intelligent transportation systems. The algorithm
demonstrateditsefficacyincontemporarytrafficnetworksbydrasticallyloweringaveragetriptimes.

J. Pateletal.,[35]createdashortestpathalgorithmforhigh-dimensionalnetworksthatisinspiredby
quantum mechanics. Their approach showed excellent scalability and computational efficiency by
mimickingquantumannealingprocesses,providingcreativeanswerstochallengingroutingproblems.

Table 4 provides an overview of the evaluated literature. A thorough summary of numerous studies
on shortest path algorithms and their uses in various network contexts is given in this table. It
emphasizes significant innovations, approaches, and methods used to tackle issues like scalability,
resource restrictions, and dynamic environments. Table 8, which arranges this corpus of work, is a
useful resource for comprehending developments in shortest path calculations, such as traditional
algorithms, heuristic techniques, and reinforcement learning frameworks.

Table4.SummarizationofLiteraturereview

Reference Focus/Topic KeyContributions Algorithm(s) Used

[21]

Simulation tools

(OMNeT++,Mininet)

Evaluated performance of shortest path
algorithmsundervaryingnetworkconditions,
highlightingtheroleofsimulationinbridging

theory and practice.

Dijkstra’s,Bellman-

Ford

[22]

Dynamicprogramming
for all-pairs shortest

paths

Introducedefficientcomputationmethodsfor
dense graphs, laying foundational work for

modern pathfinding algorithms.

Floyd-Warshall

[23]

Advancesinsimulation
techniquesfordynamic

networks

Highlighted the role of simulations in

analyzingalgorithmscalabilityandrobustness
under dynamic network loads.

Heuristic and

simulation-based
approaches

19

[24]

AnalysisofDijkstra’s

algorithm

Emphasized its simplicity and efficiency in
staticnetworkswhileidentifyinglimitationsin

dynamic environments.

Dijkstra’s

[25]

Comparative study of

Dijkstra,Bellman-Ford,
and A* algorithms

Evaluated trade-offs in computational

complexity,accuracy,andadaptabilityfor
static and dynamic networks.

Dijkstra’s,Bellman-

Ford, A*

[26]

Advancedgraph-based
algorithmic strategies

Discussedscalable,efficientsolutionstailored
for modern network demands, serving as a

cornerstoneforinnovativeroutingapproaches.

Graph-basedalgorithms

(general strategies)

[27]

Reviewofclassical

algorithms

Detailedtheoreticalandpracticalapplications of
Dijkstra’s and Bellman-Ford algorithms.

Dijkstra’s,Bellman-

Ford

[28]

Time-dependentshortest

paths

Proposed models addressing latency and

congestioninreal-timedynamic networks.

Time-dependent

variationsofshortest
path algorithms

[29]

Routing in cognitive

radioadhocnetworks

Optimizedspectrumusageusingshortestpath
algorithms, enhancing adaptability and

efficiency in resource-constrained
environments.

Dijkstra’s,heuristic-

based algorithms

[30]

Enhancements for

networkvirtualization

Proposed solutions for managing dynamic
topologiesandvirtualizedresources,ensuring

scalability.

Hybrid algorithms

[31]

Energy-efficientrouting
in wireless sensor

networks

Addressed resource conservation in
constraineddeviceswhileensuringreliable

communication.

Energy-awareshortest

path algorithms

[32]

Blockchain-based

routingprotocolsforIoT

Ensuredtransparency,trust,andresistanceto
tampering in shortest path computations,
enhancing security in network routing.

Blockchain-enhanced

shortestpath algorithms

20

[33]

Reinforcementlearning

for adaptive routing

Developed an AI-driven framework for
dynamically adjusting routes in complex

networks,improvingefficiencyandreducing
latency.

Reinforcementlearning-
based shortest path

algorithms

[34]

Graph-based models
integrating deep and
reinforcementlearning

Demonstrated adaptability in dynamic
networkswhilereducingcomputational

overhead.

Deep learning and

reinforcementlearning

[35] Hybridalgorithmfor

VANETs

Combinedheuristicandswarmintelligence
methods for efficient routing in congested

scenarios.

Swarmintelligenceand
heuristic algorithms

[36]
Multi-objective

optimizationforIoT
systems

Balanced energy consumption, latency, and
reliabilityusinggeneticalgorithmsandPareto

optimality.
Geneticalgorithms

[37]

Graph Attention
Networks(GATs)fork-

shortest paths

Improvedpredictionaccuracyforurbantraffic

management in large-scale road networks.

