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Abstract 
Therapiddevelopmentofdigitaltechnologyandtheincreasinginterconnectionofdeviceshavemade 
computer networks indispensable to modern life. Global data movement, communication, and 
applications like cloud computing, IoT, e-commerce, and smart cities are all made possible by these 
networks.Routingalgorithms particularlyshortest path algorithms arecrucial fordeterminingthemost 
effective data transmission routes and are largely responsible for the dependability and efficiency of 
these networks. Because these algorithms maintain stability and reliability while lowering latency, 
costs, and energy consumption, they are crucial to network operation. 
Shortestpathproblemsolvinghaslongreliedonfundamentalalgorithmswithoriginsingraphtheory, such 
as Bellman-Ford and Dijkstra's. Despite their successes, the growing complexity and dynamic nature 
of contemporarynetworks have exposed their shortcomings. Advanced approaches, including 
heuristic, hybrid, and AI-driven methods, have been developed to get around these challenges. 
Innovationslikeantcolonyoptimizationandblockchain-basedalgorithmshaveimprovedcomputing 
efficiency, security, and adaptability. 
The Internet of Things, VANETs, and SDNs are just a few of the domains that use these algorithms; 
each has specific requirements, like real-time adaptation and energy efficiency. Reinforcement 
learningandpredictionmodelsdrivenbymachinelearninghave furtherincreasedroutingefficiency, while 
simulation tools such as Mininet and OMNeT++ have been essential for evaluating algorithm 
performanceinpracticalscenarios.Asemergingtechnologieslikeblockchainandquantumcomputing 
become more widely accepted, shortest path algorithms will continue to advance, ensuring their 
suitabilityin the rapidly evolving digital environment. This study, which looks at their development, 
applications,andpossiblefuturedirections,emphasizestheirimportanceincreatingmodernnetworks. 
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1. Introduction 

 
As digital technology has grown exponentially and gadgets have become increasingly networked, 
computer networks have become indispensable to modern life. These networks are essential for 
internationalcommunicationanddatatransferinavarietyofapplications,includingcloudcomputing, e-
commerce, the Internet ofThings, and smart cities.Theefficiencyand reliabilityofthesenetworks 
depend heavily on routing algorithms, and shortest path techniques are necessary to reach optimal 
performance. These algorithms determine optimal data transmission channels by reducing critical 
characteristics such as latency, cost, and energy consumption while maintaining network reliability 
and stability [1], [2]. Shortest path algorithms are based on the foundation of graph theory, which 
depicts networks as graphs composed of nodes (representing devices) and edges (representing 
connections).BasicalgorithmssuchasBellman-Ford[4]andDijkstra's[3]werethefirsttotacklethe single-
source shortest path problem. Due to their efficiency and ease of use, these conventional 
techniquesarestillwidelyusedtodayandhaveformedthebasisofmodernroutingprotocols.Bellman- 
Ford,forinstance,hasproventoberobustinsituationswhenedgeweightsarenegative,andDijkstra's 
technique is crucial for link-state routing protocols [4],]. With the increasing sophistication and 
breadth of networks, traditional shortest path approaches have faced challenges in handling resource 
constraints, large datasets, and shifting topologies. To address these problems, researchers have 
developed complex algorithms that incorporate heuristics, hybrid approaches, and artificial 
intelligence (AI). While ant colony optimization [6] takes advantage of natural foraging behavior to 
determine the optimal routes, block chain-based solutions enhance routing security by providing 
transparentandunchangeablepathdecisions[7].Withtheseadvancements,algorithmsmaynowadapt 
dynamically to changing network conditions and increase computational efficiency. 

 
Many diverse fields, each with its own set of requirements and restrictions, use the shortest path 
algorithm. In InternetofThingssystems,energy-efficientalgorithmsarecrucialforextendingdevice 
lifetimesandensuringsustainablenetworkoperation,asdevicesoftenhavelimitedresources[8].Ina similar 
vein, real-time decision-making algorithms are required for vehicle ad hoc networks (VANETs) to 
manage high mobility and traffic. Software-defined networks (SDNs) benefit from adaptive routing 
algorithms because they can adjust routes dynamically in response to network congestion and traffic 
patterns [5]. Advances in AI have further changed the methods used for the shortest paths. Thanks to 
reinforcement learning (RL) models, routing algorithms can now adapt dynamically to changes in 
the network in real time, improving efficiency and reducing latency [10]. Additionally, machine 
learning (ML)-powered prediction models have simplified anticipatory congestion management by 
optimizing routing decisions even in highly dynamic scenarios [11]. Researchers have tested and 
assessed these algorithms in simulation environments such as Mininet and OMNeT++ [12], which 
allow them to see how well they perform in practical settings. 
Therearestillfewproblemsdespitetheseadvancements.Modernnetworkalgorithmsmustbeableto 
processvastvolumesofreal-timedata,handletremendoussizes,andadapttoshiftingsecuritythreats. 
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With billions of devices connecting simultaneously in scenarios like smart cities and industrial IoT, 
ensuring efficient and safe routing is a difficult undertaking. Strong security measures must also be 
included in routing algorithms to combat risks like data interception and route hijacking [7]. As the 
digitalworldevolves,thesearchforthebestpathalgorithmsisattheforefrontofnetworkingresearch. 
Futuretechnologiessuchasquantum computingcouldrevolutionizepathoptimizationbyfacilitating faster 
and more scalable solutions. New decentralized and secure routing paradigms are being presented by 
blockchain technology. By overcoming current limitations and leveraging these developments, 
shortest path algorithms are poised to remain at the forefront of the development of both modern and 
future networks. This study investigates the concepts, historical development, and recent 
advancements in shortest path algorithms for network routing. Through the resolution of significant 
problems, the presentation of innovative solutions, and the discussion of practical applications, this 
book highlights the significance of these algorithms in assessing the dependability and effectiveness 
of contemporary computer networks. 

2. Backgroundtheory 

2.1 ShortestPathAlgorithmClassification 
Thethreeprimarycategoriesofshortestpathalgorithmsarehybrid,heuristic,andclassical.traditional 
algorithms,suchasFloyd-Warshall,Johnson's,andDijkstra'sBellman-Ford.Heuristicalgorithmslike 
GreedyBest-FirstSearch,AntColonyOptimization,andA*.Theadvantagesofheuristicandclassical 
approaches are combined in hybrid algorithms. 

2.1.1 classicalAlgorithmsfortheShortest Path. 
Deterministictechniquesknownasclassicalalgorithmsensurethebestanswerstoshortestpathissues. 
Examples include Bellman-Ford, which can handle distributed computations with negative weights, 
and Dijkstra's, which is appropriate for graphs with non-negative weights. They serve as the 
cornerstone of reliable and effective network routing. 

A-TheDijkstra Algorithm 
Findingtheshortest paths in networkgraphs is acommon useofDijkstra's Algorithm, abasictool in 
computer networking. Its ability to determine the optimal data transmission routes while lowering 
characteristics like cost, latency, or resource consumption accounts for its significance in network 
routing. Edsger W. Dijkstra developed the method in 1959 with the goal of figuring out the shortest 
path between a single source node and each other node in a network with non-negative edge weights 
[3].Itiscurrentlyabasicpartofmanyroutingprotocolsduetoitsfeatures,whichenablereliableand efficient 
communication in a range of network scenarios [1]. In the context of network routing, 
networksaredepictedasgraphs,wherenodesrepresenthardwaresuchasswitchesorroutersandedges 
representlinksorconnectionsbetweenthem.Eachedgehasaweight,whichcouldrepresentlatency, 
bandwidth use, orphysical distance. Dijkstra's Algorithm finds the shortest path treefrom the source 
node to all other nodes, allowing network devices to forward data packets along the most efficient 
paths [2]. 
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Figure1-Shortestpath Algorithmsclassification 
 