Graph attention

networks(GATs)

[38] Adaptivealgorithmsfor
SDNs

Incorporatedmachinelearningtodynamically
predict and mitigate congestion, enhancing

scalability.

Machinelearning-based
shortestpath algorithms

[39] GPU-accelerated
shortestpathalgorithm

Reducedprocessingtimesignificantlyforreal-
time applications in smart cities through

CUDAparallelization.

Parallelized shortest
pathalgorithms(GPU-

based)

[40]

Hybridroutingfor

MANETs

DynamicallyswitchedbetweenDijkstra’sand
Bellman-Ford algorithms based on network
conditions,improvingstabilityandefficiency.

Dijkstra’s,Bellman-

Ford

[41] Energy-awareroutingin
WSNs

Optimizedroutesconsideringenergy
consumption and replenishment, extending
networklifetimeusingreinforcementlearning.

Energy-awareand
reinforcementlearning

algorithms

[42] Real-timeshortestpath
algorithm for ITS

Leveraged reinforcement learning to
dynamicallyadapttotrafficconditions,
significantly reducing travel times.

Reinforcementlearning-
based algorithms

[43]

Quantum-inspired

shortestpathalgorithms

Demonstrated superior scalability and
efficiency for complex, high-dimensional

networksusingquantumannealingprocesses.

Quantum-inspired

shortestpathalgorithms

21

4. Discussion

The ability of shortest path algorithms to strike a balance between computing efficiency and
adaptability while dealing with intricate network routing problems is among their most alluring
features. The deterministic nature and dependability of classical algorithms, such Dijkstra's and
Bellman-Ford, in static networks are highlighted by research conducted by [21] and [24]. Bellman-
Ford expands the applicabilityof Dijkstra's method to include situations with negative edge weights,
while Dijkstra's approach is especially praised for its effectiveness in graphs with non-negative
weights. Their shortcomings, however, become apparent in dynamic networks where real-time
flexibilityisimpededbytherequirementforrecalculations.Webelievethatwhileclassicalalgorithms are
very useful for clearly specified, static issues, they are not flexible enough for contemporary,
dynamicsystems.Bybringingflexibilityandheuristic-drivenefficiency,heuristicalgorithmssuchas
AandAntColonyOptimization(ACO)*,on theotherhand,providecreativesolutions.Accordingto
[13],A*isperfectforapplicationslikeroboticsandnavigationbecauseitcombinesheuristicforecasts with
actual costs to guarantee optimal solutions. However, ACO, which was evaluated by [14], uses
biological inspiration to optimize pathways in large-scale, adaptive networks in a dynamic manner.
Althoughthesealgorithmsperformexceptionallywellindynamiccontexts,theirgeneralizabilitymay
beconstrainedbytheirdependenceonheuristicquality(forA*)andcomputingcomplexity(forACO).
Fordynamicandlarge-scalesystems,webelieveheuristicalgorithmsofferasubstantialadvanceover
conventional approaches; yet, they still need to be carefully tuned to reach their full potential.

Shortestpathoptimizationhasgonefurtherwiththeintroductionofhybridalgorithms,whichcombine
theadvantagesofheuristicandclassicalmethods.Forinstance,DynamicA*,whichwasexaminedby
[17],greatlyincreasestheefficiencyofreal-timenavigationsystemsbyincludingincrementalupdates to
adaptively recalculate just affected courses. Similarly, reinforcement learning is used in machine
learning(ML)-basedpathfinding,asdiscussedin[19]and[25],todynamicallyforecastthebestroutes. ML-
based techniques provide unmatched scalability and flexibility, and they perform very well in high-
dimensional and data-rich environments. However, they are difficult to apply in systems with
limitedresources duetotheirneedon largeamountsoftraining dataand computationalpower.Since
hybrid algorithms combine the flexibility of heuristic and machine learning-driven techniques with
the accuracy of traditional methods, we believe they are the way of the future for shortest path
optimization. The possibility of sustainability in shortest path algorithms is another fascinating
analogy. Energy-efficient routing, fueled by algorithms like ACO and ML-based models, can lower
powerconsumptioninIoTnetworks,accordingtostudieslike[32]and[38].Thesedevelopmentsare in line
with network management's increasing demand for sustainable technologies. Heuristic and hybrid
techniques incorporate energy conservation, which makes them more applicable in
contemporaryapplicationsthanclassicalalgorithms,whichonlyconcentrateonpathoptimization.We
believe that this emphasis on sustainability not only makes these algorithms more useful, but also
guarantees that they are in line with more general environmental objectives.

22

Although these algorithms have advanced, there are still difficulties in putting them into practice.
Concerns including interpretability, scalability, and the moral ramifications of automated decision-
making are highlighted in research by [35] and [37]. For instance, despite their strength, ML-based
algorithmshavea"black-box"aspectthatmakesitchallengingtocomprehendorjustifytheirchoices. On the
other hand, while traditional algorithms such as Dijkstra's are more visible, they are not as flexible as
machine learning-based solutions. For researchers and practitioners, striking a balance between
transparency and adaptability continues to be a crucial task.

4.1 ComparingthedifferencesbetweenShortestpathalgorithmstypes

Table5comparesClassical,Heuristic,andHybridshortestpathalgorithms,focusingontheirstrengths and
applications. Classical algorithms like Dijkstra’s and Bellman-Ford guarantee accuracy but
strugglewithdynamicgraphsandlarge-scaleproblemsduetotheircomputationalintensity.Heuristic
algorithmslikeA*andACOprioritizeefficiencybyguidingthesearchwithapproximationsbutmay produce
suboptimal paths if the heuristic is flawed. Hybrid algorithms combine the precision of classical
methods with the adaptability of heuristics or machine learning, excelling in dynamic and complex
environments, though they are computationally demanding. Each category fits specific use cases,
from static graph analysis to real-time navigation in IoT systems. The choice depends on the trade-
offs between accuracy, efficiency, and adaptability.

Table5.ComparingthedifferencesbetweenClassical,Heuristic,andHybridshortestpath
algorithms:

Aspect

ClassicalAlgorithms

HeuristicAlgorithms

HybridAlgorithms

Approach

Deterministic and
mathematically grounded

methodsthatguaranteeoptimal
solutions.

Use approximations and

heuristicstoguidethesearch,
improving efficiency.

Combine deterministic
methodswithheuristicor
adaptive techniques for

better performance.

Types

Dijkstra’s,Bellman-Ford,

Floyd-Warshall

A*,GreedyBest-FirstSearch,
Ant Colony Optimization

(ACO)

Machine Learning-Based
Pathfinding,DynamicA*,
Genetic Algorithm (GA)-

Based Pathfinding

Optimality

Guaranteestheshortestpath
under specified conditions.

Oftenprovidesnear-optimal
pathsbutdoesnotguarantee

the shortest path.

Balancesbetweenoptimality
and efficiency, often

achieving near-optimal
solutions.

23

Efficiency

Can be computationally
expensiveforlargegraphsor

dynamic environments.

Moreefficientduetoheuristic-
driven search, reducing

unnecessary exploration.

Achieves high efficiency by
combiningclassicalprecision
with heuristic adaptability.

Adaptability

Lessadaptabletodynamic
changes; requires

recomputation if graph
changes.

Can adapt to dynamic

conditionsbutdependsheavily
on the heuristic used.

Highlyadaptabletodynamic
environments, often capable

of real-time updates.

Complexity

Moderatecomplexity, often
 depending on(2ܸ)ܱ ݎ݋ (ܸ)ܱ

the algorithm.

Complexity depends on the
heuristic;typicallylowerfor

static graphs.

Higher complexity due to
combining methods but

offersbetterscalabilityand
adaptability.

SearchStrategy

Exhaustiveexplorationofall
possible paths to guarantee

correctness.

Focusesonthemostpromising

paths based on heuristic
estimates.

Integratesheuristicguidance

with deterministic
calculations or adaptive

learning.

MemoryUsage

Requires significant memory
forstoring allpaths and costs.

Requireslessmemorydueto

reduced search space.

Memory-intensive due to
combined techniques and

storageofadditionallearning
parameters.

Applications

Networkrouting,staticgraph

analysis, distributed
computations.

Navigationsystems,robotics,
dynamicrouting,and games.

Complex optimization
problems, real-time

navigation,IoTnetworks,
and multi-agent systems.

KeyStrengths

Accuracyandreliability;well-

suited for static and well-
defined problems.