The method involves keeping a set of nodes with known shortest paths and another set of nodes that 
havenotbeenvisited.Initially,itassignsadistanceofzerotothesourcenodeandaninfinitedistance 
toeachsubsequentnode.Usingapriorityqueue,itselectstheunvisitednodewiththeshortestdistance, 
markingitasvisitedandupdatingthedistancesofitsneighborsifashorterpathisfound.Thismethod 
isdonerecursivelyuntilallnodesarevisitedorthefastestpathtoaspecifictargetnodeisfound.The greedy 
technique expands the shortest paths at each step, ensuring optimal solutions for graphs with non-
negative edge weights [2], [3]. Dijkstra's Algorithm is heavily utilized in network routing 
protocols,particularlylink-stateprotocolssuchasOpenShortestPathFirst(OSPF).InOSPF,routers use 
Dijkstra's Algorithm to find the shortest path tree using link-state ads that show the current 
conditionofthenetwork.Byprovidingrouterswiththeoptimalpathsforforwardingdatapackets,this tree 
guarantees efficient and loop-free routing. Outside of OSPF, the technique serves as the 
foundationfortrafficengineeringapplicationsandothernetworkoptimizationinitiatives,whereitaids 
indynamictrafficmanagementtominimizecongestionandoptimizeresourceuse[5].Theabilityof 

ShortestPathAlgorithms 
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Dijkstra's Algorithm to generate reliable and deterministic results, ensuring consistent routing 
decisions,isoneofitsbenefitsinnetworkrouting. Itsefficiencyallowsittoscaletomedium-to-large 
networks, particularly when combined with complex data structures like Fibonacci heaps [13]. 
However,themethodhascertain limitations,especiallyin dynamicnetworks with dynamictopologies. 
Pathways must be fully recalculated by the program after changes in these settings, which can be 
computationally expensive. Furthermore, its limitation to graphs with non-negative edge weights 
limitsitsapplicabilityincertainnetworkscenarioswherecostsmayfluctuateinanunpredictableway [9]. 
Despite these challenges, Dijkstra's Algorithm remains an essential tool for network routing because 
it forms the foundation of increasingly complex and adaptable routing systems. As demonstrated by 
its continued applicability in modern networking, it is a crucial algorithm for understanding and 
enhancing network communication [11][16]. 

 
B-Bellman-Ford algorithm 

 
TheBellman-Fordalgorithmisagraphsearchtechniquethatfindstheshortestpathbetweenaspecific source 
vertex and each other vertex in the graph. This method can be applied to both weighted and 
unweighted graphs. Similar to Dijkstra's shortest path algorithm, the Bellman-Ford method is 
guaranteedtofindtheshortestpathinagraph.Bellman-FordismoreadaptablethanDijkstra'smethod 
sinceitcanhandlegraphswithnegativeedgeweights,evenifitisslower.Itiscrucialtokeepinmind that in a 
graph with a negative cycle, there isn't a shortest path. If the road continued to circle the negative 
cycle indefinitely, the cost would decrease even if the journeyduration increased. Bellman- Ford thus 
has the added advantage of being able to recognize negative cycles. Unlike Dijkstra's algorithm, 
which uses a greedy approach, Bellman-Ford uses a dynamic programming paradigm, iterating 
through all edges up to |V| - 1 times, where |V| is the number of vertices in the graph. 
By periodically relaxing each edge, the method continuously improves the shortest pathway 
estimations. This makes it particularly suitable for applications where negative weights might be 
present,suchnetworkroutingandfinancialmarketarbitragedetection.However,becausetoitshigher 
temporal complexity of O(VE), where V is the number of vertices and E is the number of edges, 
Bellman-Ford is usually only used when negative weights are present. Additionally, the algorithm's 
ability to detect negative weight cycles ensures its reliability in scenarios when they could lead to 
unstable calculations [4]. 

 
B.1HowBellmanFord'salgorithmworks 

 
Overestimating the distance between the first vertex and each successive vertex is how the Bellman 
Ford method works. It then iteratively relaxes those estimates by finding new paths that are shorter 
than the previously exaggerated paths. The Bellman-Ford technique is designed to find the shortest 
paths between a single source node and all other nodes, even when some edges in a network have 
negativeweights.Themethodstartsbysettingthedistancetothesourcenodetozeroandthedistances to all 
other nodes to infinity, signifying that theyare initiallyinaccessible. It then carefullyexamines 
eachedgeinthegraphtoseewhetherusinganintermediarynodemayshortenthecurrentpathtoa 
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target node. If a shorter path is found, the distance to the destination node is updated. This process, 
knownasrelaxing,iscarriedoutV−1times,whereV isthenumberofverticesinthegraph,toensure that all 
possible paths are considered. 
After the relaxation phases, the algorithm does a second pass across the edges to check for any 
additional distance modifications. If any distance can still be shortened, there is a negative weight 
cycle,suggestingthatcertainnodeslackafiniteshortestpath.TheBellman-Fordtechniqueishelpful 
forgraphswithnegativeweightssinceitcannotonlydetermineshortestpathsbutalsodetectnegative weight 
cycles. 

Bydoingthisrepeatedlyforallvertices,we canguaranteethat theresult isoptimize 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure2.exampleofHow BellmanFord'salgorithmwork 
 
 
 

C-TheFloyd–Warshallalgorithm 
 

The Floyd-Warshall algorithm is one method for figuringout the shortest paths between each pair of 
nodes in a network. It uses a dynamic programmingtechnique to determine the shortest paths for the 
entiregraph,progressivelycomingupwithsolutionstosmallersubproblems.Themethodisapplicable to 
both directed and undirected graphs, and is particularly effective for dense graphs. However, the 
graphmustnothavenegativeweightcyclesbecausethiswouldresultinundefinedshortestpaths.The process 
begins by initializing a distance matrix, where each entry represents the shortest distance 
betweentwonodes.Anydirectedgeconnectingtwonodeshasitsweightputintothe matrix.Ifthere 
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isn'tadirectedge,thedistanceissettoinfinity,makingthenodesinitiallyinaccessibletooneanother. The 
distance to every node is set to zero since the shortest path between any two nodes is free. The core 
of the algorithm is its iterative process. Along the paths that connect each other pair of nodes, 
eachnodeinthenetworkissystematicallyconsideredasapotentialintermediarynode.Foreverypair 
ofnodes,itassessesifusingthisintermediarynodeprovidesashorterpaththantheonethatiscurrently 
knowntoexist.Inthatcase,thealgorithmadjuststhedistancematrixtotakethenew,shorterpathinto 
consideration. This process is carried out for every node serving as an intermediary point to ensure 
that all possible paths are considered. At the end of the process, the distance matrix contains the 
shortestpathsbetweeneachpairofnodes.Additionally,ifanydiagonalmemberinthematrixbecomes 
negative,thegraph'sweightcycleisshownasnegative.Thisisbecauseanegativecyclewouldrender shortest 
path calculations invalid for some node pairs, allowing for an indefinitely decreasing path cost. 
Despite its straightforward methodology, the Floyd-Warshall algorithm is computationally difficult 
for large graphs, with a time complexity of O(N), where n is the number of nodes. Nonetheless, it is 
a helpful tool in scenarios like network routing and traffic flow analysis when 
understandingallpairs'shortestpathsisessentialbecausetoitsuser-friendlinessandabilitytohandle 
enormous graphs. 

 
D-Johnson’sAlgorithm 

 
Johnson'sAlgorithmisatechniqueforfiguringouttheshortestpathsbetweeneachpairofnodesin a weighted 
graph. Because it combines the benefits of Bellman-Ford's and Dijkstra's algorithms, it works 
particularly well with sparse graphs. The unique feature of Johnson's Algorithm is that it can 
handlegraphswithnegativeedgeweightsaslongastherearenonegativeweightcycles.Thealgorithm first 
reweights the edges of the graph to eliminate negative weights. The Bellman-Ford algorithm is used 
to determine the "potential" value of each node, and then all of the graph's edge weights are adjusted. 
This reweighting ensures that all edge weights become non-negative while preserving the relative 
order of shortest pathways. The approach uses Dijkstra's algorithm to determine the shortest 
pathways from each node after reweighting. Since Dijkstra's algorithm works well for networks with 
non-negative weights, this technique allows Johnson's Algorithm to perform better for sparse graphs 
than other all-pairs shortest path techniques. 
The benefits and drawbacks of traditional shortest path methods are outlined in Table 1. Although it  
is ineffective with negative edges, Dijkstra's Algorithm works well with dense graphs and non- 
negative weights. Bellman-Ford is slower and less effective for big, dense graphs, but it can handle 
negative weights and identify cycles. Floyd-Warshall has a high time and memory complexity for 
large graphs, yet it can detect cycles and calculate all-pairs shortest paths. Although Johnson's 
Algorithm works well for sparse networks with negative weights, its reweightingproceduremakes it 
difficult to use. 