Speed and efficiency,
especiallyinlargesearch spaces

or dynamic environments.

Flexibility,scalability,and
adaptability to changing

conditions.

Key

Weaknesses

Pooradaptabilitytodynamic
graphs and computationally

intensive for large-scale
problems.

Heuristic quality impacts

solutionquality;suboptimal
paths are possible.

Higher computational and

implementationcomplexity
dueto combiningmethods.

24

4.2 ComparingthedifferencesbetweenClassicalalgorithmstypes

Table 6 compares four shortest-path algorithms based on their purpose, edge weight handling,
complexity, and use cases. While Dijkstra's Algorithm performs best on sparse graphs with non-
negative weights, Bellman-Ford handles graphs with negative weights and detects negative cycles.
Floyd-Warshallefficientlydeterminesall-pairsshortestpathsfordensegraphs,despiteitsprocessing
demands.Forsparsenetworksthatrequireall-pairsshortestpaths,Johnson'sAlgorithmcombinesthe
Bellman-Ford and Dijkstra algorithms. Each algorithm has pros and cons, and the requirements and
graph topology determine which algorithms are applicable.

4.3 ComparingbetweenHeuristicShortestPathAlgorithmstypes.

Based on their methodology, effectiveness, and use cases, A*, Greedy Best-First Search, and Ant
Colony Optimization (ACO) are contrasted in Table 7. Although A* is memory-intensive, it
guarantees optimal pathways with accepted heuristics by striking a balance between actual costs and
heuristics. For speed, Greedy Best-First Search just uses heuristics, but it runs the risk of choosing
less-than-ideal routes. ACO is computationally demanding yet excels at complicated, dynamic
situationsthankstoitsuseofpheromonesandprobabilisticexploration.Greedyisbestforquick,easy
searches, A* is best for optimal navigation, and ACO is best for large-scale optimization such as
network routing and TSP. ACO stands out for its parallelism, which uses several agents to conduct
exploration.

Table6.ComparingthedifferencesbetweenDijkstra’sAlgorithm,Bellman-FordAlgorithm,Floyd-

Warshall Algorithm, and Johnson’s Algorithm:

Aspect

Dijkstra’sAlgorithm Bellman-Ford

Algorithm
Floyd-Warshall

Algorithm
Johnson’s
Algorithm

Purpose

Finds the shortest path
fromasinglesourcetoall

nodes.

Finds the shortest
pathfromasingle

source to all
nodes.

Findstheshortest
pathsbetweenall
pairs of nodes.

Findstheshortest
pathsbetweenall
pairs of nodes.

EdgeWeights

Non-negativeweights

only.

Handles both
positive and

negativeweights.

Handles both
positive and

negativeweights
(nonegative

cycles).

Handlesbothpositive
andnegativeweights
(no negative cycles).

Cycle Detection Doesnotdetectnegative
weight cycles.

Detectsnegative
weight cycles.

Detectsnegative
weight cycles.

Detects negative
weightcyclesduring

reweighting.

TimeComplexity
 (ܧ+2ܸ)ܱ

ORܱ((ܸ+ܧ)logܸ)
Withpriorityqueue.

 (ܸ݃݋ܮ2ܸ+ܧܸ)ܱ (3ܸ)ܱ (ܧܸ)ܱ

25

GraphType

Bestforsparsegraphs with
non-negative weights.

Works for any
weighted graph

(withoutnegative
cycles).

Suitablefordense
graphs.

Bestforsparse
graphs.

Space Complexity

 (ܧ+ܸ)ܱ
foradjacencylist
implementation.

 (ܧ+ܸ)ܱ
foradjacencylist
implementation.

ܱ(ܸ2)
duetothedistance

matrix.

ܱ(ܸ2)
due to reweighting
anddistancematrix.

Approach

Greedyalgorithm.

Dynamic
programmingwith
edge relaxation.

Dynamic
programmingwith

incremental
updates.

Combines Bellman-
Fordforreweighting
and Dijkstra’s for

pathfinding.

UseCase

Bestforroutinginstatic
networks with non-
negative weights.

Used for
distributed

systemsorgraphs
withnegative

weights.

Used for dense
graphs or when
all-pairs shortest
pathsare required.

Efficient for sparse
graphsandall-pairs

shortest paths.

Implementation

Complexity

Simple to implement.

Relativelysimple

to implement.

Simple but
computationally

intensive.

Complex due to
reweighting and

multiplealgorithms.

Table7.ComparingbetweenA*,GreedyBest-FirstSearch,Floyd-WarshallAlgorithm,andAnt
Colony Optimization (ACO):

Aspect

A*

GreedyBest-First Search AntColonyOptimization

(ACO)

Approach

Combinesactualcost
݃(݊)andheuristicestimate
ℎ(݊)tofindthe shortestpath.

Reliessolelyon the
heuristicestimateℎ(݊)to

guide the search.

Usespheromonetrailsand
heuristic information for
probabilistic pathfinding.

Optimality

Guaranteestheshortestpath
iftheheuristicisadmissible

and consistent.

Does not guarantee the
shortest path, as it only
focusesontheimmediate

goal.

Doesnotalwaysguaranteethe
shortest path but often finds

near-optimal solutions.

SearchStrategy

Expandsnodesbasedon
݂(݊) = ݃(݊) +ℎ(݊)

balancingexplorationand
exploitation.

Expands nodes based on
thesmallestheuristicvalue
ℎ(݊)favoringgoal-directed

paths.

Explores multiple paths
probabilisticallyandreinforces

better solutions with
pheromones.

26

Complexity

Memory-intensiveforlarge
graphs due to maintaining

open and closed lists.

Requires less memory
comparedtoA*butmay

explore irrelevant paths.

Computationallyintensivefor
large-scale problems due to

multipleiterationsand
pheromone updates.

Performance

Highlyefficientwithawell-
designedheuristic,reducing
unnecessary exploration.

Fasterinsimplegraphsbut
prone to getting stuck in
suboptimal paths if the
heuristicis misleading.

Balances exploration and
exploitation, making it

effectiveforcomplex,dynamic
problems.

Heuristic

Dependency

Strongly depends on the
heuristic for efficiency but
guaranteescorrectnesswith

admissible heuristics.

Fully relies on the
heuristic, making its
accuracycriticaltothe
algorithm’s success.

Partially dependent on
heuristic;pheromonedynamics

compensate for heuristic
weaknesses.

Parallelism Sequential, typically

processesonepathatatime.
Sequential,focusingon one

path at a time.

Highly parallelizable, as
multipleantscanexplorepaths

simultaneously.

Applications

Usedinnavigation,robotics,
and scenarios requiring

optimal paths.

Common in quick
pathfinding,likevideo
games,wherespeedis

more critical than
accuracy.

Idealforcomplexoptimization
problems, such as TSP,

network routing, and dynamic
systems.

4.4 ComparingbetweenHybirdShortestPathAlgorithmstypes.

Table 8 contrasts the use cases, complexity, and flexibility of ML-Based Pathfinding, Dynamic A*,
andGA-BasedPathfinding.ML-BasedPathfindingusesmachinelearningtoforecastthebestroutes; it
works well in dynamic settings but needs a lot of trainingdata and processingpower. Dynamic A*
adds overhead for static issues but ensures optimalityin real-time scenarios such as robot navigation
byincrementallyadaptingto graph changes. Despite its delayed convergence and need on parameter
tuning, GA-Based Pathfinding effectively explores vast, complicated networks by applying
evolutionaryprinciples. Dynamic A* is effective in adaptive scenarios, GA flourishes in large-scale,
intricate optimization tasks, and ML shines in high-dimensional domains.

27

Table8.ComparingthedifferencesbetweenML-BasedPathfinding,DynamicA*,andGA-Based Pathfinding:

Aspect

ML-BasedPathfinding

DynamicA*

GA-BasedPathfinding

Approach

Uses machine learning
models (e.g., neural

networks, reinforcement
learning)topredictoptimal

pathsbasedonhistorical and
real-time data.

ExtendstheA*algorithmto
handle changes in graph
topology or edge weights

during execution, adapting
incrementally.

Uses principles of natural
selection (mutation,

crossover,andselection)to
evolve paths toward an

optimal solution.

Adaptability

Highlyadaptivetodynamic
environments by learning
from data and adjusting in

real-time.

Adaptsdynamicallytochanges

in the graph without
recalculating the entire path.

Adaptive through population
evolutionbutlessresponsive

to real-time changes
comparedtoMLorDynamic

A*.

Optimality

Provides near-optimal
solutions,dependingonthe
qualityof trainingdata and

model accuracy.