8  

Table1.Advantagesand DisadvantagesofClassicalShortestpathalgorithms types. 
 

Algorithm Advantages Disadvantages 

 
 

 
Dijkstra’sAlgorithm 

Efficientforgraphswithnon-negative 
weights. Cannothandlenegativeedge weights. 

Guaranteesoptimalsolutionsforsingle- 
source shortest paths.  

Inefficientforverylargeorsparsegraphs 
without optimizations. Suitablefordensegraphswithnon-negative 

weights. 

 
 
 
 

Bellman-Ford 
Algorithm 

 
Handlesgraphs withnegativeedge weights. SlowerthanDijkstra’s(O(VE))forlarge 

graphs. 

Detectsnegativeweight cycles. 
 

 
Inefficientfordense graphs.  

Suitablefordistributedsystems 

 
 

 
Floyd-Warshall 

Algorithm 

Computesall-pairsshortestpathsinone 
execution. 

Inefficientforlargegraphsdueto 
O(ܸ3)time complexity. 

Simpleandeasyto implement. 
 
 

Memory-intensivefordense graphs. 
Detectsnegativeweight cycles. 

 
 

 
Johnson’sAlgorithm 

Efficientforsparsegraphs. Complextoimplementdueto 
reweighting. 

Handlesnegativeweightswithoutcycles.  
Requiresextracomputationfor 
reweighting,addingoverhead. CombinesthebenefitsofDijkstra’sand 

Bellman-Ford. 
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2.1.2 HeuristicShortestPathAlgorithms 
Heuristicshortestpathalgorithmsareoptimizationmethodsthatprioritizespeedandefficiencyabove 
thorough exploration by using heuristic functions to direct the search for paths in a graph. Heuristic 
approaches aim to approximate optimal paths bymaking well-informed decisions based on expected 
costs, in contrast to classical algorithms that ensure exact answers. 

A-A*Algorithm 
A popular heuristic-based approach for determining the shortest path between a source node and a 
target node in a graph is the A* algorithm. It works especially well in applications with wide search 
spaces, such game development, robotics, and navigation systems. The A* algorithm balances 
computational efficiency and optimality by combining the advantages of Greedy Best-First Search 
and Dijkstra's Algorithm. [13] 

 
A*achieves its performancebyusingacost function to guideits search. Thecost function is defined as: 

݂(݊)=݃(݊)+ℎ(݊) 

 ݃(݊)is theactual cost from the start node to the currentnode݊. 
 ℎ(݊)istheheuristicestimateofthecost from݊tothetarget node. 

 
The heuristic h(n) is a crucial component that establishes the algorithm's efficiency. It must be 
acceptable (never overstate the genuine cost) in order to guarantee optimal solutions. The method 
iterativelyinvestigatesnodeswiththelowestf(n)valuetoensurethattheroutesmostlikelytoleadto the target 
are examined first. If the heuristic is well-designed, A* can significantlyreduce the search 
spacewhencomparedtoothershortestpathalgorithms.Becauseitenablestheheuristictobetailored 
forspecificapplications,A*'sversatilityishighlyvaluedbymany.Forexample,in2Dgridnavigation, the 
Manhattan or Euclidean distance is commonly used as a heuristic. However, the efficacy of the 
heuristic may decrease in cases where the graph is abnormally large or when the heuristic is poorly 
chosen [13]. 

B-GreedyBest-FirstSearchalgorithm 
Greedy Best-First Search is a heuristic-based pathfinding method that looks into nodes that seem to 
be closest to the objective based on a heuristic assessment. "Greedy" refers to its method of 
continuously choosing the node with the lowest heuristic value in an attempt to reach the goal as 
quicklyasfeasible.Unlikeotheralgorithms,suchasA*orDijkstra's,whichconsiderboththeexpected cost 
to theobjectiveandtheactual cost ofaccessinganode, GreedyBest-First Search aloneemploys the 
heuristic function to guide its decisions. The algorithm evaluates its neighbors based on their 
heuristic values, starting at the source node. After selecting the neighbor that appears to be closest to 
thegoal, it movesto thatnode. Duringthis process, thealgorithm iterativelygrows thenodewith the 
smallest estimated distance to the destination. Because of its simple, goal-oriented approach, the 
algorithmcanoftenfindapathtotheobjectivequickly,especiallyinsimpleorwell-structuredgraphs. 
However,becausegreedybest-firstsearchdisregardstheactualcostofreachinganode,itdoesnot 
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yield the shortest path. In other cases, the heuristic function may even select a longer, less optimal 
pathifitproducesestimatesthatarenotcorrect.Forexample,inagraphwithobstaclesordetours,the 
algorithm can focus on a node that appears closer to the goal but takes a much longer path to get it. 
This method is particularly useful when speed is more important than precision. In video games, for 
instance,itiscommonlyemployedtoquicklyguidecharacterstowardadestination.Similarly,inearly 
searchesorscenarioswithsimpleheuristics,itcanprovideafastestimateofthedesiredpath.Despite 
itsshortcomings,GreedyBest-FirstSearchiscommendedforitssimplicityandspeedypathdiscovery in 
large search fields [13]. 

C-AntColonyOptimization(ACO) algorithm 
Ant Colony Optimization (ACO) is a technique that was inspired by the way ants forage for food in 
the wild. In the wild, ants initially roam around aimlessly, but when they return to the colony after 
locating food, they leave behind pheromone trails. Other ants, who are more likely to follow paths 
withhigherpheromoneconcentrations,pickupthesetracks.Eventually,moreantsprefertheshortest road 
since it gathers the most pheromone from frequent use. ACO computationally simulates this 
behavior to address complex optimization problems, especially those involving paths, such the 
traveling salesman problem or network routing [14]. 
Thealgorithminitiallyvisualizestheproblemasagraph,wherenodesrepresentdecisionpoints(e.g., cities 
on a route) and edges reflect relationships with associated costs (e.g., distances). The graph is 
traversedbyartificial"ants"thatconstructsolutions.Eachantmakesprobabilisticdecisionsonwhich 
pathtofollownextbasedontwofactors:problem-specificheuristicinformation,suchasthedistance to the 
next node, and the quantity of pheromone on each edge, which reflects the cumulative desirability of 
that path. As the ants complete their journeys, the algorithm evaluates the quality of their solutions. 
The pheromone on less appealing paths is allowed to progressively fade away, while more 
pheromone is introduced to the edges of paths that lead to better solutions. This evaporation prevents 
the algorithm from becomingstuck in less-than-ideal solutions byreducingthe influence of 
suboptimal paths. Over the course of numerous repetitions, the pheromone dynamics guide the ants 
toward more ideal solutions because shorter or better roads inherently accumulate more pheromone 
and draw in more ants. One of ACO's primary advantages is its ability to balance exploration and 
exploitation. At first, the ants' probabilistic decision-making process allows them to explore a range 
ofoptions,butthepheromonereinforcementgraduallyfocuses onthemostpromisingsolutions.Asa result, 
ACO performs particularly effectively in problems with complex constraints or large search 
spaces.Inthetravelingsalesmanproblem,forexample,wherethegoalistofindtheshortestroutethat visits 
every city exactly once, ACO can iteratively improve solutions by utilizing the collective behavior of 
the ants. In a similar vein, network routing can find efficient data transmission paths and adapt 
dynamically to network changes. 