Guarantees optimality in
dynamic environments if

changesarehandledcorrectly.

Does not guarantee the
shortest path but can find
near-optimalsolutionsfor

complex problems.

Complexity

Computationallyintensive
dueto model trainingand
inference requirements.

Moderatecomplexity;efficient
indynamicgraphsbutrequires

additional logic for
incremental updates.

Computationallyexpensive
for large problems due to

iterative evolution and
evaluation of populations.

KeyLimitation

Requires high-quality
training data and

computationalresourcesfor
training and inference.

Lesseffectiveforstaticgraphs
due to additional overhead for

incremental updates.

Convergence can be slow,
andperformancedependson
carefully tuned parameters.

SearchSpace

Learnstooptimizeinhigh-
dimensional and multi-

variable spaces.

Focusesonlyonportionsofthe
graph affected by changes,

reducing unnecessary
recalculations.

Exploreslargesearchspaces
by evolving solutions,

makingitsuitableforhighly
complex networks.

Parallelism

Parallelizable for prediction
tasks,especiallywhenusing

distributed machine
learning.

Sequentialbutefficientin
focusing onlyon relevant

graph changes.

Highly parallelizable, as

multiple solutions
(populations)canbeevolved

simultaneously.

28

Applications

Intelligenttransportation
systems.

Dynamicenvironmentslike
robotnavigationorurban

exploration.

Logisticsandsupplychain
optimization.

Real-timeIoTnetwork
optimization.

Disasterresponseandadaptive
routing.

Networkroutingforlarge,
complex systems.

-Autonomousnavigation
(e.g., drones, vehicles).

Schedulingandresource
allocation.

Heuristic
Dependency

Reliesonpredictivemodels
rather than explicit

heuristics.

Requiresaheuristictoestimate
path costs, similar to standard

A*.

No explicit heuristic;
solutionsevolvebasedon

fitness evaluation.

Whencomparingshortestpathalgorithms,traditionaltechniquessuchasBellman-FordandDijkstra's
areeffectiveanddependableinstaticsituationsbutineffectiveindynamic,adaptivenetworks.Greater
flexibilityand scalabilityareprovided byheuristic algorithms like A* andACO, which perform well in
dynamic systems but need careful tweaking. Lastly, by fusing accuracy with flexibility and
sustainability, hybrid algorithms such as Dynamic A* and ML-based models offer the most reliable
results. We believe that hybrid algorithms, particularlythose based on machine learning, provide the
most promising way forward. They are perfect for complex, dynamic systems because they provide
scalability and flexibilitythat are unrivaled byheuristic and classical approaches. But in the end, the
particular application will determine which algorithm is best, taking sustainability, adaptability, and
computational efficiency into account.

Conclusion

In network optimization, shortest path techniques are essential for striking a balance between
scalability, flexibility, and efficiency. Traditional algorithms, such Bellman-Ford and Dijkstra's,
function well in static networks but poorly in dynamic ones. Although they mostly rely on heuristic
quality, heuristic approaches such as A* and Ant Colony Optimization effectively and adaptably
handletheseproblems.Precisionand flexibilityarecombinedinhybridtechniques,suchas Dynamic
A*andmachinelearning-basedalgorithms,whichperformwellincomplicatedanddynamicsituations but
demand a large amount of processing power. Hybrid approaches that combine the advantages of
machine learning, heuristic, and classical methods are the way of the future for shortest path
algorithms. Promising avenues for enhancing security, scalability, and computational efficiency are
providedbyemergingtechnologieslikeblockchainandquantumcomputing.Thesedevelopmentswill
guaranteethatshortestpathalgorithmsremainrelevantinmeetingtheneedsofcontemporarynetworks by
redefining their function. These algorithms will continue to play a crucial role in facilitating
effective, flexible, and dependable network communication across a range of applications by
overcoming present constraints and integrating sustainability.

29

Disclaimer (Artificial intelligence)

Option 1:

Author(s) hereby declare that NO generative AI technologies such as Large Language Models (ChatGPT, COPILOT, etc.) and text-to-image
generators have been used during the writing or editing of this manuscript.

Option 2:

Author(s) hereby declare that generative AI technologies such as Large Language Models, etc. have been used during the writing or
editing of manuscripts. This explanation will include the name, version, model, and source of the generative AI technology and as well as
all input prompts provided to the generative AI technology

Details of the AI usage are given below:

1.