All things considered, Ant Colony Optimization is an intriguing illustration of how strong 
computational methods can be inspired by natural systems. It is a powerful and adaptable tool for 
resolving optimization issues in a variety of fields since it can replicate the decentralized and self- 
organizing behavior of actual ants [14]. 
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Table2outlinestheadvantagesanddisadvantagesofheuristicshortestpathalgorithms.A*guarantees 
optimal solutions with admissible heuristics but is memory-intensive and heavily reliant on heuristic 
quality. Greedy Best-First Search is fast and goal-oriented but may produce suboptimal paths and 
struggle with misleading heuristics. Ant Colony Optimization (ACO) excels in complex, dynamic 
problems but is computationally intensive and requires careful parameter tuning. 

Table2.Advantagesand Disadvantages ofHeuristicShortestPathAlgorithms types. 
 
 

Algorithm Advantages Disadvantages 

 
 
 

 
A* 

Combinesactualcostandheuristicfor 
optimal solutions. 

Performanceheavilydependsonthe 
quality of the heuristic. 

Guaranteesshortestpathiftheheuristic is 
admissible and consistent. 

 

 
Memory-intensiveforlargegraphs. 

Reducessearchspacecomparedto 
Dijkstra’s. 

 

 
GreedyBest-First Search 

Fastandgoal-oriented,oftenreaching the 
target quickly. Doesnotguaranteeshortestpath. 

Simple to implement. Cangetstuckinlocalminimaifthe 
heuristic is misleading. 

 
 

 
AntColonyOptimization 

(ACO) 

Effectiveforcomplexoptimization 
problems. 

Computationallyexpensiveforlarge 
problems. 

Flexibleandadaptabletodynamic 
environments.  

Performance depends on parameter 
tuning(e.g.,pheromoneevaporation 

rate). Avoids premature convergence by 
balancingexplorationandexploitation. 

 
2.1.3 HybridShortestPathAlgorithms 
Hybridshortestpathalgorithmsareanadvancedclassofoptimizationtechniquesthatcombineaspects of 
heuristic and adaptive strategies like machine learning, genetic algorithms, or dynamic changes with 
traditional deterministic approaches like Dijkstra's or Bellman-Ford. These algorithms combine the 
best aspects of heuristic and classical methodologies to achieve the optimal balance between 
computing efficiency, adaptability, and scalability. They are hence highly effective at addressing 
difficult pathfinding problems in dynamic and uncertain scenarios. 
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A-MachineLearning(ML)-BasedPathfinding 
 

One of the best-known examples is the hybrid method called Machine Learning (ML)-Based 
Pathfinding. This approach dynamically selects the optimal routes by utilizing prediction algorithms 
that have been trained on massive amounts of data. Machine learning algorithms analyze both 
historical data, such recurring traffic patterns, and real-time inputs, like the amount of congestion at 
anygiventime,toproducewell-informedroutingdecisions.Forinstance,ML-basedalgorithmsinan 
intelligent transportation system predict the quickest routes based on real-time traffic, weather, and 
road closure data. Similarly, by adapting to shifting network conditions, including node failures or 
bandwidthfluctuations,machinelearning(ML) modelsinInternetofThings(IoT)networksenhance data 
flow. By incorporating reinforcement learning (RL), a branch of machine learning that enables 
thesystemtolearnfrompastdecisionsandmakemoreaccuratepredictionsgoingforward,thesystem 
caniterativelyenhanceitspathfindingtactics.However,thesuccessofML-basedpathfindingdepends on 
the quality of the training data and the processing capacity available for real-time inference. [15] 

 
B-DynamicA* 

 
AnothercrucialhybridtechniqueisdynamicA*(D*),avariantoftheclassicA*algorithmthatadjusts to 
modifications in network architecture or edge weights while it is being run. While traditional A* 
operates on static graphs, D* is designed to adapt in real time. In autonomous robotics, for example, 
when environmental factors can change abruptly, D* merely recalculates the portions of the path 
affectedbynewobstaclesorupdatedterraincosts.Insteadofrepeatingtheentireprocess,D*gradually 
modifiesthesolutiontomaintaincomputingefficiency[17].D*isparticularlywell-suitedfordynamic 
environments that require continuous adjustment, such urban navigation or disaster response 
scenarios, because of this feature. 

 
C-GeneticAlgorithm(GA)-BasedPathfinding 

 
GeneticAlgorithm(GA)-BasedPathfindingisanotherinstanceofhybridoptimizationthattakescues from 
evolution and natural selection. In GA-based pathfinding, which uses a population of potential 
solutions (paths) that evolves over time, more successful solutions are selected for reproduction and 
lesssuccessfulonesarerejected.Geneticoperationsthatintroducevarietyandenabletheexploration 
ofavastsolutionspaceincludemutationandcrossover.Forlargeandcomplexnetworks,suchsupply chain 
optimization, logisticsplanning, and network routing, wherethesheernumberofvariablesand 
constraints may render typical methods impractical, this approach performs very well. GA-based 
methods require careful parameter tuning, including population size and mutation rate, to ensure 
convergence to a perfect or nearly ideal solution [16]. 
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The advantages and disadvantages of hybrid shortest route methods are shown in Table 3. Although 
ML-Based Pathfindingis computationallydemandingand dependent on high-qualitytrainingdata, it 
can adjust to real-time conditions and learn from past data. Dynamic A* is less appropriate for static 
graphssinceitintroducescomplexityforincrementalupdateswhileupdatingpathwayseffectivelyin 
changing settings. Although GA-Based Pathfinding avoids local optima and explores wide solution 
spaces, it has a slow convergence rate and necessitates exact parameter tweaking. 

 
 

Table3.theadvantagesanddisadvantagesofdifferenttypesofhybridshortestpath 
algorithms: 

 

AlgorithmType Advantages Disadvantages 

 
 
 
 

ML-Based Pathfinding 

-Adaptsdynamicallytoreal-time 
conditions, such as traffic or 

network changes. 

Computationallyintensive,requiring 
substantialresources fortraining and 

inference. 

Learnsfromhistoricaldatato 
improveaccuracyovertime. 

 
 

Performancedependsheavilyonthe 
qualityandvolumeof training data. Handlescomplex,multi-variable 

environments effectively. 

 
 
 
 

DynamicA* 

Efficiently handles changes in 
graph structure or edge weights 

withoutrecalculatingfromscratch. 

Requires additional logic for 
incrementalupdates,increasing 
implementation complexity. 

Maintainshighcomputational 
efficiency in dynamic 

environments. 

 
 

Notidealforstaticgraphsdueto added 
overhead. Suitableforreal-timenavigation and 

robotics. 

 
 
 
 

GA-Based Pathfinding 

Capableofexploringlarge, 
complex solution spaces. 

Slow convergence in large-scale 
problemsduetotheiterativenature. 

Avoidslocaloptimathrough 
crossover and mutation. 

 
Requires careful parameter tuning 

(e.g.,mutationrate,populationsize)to 
ensure efficiency. Flexibleandadaptabletoawide range 

of optimization problems. 
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2.2 PerformanceEvaluationofShortestPath Algorithms 
Theperformanceofshortestpathalgorithmsisevaluatedusingbenchmarkssuchasconvergencetime, 
computational complexity, scalability, and fault tolerance, which makes it a crucial area of study. 
Convergence time quantifies how quickly an algorithm stabilizes routing decisions after network 
changes. Dijkstra'salgorithmisrenowned foritsdeterministicconvergence,butheuristicapproaches 
suchasA*concentrateontenableroutestogeneratequickeranswersinspecificsituations[9].Another 
important statistic is computational complexity. The complexity of Dijkstra's algorithm is O(V)^2, 
however with sophisticated data structures like Fibonacci heaps, it can be lowered to O(V+E) log(V) 
[13]. By eliminating pointless explorations, heuristic techniques such as A* further optimize this 
process. Heuristic and hybrid algorithms outperform classical approaches in addressing the problem 
of scalability, especially in large-scale networks [9]. Fault tolerance is essential in dynamic or 
disrupted environments. While algorithms like Bellman-Ford are robust to changes in topology, 
heuristic techniques excel at adapting to changing conditions. Simulation tools such as ns-3 and 
OPNEThaveenabledtheevaluationofthesemetricsunderrealisticconditionsandhavealsoprovided insight 
into the behavior of the algorithms in different scenarios [15]. 

2.3 EmergingTrends inShortest Path Algorithms 
Advancesintechnologyhaveledtochangesinalgorithmsfortheshortestpath.Machinelearningand 
artificial intelligence are increasingly being used to dynamically optimize routing decisions. For 
example, by adaptively learning the optimal routes based on both history and current data, 
reinforcement learning models improve flexibility in dynamic networks [11]. Thanks to Software- 
Defined Networking's (SDN) centralized routing control, global shortest path optimization is now 
feasible. SDN simplifies complex configurations and provides real-time traffic control capabilities, 
making it a groundbreaking technique in modern networking [15]. Blockchain technology is also 
changingthegameinthedomainofsecurerouting.Bydecentralizingpowerandensuringtheaccuracy of 
routing data, blockchain-based protocols minimize securityvulnerabilities, particularlyin IoT and 
edge networks [6]. Additionally, IoT-specific energy-efficient algorithms address the unique 
constraints of these devices by emphasizing minimal resource use [8]. 

 
2.4 ApplicationsofShortestPath AlgorithmsinModernNetworks 
Shortest path algorithms, which offer efficient resource management, communication optimization, 
and routing for a variety of applications, are at the heart of modern networks. These algorithms have 
evolved to meet the needs of several situations, ranging from traditional wired networks to complex 
IoT ecosystems and dynamic wireless systems. In traditional wired networks, protocols like RIP 
(Routing Information Protocol) and OSPF (Open Shortest Path First) heavily rely on shortest path 
algorithms to maintain optimal routing tables. For example, OSPF uses Dijkstra's algorithm to 
determine the shortest path tree for each node, ensuringefficient and loop-free data delivery. Similar 
tothis,RIPfindstheshortestpathsusingtheBellman-Fordalgorithmandhopcounts.Theseclassical 
methodsareidealfornetworksthatarestaticorsemi-staticandhaverelativelyfewtopologychanges. Node 
mobility, bandwidth limitations, and dynamic topologies make wireless network challenges 
morecomplex.Inthiscase,heuristicandhybridalgorithmsworkeffectivelyandadaptquicklyto 
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changes. Mobile Ad-Hoc Networks (MANETs), for instance, use protocols such as AODV (Ad Hoc 
On-Demand Distance Vector) to dynamically discover routes only when required. Energy-efficient 
techniques, such as Ant Colony Optimization or Genetic techniques, are used by Wireless Sensor 
Networks (WSNs) to enable reliable data transport and prolong the life of devices with limited 
resources [18]. In the context of the Internet of Things and smart cities, shortest path algorithms are 
especiallymadetodealwithconstraintslikeenergysavingandadaptation.Algorithmsthatcanpredict and 
dynamically adapt to network conditions are required since IoT networks usually have limited 
resources. Due to their ability to learn from historical data and generate real-time routing decisions, 
machine learning-based pathfinding algorithms are growing in popularity in these scenarios [19]. 
Applications such as traffic control in smart cities and public transportation depend on shortest path 
algorithms. For instance, real-time navigation systems include algorithms like A* that dynamically 
adjust to traffic conditions in order to provide the optimal travel routes. To optimize internal 
communication, cloud computing and data center environments commonly employ shortest path 
methods. These systems require efficient routing in order to balance traffic flows and lower latency. 
Modern data center topologies, such as Clos networks or fat-tree designs, use algorithms like ECMP 
(Equal-Cost Multi-Path) to effectively distribute traffic across multiple channels [20]. 

 
 

Autonomous systems, including self-driving automobiles, robotic swarms, and drones, use shortest 
pathalgorithmstonavigateandcompletetasks.AlgorithmslikeDynamicA*(D*)arehighlyhelpful 
inthiscasebecausetheycanadapttochangesintheenvironmentinrealtime,suchasthepresenceof obstacles 
or dynamic variations in goals. This adaptability ensures safe and efficient travel in 
unpredictablesituations.Byselectingroutesthatmaximizethroughputandminimizelatency,shortest path 
algorithms optimize data flow in telecommunication networks. For example, MPLS (Multiprotocol 
Label Switching) networks use shortest path techniques to establish efficient data channels across 
big, interconnected systems. Critical infrastructure, such as electricity grids and emergency response 
systems, can also benefit from these algorithms. Power networks use shortest 
pathalgorithmstominimizetransmissionlossesandensurereliabledistributionofelectricity.During 
emergencies, these algorithms help determine the optimal escape routes and prioritize the restoration 
of communication networks. Moreover, shortest path methods are crucial to applications in artificial 
intelligenceandmachinelearning.Theyareusedinrecommendationsystemstoanalyzerelationships 
inuser-itemgraphsandinsocialnetworkanalysistomeasureindividualinfluenceandconnectedness [20]. 
In these diverse applications, the value and versatility of shortest path approaches are demonstrated. 
They enable systems to adapt, enhance, and function reliably even in complex and dynamic 
environments. By combining classical, heuristic, and hybrid approaches, these algorithms continue 
to encourage innovation and ensure the seamless operation of modern networks. 
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3Literature Review 
S.JohnsonandM.Keller,[13]suggestedsimulationtoolstoassesstheeffectivenessofshortestpath 
algorithms,likeMininetandOMNeT++.Thesetoolsofferaccuratesettingsfortestingfaulttolerance, 
scalability, and efficiency in a range of network scenarios. Their research emphasizes how crucial 
simulation is for connecting theoretical models with practical applications. 

R.Floyd,[14]presentedtechniquesfordynamicprogrammingtoaddressall-pairsshortestpathissues. 
Thisseminalworkestablishedthefoundationforcontemporaryalgorithmsusedintrafficanalysisand 
worldwide connection by demonstrating effective processing in dense graphs. Floyd's approach 
continues to have an impact on the development of comprehensive pathfinding applications. 

M. L. Garcia and P. Martinez, [15] examined developments in shortest path algorithm simulation 
methodswithanemphasisonscalabilityinmassivedynamicnetworks.Theirworkdemonstratedhow 
simulationscanbeusedtoanalyzealgorithmperformanceundervaryingnetworkloads,whichmakes it 
possible to create reliable routing solutions. 

M. A. Javaid,[16] gave a thorough explanation of Dijkstra's method, highlighting its effectiveness 
and simplicityin static topologies. The algorithm's shortcomings in dynamic contexts wereshown 
bytheanalysis,whichledtomoreinvestigationintoadaptivetechniques.Javaid'sobservationsare still 
applicable in situations involving organized networks. 

X. Z. Wang, [17] compared the effectiveness of the Dijkstra, Bellman-Ford, and A* algorithms in 
both static and dynamic networks. Wangprovided helpful advice forchoosingthe best method for 
particularnetworksettingsbyidentifyingtrade-offsbetweencomputingcomplexity,accuracy,and 
flexibility. 

J. Kleinberg and É. Tardos, [18] discussed sophisticated algorithmic techniques for shortest path 
problemsthatarebasedongraphs.Theirresearchdemonstratedcomputationallyeffectiveandscalable 
methodsthataresuitedtothegrowingneedsofcontemporarynetworks.Thestudyformsthebasisfor creating 
novel routing strategies. 

T.H. Cormen et al., [19] discussed thetheoretical foundations and real-worldapplications of classic 
algorithms like Bellman-Ford and Dijkstra's. Their research serves as a vital resource for 
comprehending the mathematical underpinnings of shortest path algorithms and how they are 
implemented. 

A.Orda,[20]modelsthataddress congestion and delayintime-dependent networksforshortestpath 
computation. The study offered ideas for enhancing routing in both static and dynamic systems by 
introducing adaptive techniques for real-time traffic and dynamic network situations. 