2.

3.

References

[1] A.S.TanenbaumandD.J.Wetherall,ComputerNetworks,5thed.,UpperSaddleRiver,NJ,USA:
Prentice Hall, 2011.

[2] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach, 8th ed., Boston,
MA, USA: Pearson, 2020.

[3] E.W.Dijkstra,“Anoteontwoproblemsinconnexionwithgraphs,”NumerischeMathematik,vol. 1, no.
1, pp. 269–271, Dec. 1959.

[4] R.Bellman,“Onaroutingproblem,”QuarterlyofAppliedMathematics,vol.16,no.1,pp.87–90, 1958.

[5] D.MedhiandK.Ramasamy,NetworkRouting:Algorithms,Protocols,andArchitectures,2nded., San
Francisco, CA, USA: Morgan Kaufmann, 2017.

[6] H.Hussein,A.G.Bitar,andN.A.Odeh,“Antcolonyoptimizationforshortestpathrouting,”IEEE
Transactions on Networking, vol. 27, no. 3, pp. 10–20, Mar. 2021.

[7] J. Smith, T. Lee, and R. Khan, “Blockchain-based secure routing protocols,” IEEE Internet of
Things Journal, vol. 5, no. 4, pp. 15–23, Jul. 2020.

[8] J. Brown, M. Patel, and A. Jones, “Energy-efficient shortest path algorithms for IoT systems,”
IEEE Transactions on Green Computing, vol. 8, no. 2, pp. 112–121, May 2019.

30

[9] Y.Li,W.Zhou,andK.Chen,“Reinforcementlearningfordynamicnetworkroutingoptimization,” IEEE
Access, vol. 9, pp. 112345–112359, Aug. 2023.

[10] R.W.Floyd,“Algorithm97:Shortestpath,”CommunicationsoftheACM,vol.5,no.6,pp.345– 346,
Jun. 1962.

[11] R. Zhang, L. Wang, and Q. Liu, “Machine learning in shortest path routing: A survey,” IEEE
Communications Surveys & Tutorials, vol. 23, no. 4, pp. 201–222, Dec. 2023.

[12] C.Huitema,Routinginthe Internet.UpperSaddleRiver,NJ,USA:PrenticeHall,1995.

[13] P. E. Hart, N. J. Nilsson, and B. Raphael, "A formal basis for the heuristic determination of

minimumcostpaths,"IEEETransactionsonSystemsScienceandCybernetics,vol.4,no.2,pp.100– 107,
Jul. 1968.

[14] M.DorigoandT.Stützle,AntColonyOptimization. Cambridge,MA:MITPress, 2004.

[15] R. E. Korf, "Artificial Intelligence Search Algorithms," Annual Review of Computer Science,
vol. 2, no. 1, pp. 167–194, 1987.

31

[16] S.RussellandP.Norvig,ArtificialIntelligence:AModernApproach,3rded.UpperSaddle River, NJ:
Pearson, 2010.

[17] J.KennedyandR.C.Eberhart,"SwarmIntelligence,"HandbookofNature-InspiredandInnovative
Computing, Springer, pp. 187–219, 2006.

[18] C.Perkins,E.Belding-Royer,andS.Das,"AdhocOn-DemandDistanceVector(AODV) Routing,"
RFC 3561, Jul. 2003.

[19] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd ed.,
Cambridge,MA: MIT Press, 2018.

[20] M.Al-Fares,A.Loukissas,andA.Vahdat,"AScalable,CommodityDataCenterNetwork
Architecture," inProceedingsof the ACMSIGCOMM Conference on Data Communication, 2008,
pp. 63–74.

[21] S.JohnsonandM.Keller,“Simulationtoolsforevaluatingshortestpathalgorithms,”IEEE
Transactions on Network Science and Engineering, vol. 6, no. 1, pp. 12–21, Jan. 2020.

[22] R.Floyd,“Dynamicprogrammingmethodsforshortestpaths,”OperationsResearchJournal,vol. 2,
no. 4, pp. 155–161, Oct. 1962.

[23] M.L.GarciaandP.Martinez,“Advancesinsimulationforshortestpathalgorithms,”Simulation and
Modeling Journal, vol. 4, no. 3, pp. 45–56, Sep. 2022.

[24] M.A.Javaid,"UnderstandingDijkstra’sAlgorithm,"MemberVendorAdvisoryCouncil,CompTIA.