K. R. Chowdhury and I. F. Akyildiz, [21] created a routing protocol that optimizes spectrum 
consumption for cognitive radio ad hoc networks by utilizing shortest path methods. Their research 
showed how flexible shortest path techniques may be in controlling limited network resources and 
improving overall effectiveness. 
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X. Yang and D. Mehdi, [22] examined improvements to network virtualization shortest path 
techniques. In order to guarantee scalability and effective resource allocation, they addressed the 
difficulties in handling changing topologies and virtualized resources and offered solutions. 

M. Al-Karaki and A. Kamal, [23] Reviewed routing techniques in wireless sensor networks, 
emphasizing energy-efficient shortest path algorithms. Their research helped to ensure the 
sustainability of WSNs by addressing the need for dependable communication with resource 
conservation in limited devices. 

X. Sun et al., [24] presented secure routing systems for Internet of Things networks based on 
blockchain technology. The study made sure that shortest path calculations were transparent, 
trustworthy, and impervious to manipulation by incorporating blockchain technology. The potential 
of decentralized security solutions in network routing is demonstrated by their methodology. 

R. Xu, H. Zhou, and Y. Zhang, [25] presented a framework for adaptive shortest path routing in 
complicatednetworksusingreinforcementlearning.Theirmethodologyreduceslatencyandincreases 
routing efficiency by dynamically adapting to changes in real time. This AI-powered method 
establishes a standard for contemporary routing methods. 

A. Goyaletal.,[26]createdagraph-basedmodelfordynamicshortestpathcomputingthatcombines deep 
learning and reinforcement learning. The study showed flexibility in large-scale networks and 
decreased processing cost. Their research highlights how AI might improve routing efficiency. 

B. Lee et al., [27] created a hybrid shortest path algorithm that combines swarm intelligence and 
heuristic techniques for VANETs. Their program outperformed conventional techniques in terms of 
efficiency and adaptability by optimizing routing in crowded situations by utilizing real-time traffic 
data. 

C. Zhangetal.,[28]suggestedamulti-objectiveoptimizationparadigmforInternetofThingssystems that 
balances dependability, latency, and energy usage. Through the use of a genetic algorithm with 
Pareto optimality, their work made it possible to route data effectively in situations with limited 
resources. 

D. Wang et al., [29] addressed k-shortest path issues in extensive road networks by using graph 
attentionnetworks(GATs).Theirmodelshowedpromiseforurbantrafficmanagementsystemswhere 
effective routing is essential and increased prediction accuracy. 

E. Chen et al., [30] created amachinelearning-based adaptiveshortest path techniqueforSDNs that 
can dynamically anticipate and reduce congestion. Their method improved network utilization and 
throughput, which helped SDNs scale. 

F. Liu et al., [31] suggested a shortest path technique that runs faster on a GPU for real-time smart 
cityapplications. Their approach greatlydecreased processingtime byemployingCUDA to parallelize 
computations, allowing for effective pathfinding in large-scale graphs. 
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G. Roy et al., [32] presented a hybrid routing algorithm for MANETs that combines Bellman-Ford 
and Dijkstra's advantages. Their method improved stability and computational efficiency by 
dynamically switching between algorithms according to network conditions. 

H. Xu et al., [33] discussed shortest path calculations in wireless sensor networks that take energy 
efficiency into account. The model extended network lifetime by optimizing routes while taking 
energy consumption and replenishment rates into account by incorporating a reinforcement learning 
framework. 

I. Singh et al., [34] suggested a real-time shortest path algorithm that uses reinforcement learning to 
adjust to traffic circumstances in real time for intelligent transportation systems. The algorithm 
demonstrateditsefficacyincontemporarytrafficnetworksbydrasticallyloweringaveragetriptimes. 

J. Pateletal.,[35]createdashortestpathalgorithmforhigh-dimensionalnetworksthatisinspiredby 
quantum mechanics. Their approach showed excellent scalability and computational efficiency by 
mimickingquantumannealingprocesses,providingcreativeanswerstochallengingroutingproblems. 

Table 4 provides an overview of the evaluated literature. A thorough summary of numerous studies 
on shortest path algorithms and their uses in various network contexts is given in this table. It 
emphasizes significant innovations, approaches, and methods used to tackle issues like scalability, 
resource restrictions, and dynamic environments. Table 8, which arranges this corpus of work, is a 
useful resource for comprehending developments in shortest path calculations, such as traditional 
algorithms, heuristic techniques, and reinforcement learning frameworks. 

 
Table4.SummarizationofLiteraturereview 

 

Reference Focus/Topic KeyContributions Algorithm(s) Used 

 
 

[21] 

 
Simulation tools 

(OMNeT++,Mininet) 

Evaluated performance of shortest path 
algorithmsundervaryingnetworkconditions, 
highlightingtheroleofsimulationinbridging 

theory and practice. 

 
Dijkstra’s,Bellman- 

Ford 

 
[22] 

Dynamicprogramming 
for all-pairs shortest 

paths 

Introducedefficientcomputationmethodsfor 
dense graphs, laying foundational work for 

modern pathfinding algorithms. 

 
Floyd-Warshall 

 
 

[23] 

 
Advancesinsimulation 
techniquesfordynamic 

networks 

 
Highlighted the role of simulations in 

analyzingalgorithmscalabilityandrobustness 
under dynamic network loads. 

 
Heuristic and 

simulation-based 
approaches 
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[24] 

 
AnalysisofDijkstra’s 

algorithm 

Emphasized its simplicity and efficiency in 
staticnetworkswhileidentifyinglimitationsin 

dynamic environments. 

 
Dijkstra’s 

 
 

[25] 

 
Comparative study of 

Dijkstra,Bellman-Ford, 
and A* algorithms 

 
Evaluated trade-offs in computational 

complexity,accuracy,andadaptabilityfor 
static and dynamic networks. 

 
Dijkstra’s,Bellman- 

Ford, A* 

 
 

[26] 

 
Advancedgraph-based 
algorithmic strategies 

 
Discussedscalable,efficientsolutionstailored 
for modern network demands, serving as a 

cornerstoneforinnovativeroutingapproaches. 

 
Graph-basedalgorithms 

(general strategies) 

 
[27] 

 
Reviewofclassical 

algorithms 

 
Detailedtheoreticalandpracticalapplications of 
Dijkstra’s and Bellman-Ford algorithms. 

 
Dijkstra’s,Bellman- 

Ford 

 
 

[28] 

 
Time-dependentshortest 

paths 

 
Proposed models addressing latency and 

congestioninreal-timedynamic networks. 

 
Time-dependent 

variationsofshortest 
path algorithms 

 
 

[29] 

 
Routing in cognitive 

radioadhocnetworks 

Optimizedspectrumusageusingshortestpath 
algorithms, enhancing adaptability and 

efficiency in resource-constrained 
environments. 

 
Dijkstra’s,heuristic- 

based algorithms 

 
[30] 

 
Enhancements for 

networkvirtualization 

Proposed solutions for managing dynamic 
topologiesandvirtualizedresources,ensuring 

scalability. 

 
Hybrid algorithms 

 
[31] 

Energy-efficientrouting 
in wireless sensor 

networks 

Addressed resource conservation in 
constraineddeviceswhileensuringreliable 

communication. 

 
Energy-awareshortest 

path algorithms 

 
 

[32] 

 
Blockchain-based 

routingprotocolsforIoT 

 
Ensuredtransparency,trust,andresistanceto 
tampering in shortest path computations, 
enhancing security in network routing. 

 
Blockchain-enhanced 

shortestpath algorithms 
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[33] 

 
Reinforcementlearning 

for adaptive routing 

Developed an AI-driven framework for 
dynamically adjusting routes in complex 

networks,improvingefficiencyandreducing 
latency. 

Reinforcementlearning- 
based shortest path 

algorithms 

 
[34] 

Graph-based models 
integrating deep and 
reinforcementlearning 

Demonstrated adaptability in dynamic 
networkswhilereducingcomputational 

overhead. 

 
Deep learning and 

reinforcementlearning 

 
[35] Hybridalgorithmfor 

VANETs 

Combinedheuristicandswarmintelligence 
methods for efficient routing in congested 

scenarios. 

Swarmintelligenceand 
heuristic algorithms 

[36] 
Multi-objective 

optimizationforIoT 
systems 

Balanced energy consumption, latency, and 
reliabilityusinggeneticalgorithmsandPareto 

optimality. 
Geneticalgorithms 

 
[37] 

Graph Attention 
Networks(GATs)fork- 

shortest paths 

 
Improvedpredictionaccuracyforurbantraffic 

management in large-scale road networks. 

 
Graph attention 

networks(GATs) 

[38] Adaptivealgorithmsfor 
SDNs 

Incorporatedmachinelearningtodynamically 
predict and mitigate congestion, enhancing 

scalability. 

Machinelearning-based 
shortestpath algorithms 

[39] GPU-accelerated 
shortestpathalgorithm 

Reducedprocessingtimesignificantlyforreal- 
time applications in smart cities through 

CUDAparallelization. 

Parallelized shortest 
pathalgorithms(GPU- 

based) 

 
[40] 

 
Hybridroutingfor 

MANETs 

DynamicallyswitchedbetweenDijkstra’sand 
Bellman-Ford algorithms based on network 
conditions,improvingstabilityandefficiency. 

 
Dijkstra’s,Bellman- 

Ford 

[41] Energy-awareroutingin 
WSNs 

Optimizedroutesconsideringenergy 
consumption and replenishment, extending 
networklifetimeusingreinforcementlearning. 

Energy-awareand 
reinforcementlearning 

algorithms 
 

[42] Real-timeshortestpath 
algorithm for ITS 

Leveraged reinforcement learning to 
dynamicallyadapttotrafficconditions, 
significantly reducing travel times. 

Reinforcementlearning- 
based algorithms 

 
[43] 

 
Quantum-inspired 

shortestpathalgorithms 

Demonstrated superior scalability and 
efficiency for complex, high-dimensional 

networksusingquantumannealingprocesses. 

 
Quantum-inspired 

shortestpathalgorithms 
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4. Discussion 

 
The ability of shortest path algorithms to strike a balance between computing efficiency and 
adaptability while dealing with intricate network routing problems is among their most alluring 
features. The deterministic nature and dependability of classical algorithms, such Dijkstra's and 
Bellman-Ford, in static networks are highlighted by research conducted by [21] and [24]. Bellman- 
Ford expands the applicabilityof Dijkstra's method to include situations with negative edge weights, 
while Dijkstra's approach is especially praised for its effectiveness in graphs with non-negative 
weights. Their shortcomings, however, become apparent in dynamic networks where real-time 
flexibilityisimpededbytherequirementforrecalculations.Webelievethatwhileclassicalalgorithms are 
very useful for clearly specified, static issues, they are not flexible enough for contemporary, 
dynamicsystems.Bybringingflexibilityandheuristic-drivenefficiency,heuristicalgorithmssuchas 
AandAntColonyOptimization(ACO)*,on theotherhand,providecreativesolutions.Accordingto 
[13],A*isperfectforapplicationslikeroboticsandnavigationbecauseitcombinesheuristicforecasts with 
actual costs to guarantee optimal solutions. However, ACO, which was evaluated by [14], uses 
biological inspiration to optimize pathways in large-scale, adaptive networks in a dynamic manner. 
Althoughthesealgorithmsperformexceptionallywellindynamiccontexts,theirgeneralizabilitymay 
beconstrainedbytheirdependenceonheuristicquality(forA*)andcomputingcomplexity(forACO). 
Fordynamicandlarge-scalesystems,webelieveheuristicalgorithmsofferasubstantialadvanceover 
conventional approaches; yet, they still need to be carefully tuned to reach their full potential. 

 
Shortestpathoptimizationhasgonefurtherwiththeintroductionofhybridalgorithms,whichcombine 
theadvantagesofheuristicandclassicalmethods.Forinstance,DynamicA*,whichwasexaminedby 
[17],greatlyincreasestheefficiencyofreal-timenavigationsystemsbyincludingincrementalupdates to 
adaptively recalculate just affected courses. Similarly, reinforcement learning is used in machine 
learning(ML)-basedpathfinding,asdiscussedin[19]and[25],todynamicallyforecastthebestroutes. ML-
based techniques provide unmatched scalability and flexibility, and they perform very well in high-
dimensional and data-rich environments. However, they are difficult to apply in systems with 
limitedresources duetotheirneedon largeamountsoftraining dataand computationalpower.Since 
hybrid algorithms combine the flexibility of heuristic and machine learning-driven techniques with 
the accuracy of traditional methods, we believe they are the way of the future for shortest path 
optimization. The possibility of sustainability in shortest path algorithms is another fascinating 
analogy. Energy-efficient routing, fueled by algorithms like ACO and ML-based models, can lower 
powerconsumptioninIoTnetworks,accordingtostudieslike[32]and[38].Thesedevelopmentsare in line 
with network management's increasing demand for sustainable technologies. Heuristic and hybrid 
techniques incorporate energy conservation, which makes them more applicable in 
contemporaryapplicationsthanclassicalalgorithms,whichonlyconcentrateonpathoptimization.We 
believe that this emphasis on sustainability not only makes these algorithms more useful, but also 
guarantees that they are in line with more general environmental objectives. 
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Although these algorithms have advanced, there are still difficulties in putting them into practice. 
Concerns including interpretability, scalability, and the moral ramifications of automated decision- 
making are highlighted in research by [35] and [37]. For instance, despite their strength, ML-based 
algorithmshavea"black-box"aspectthatmakesitchallengingtocomprehendorjustifytheirchoices. On the 
other hand, while traditional algorithms such as Dijkstra's are more visible, they are not as flexible as 
machine learning-based solutions. For researchers and practitioners, striking a balance between 
transparency and adaptability continues to be a crucial task. 

4.1 ComparingthedifferencesbetweenShortestpathalgorithmstypes 
 

Table5comparesClassical,Heuristic,andHybridshortestpathalgorithms,focusingontheirstrengths and 
applications. Classical algorithms like Dijkstra’s and Bellman-Ford guarantee accuracy but 
strugglewithdynamicgraphsandlarge-scaleproblemsduetotheircomputationalintensity.Heuristic 
algorithmslikeA*andACOprioritizeefficiencybyguidingthesearchwithapproximationsbutmay produce 
suboptimal paths if the heuristic is flawed. Hybrid algorithms combine the precision of classical 
methods with the adaptability of heuristics or machine learning, excelling in dynamic and complex 
environments, though they are computationally demanding. Each category fits specific use cases, 
from static graph analysis to real-time navigation in IoT systems. The choice depends on the trade-
offs between accuracy, efficiency, and adaptability. 

Table5.ComparingthedifferencesbetweenClassical,Heuristic,andHybridshortestpath 
algorithms: 

 

 
Aspect 

 
ClassicalAlgorithms 

 
HeuristicAlgorithms 

 
HybridAlgorithms 

 
 

Approach 

Deterministic and 
mathematically grounded 

methodsthatguaranteeoptimal 
solutions. 

 
Use approximations and 

heuristicstoguidethesearch, 
improving efficiency. 

Combine deterministic 
methodswithheuristicor 
adaptive techniques for 

better performance. 

 
Types 

 
Dijkstra’s,Bellman-Ford, 

Floyd-Warshall 

A*,GreedyBest-FirstSearch, 
Ant Colony Optimization 

(ACO) 

Machine Learning-Based 
Pathfinding,DynamicA*, 
Genetic Algorithm (GA)- 

Based Pathfinding 

 
 

Optimality 

 
Guaranteestheshortestpath 
under specified conditions. 

 
Oftenprovidesnear-optimal 
pathsbutdoesnotguarantee 

the shortest path. 

Balancesbetweenoptimality 
and efficiency, often 

achieving near-optimal 
solutions. 
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Efficiency 

Can be computationally 
expensiveforlargegraphsor 

dynamic environments. 

Moreefficientduetoheuristic- 
driven search, reducing 

unnecessary exploration. 

Achieves high efficiency by 
combiningclassicalprecision 
with heuristic adaptability. 