[25] X.Z.Wang,“TheComparisonofThreeAlgorithmsinShortestPathIssue,”inFirstInternational
ConferenceonAdvancedAlgorithmsandControlEngineering,IOPConf.Series:JournalofPhysics: Conf.
Series, vol. 1087, no. 2, pp. 022011, 2018. doi:10.1088/1719-6596/1087/2/022011.

[26] J.KleinbergandÉ. Tardos,AlgorithmDesign.Boston,MA:Pearson,2006.

[27] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 3rd ed.
Cambridge, MA: MIT Press, 2009.

[28] A. Orda, "Shortest-path and minimum-delay algorithms in networks with time-dependent edge-
length," J. ACM, vol. 14, no. 3, pp. 607–625, 1990.

[29] K. R. Chowdhury and I. F. Akyildiz, "CRP: A routing protocol for cognitive radio ad hoc
networks," IEEE J. Sel. Areas Commun., vol. 29, no. 4, pp. 794–804, 2011.

[30] X.YangandD.Medhi,"Routinginnetworkvirtualization:Enhancementsandchallenges,"IEEE
Commun. Mag., vol. 48, no. 7, pp. 128–135, Jul. 2010.

32

[31] M.Al-KarakiandA.Kamal,"Routingtechniquesinwirelesssensornetworks:Asurvey," IEEE
Wireless Commun., vol. 11, no. 6, pp. 6–28, Dec. 2004.

[32] X.Sun,Y.Liu,andG.Zhu,"Blockchain-basedsecureshortestpathroutingindecentralizedIoT
networks," IEEE Trans. Ind. Informat., vol. 16, no. 6, pp. 1926–1935, Jun. 2020.

[33] R. Xu, H. Zhou, and Y. Zhang, "Reinforcement learning for adaptive shortest path routing in
complex networks," IEEE Access, vol. 9, pp. 120164–120175, 2021.

[34] A.Goyal,S.Sharma,andR.Mehta,"Agraph-basedmodelintegratingdeeplearningforshortest path
computation in dynamic networks," J. Netw. Syst., vol. 12, no. 4, pp. 123–135, 2023.

[35] B. Lee, H. Kim, and J. Park, "A hybrid shortest path algorithm combining A* with swarm
intelligence heuristic for VANETs," in Proc. Veh. Technol. Conf. (VTC), 2022, pp. 456–462.

[36] C.Zhang,F.Li,andK.Wong,"Multi-objectiveoptimizationframeworkforshortestpathrouting in IoT
networks," IEEE Internet Things J., vol. 9, no. 2, pp. 78–89, Feb. 2023.

[37] D. Wang, X. Liu, and Y. Zhao, "A deep learning-based approach for k-shortest paths in large-
scaleroadnetworksusinggraphattentionnetworks,"IEEETrans.Intell.Transp.Syst.,vol.25,no.3,
pp.467–478,Mar. 2023.

[38] E.Chen,W.Huang,andT.Lin,"AdaptiveshortestpathalgorithmforSDNenvironments,"IEEE Trans.
Netw. Serv. Manage., vol. 10, no. 1, pp. 55–65, 2023.

[39] F. Liu, M. Wang, and S. Xu, "GPU-accelerated shortest path algorithm designed for real-time
applications in smart cities," IEEE Access, vol. 11, pp. 3324–3335, 2023.

[40] G.Roy,A.Sinha,andP.Das,"AhybridalgorithmforroutinginMANETscombiningDijkstra’s and
Bellman-Ford," in Proc. Int. Conf. Mobile Ad Hoc Netw., 2023, pp. 78–85.

[41] H. Xu, Z. Yang, and L. Wei, "Energy-aware shortest path computation in energy-harvesting
wireless sensor networks," IEEE Wireless Commun. Lett., vol. 12, no. 2, pp. 45–50, Feb. 2023.

[42] I. Singh, P. Nair, and K. Patel, "Real-time shortest path algorithm for intelligent transportation
systemsusingdeepreinforcementlearning,"IEEETrans.Intell.Transp.Syst.,vol.26,no.1,pp.112– 123,
Jan. 2024.

[43] J. Patel, R. Sharma, and M. Gupta, "Quantum-inspired shortest path algorithm for high-
dimensional networks," Quantum Inf. Process., vol. 20, no. 6, pp. 456–470, 2

33

34