 
 

Adaptability 

Lessadaptabletodynamic 
changes; requires 

recomputation if graph 
changes. 

 
Can adapt to dynamic 

conditionsbutdependsheavily 
on the heuristic used. 

 
Highlyadaptabletodynamic 
environments, often capable 

of real-time updates. 

 
 

Complexity 

 
Moderatecomplexity, often 
 depending on(2ܸ)ܱ ݎ݋ (ܸ)ܱ

the algorithm. 

 
Complexity depends on the 
heuristic;typicallylowerfor 

static graphs. 

Higher complexity due to 
combining methods but 

offersbetterscalabilityand 
adaptability. 

 

 
SearchStrategy 

 
Exhaustiveexplorationofall 
possible paths to guarantee 

correctness. 

 
Focusesonthemostpromising 

paths based on heuristic 
estimates. 

 
Integratesheuristicguidance 

with deterministic 
calculations or adaptive 

learning. 

 
 

MemoryUsage 

 
Requires significant memory 
forstoring allpaths and costs. 

 
Requireslessmemorydueto 

reduced search space. 

Memory-intensive due to 
combined techniques and 

storageofadditionallearning 
parameters. 

 
 

Applications 

 
Networkrouting,staticgraph 

analysis, distributed 
computations. 

 
Navigationsystems,robotics, 
dynamicrouting,and games. 

Complex optimization 
problems, real-time 

navigation,IoTnetworks, 
and multi-agent systems. 

 
 

KeyStrengths 

 
Accuracyandreliability;well- 

suited for static and well- 
defined problems. 

Speed and efficiency, 
especiallyinlargesearch spaces 

or dynamic environments. 

 
Flexibility,scalability,and 
adaptability to changing 

conditions. 

 
Key 

Weaknesses 

Pooradaptabilitytodynamic 
graphs and computationally 

intensive for large-scale 
problems. 

 
Heuristic quality impacts 

solutionquality;suboptimal 
paths are possible. 

 
Higher computational and 

implementationcomplexity 
dueto combiningmethods. 
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4.2 ComparingthedifferencesbetweenClassicalalgorithmstypes 
 

Table 6 compares four shortest-path algorithms based on their purpose, edge weight handling, 
complexity, and use cases. While Dijkstra's Algorithm performs best on sparse graphs with non- 
negative weights, Bellman-Ford handles graphs with negative weights and detects negative cycles. 
Floyd-Warshallefficientlydeterminesall-pairsshortestpathsfordensegraphs,despiteitsprocessing 
demands.Forsparsenetworksthatrequireall-pairsshortestpaths,Johnson'sAlgorithmcombinesthe 
Bellman-Ford and Dijkstra algorithms. Each algorithm has pros and cons, and the requirements and 
graph topology determine which algorithms are applicable. 

 
4.3 ComparingbetweenHeuristicShortestPathAlgorithmstypes. 

 
Based on their methodology, effectiveness, and use cases, A*, Greedy Best-First Search, and Ant 
Colony Optimization (ACO) are contrasted in Table 7. Although A* is memory-intensive, it 
guarantees optimal pathways with accepted heuristics by striking a balance between actual costs and 
heuristics. For speed, Greedy Best-First Search just uses heuristics, but it runs the risk of choosing 
less-than-ideal routes. ACO is computationally demanding yet excels at complicated, dynamic 
situationsthankstoitsuseofpheromonesandprobabilisticexploration.Greedyisbestforquick,easy 
searches, A* is best for optimal navigation, and ACO is best for large-scale optimization such as 
network routing and TSP. ACO stands out for its parallelism, which uses several agents to conduct 
exploration. 

 
Table6.ComparingthedifferencesbetweenDijkstra’sAlgorithm,Bellman-FordAlgorithm,Floyd- 

Warshall Algorithm, and Johnson’s Algorithm: 
 

 
Aspect 

 
Dijkstra’sAlgorithm Bellman-Ford 

Algorithm 
Floyd-Warshall 

Algorithm 
Johnson’s 
Algorithm 

 
Purpose 

Finds the shortest path 
fromasinglesourcetoall 

nodes. 

Finds the shortest 
pathfromasingle 

source to all 
nodes. 

Findstheshortest 
pathsbetweenall 
pairs of nodes. 

Findstheshortest 
pathsbetweenall 
pairs of nodes. 

 
EdgeWeights 

 
Non-negativeweights 

only. 

Handles both 
positive and 

negativeweights. 

Handles both 
positive and 

negativeweights 
(nonegative 

cycles). 

Handlesbothpositive 
andnegativeweights 
(no negative cycles). 

Cycle Detection Doesnotdetectnegative 
weight cycles. 

Detectsnegative 
weight cycles. 

Detectsnegative 
weight cycles. 

Detects negative 
weightcyclesduring 

reweighting. 
 

TimeComplexity 
 (ܧ+2ܸ)ܱ

ORܱ((ܸ+ܧ)logܸ) 
Withpriorityqueue. 

 
 (ܸ݃݋ܮ2ܸ+ܧܸ)ܱ (3ܸ)ܱ (ܧܸ)ܱ
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GraphType 

Bestforsparsegraphs with 
non-negative weights. 

Works for any 
weighted graph 

(withoutnegative 
cycles). 

Suitablefordense 
graphs. 

Bestforsparse 
graphs. 

 
Space Complexity 

 (ܧ+ܸ)ܱ
foradjacencylist 
implementation. 

 (ܧ+ܸ)ܱ
foradjacencylist 
implementation. 

ܱ(ܸ2) 
duetothedistance 

matrix. 

ܱ(ܸ2) 
due to reweighting 
anddistancematrix. 

 
Approach 

 
Greedyalgorithm. 

Dynamic 
programmingwith 
edge relaxation. 

Dynamic 
programmingwith 

incremental 
updates. 

Combines Bellman- 
Fordforreweighting 
and Dijkstra’s for 

pathfinding. 

 
UseCase 

Bestforroutinginstatic 
networks with non- 
negative weights. 

Used for 
distributed 

systemsorgraphs 
withnegative 

weights. 

Used for dense 
graphs or when 
all-pairs shortest 
pathsare required. 

Efficient for sparse 
graphsandall-pairs 

shortest paths. 

 
Implementation 

Complexity 

 
Simple to implement. 

 
Relativelysimple 

to implement. 

Simple but 
computationally 

intensive. 

Complex due to 
reweighting and 

multiplealgorithms. 

 
 
 

Table7.ComparingbetweenA*,GreedyBest-FirstSearch,Floyd-WarshallAlgorithm,andAnt 
Colony Optimization (ACO): 

 

 
Aspect 

 
A* 

 
GreedyBest-First Search AntColonyOptimization 

(ACO) 

 
Approach 

Combinesactualcost 
݃(݊)andheuristicestimate 
ℎ(݊)tofindthe shortestpath. 

Reliessolelyon the 
heuristicestimateℎ(݊)to 

guide the search. 

Usespheromonetrailsand 
heuristic information for 
probabilistic pathfinding. 

 
Optimality 

Guaranteestheshortestpath 
iftheheuristicisadmissible 

and consistent. 

Does not guarantee the 
shortest path, as it only 
focusesontheimmediate 

goal. 

Doesnotalwaysguaranteethe 
shortest path but often finds 

near-optimal solutions. 

 
 

SearchStrategy 

Expandsnodesbasedon 
݂(݊) = ݃(݊) +ℎ(݊) 

balancingexplorationand 
exploitation. 

Expands nodes based on 
thesmallestheuristicvalue 
ℎ(݊)favoringgoal-directed 

paths. 

Explores multiple paths 
probabilisticallyandreinforces 

better solutions with 
pheromones. 
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Complexity 

Memory-intensiveforlarge 
graphs due to maintaining 

open and closed lists. 

Requires less memory 
comparedtoA*butmay 

explore irrelevant paths. 

Computationallyintensivefor 
large-scale problems due to 

multipleiterationsand 
pheromone updates. 

 
Performance 

Highlyefficientwithawell- 
designedheuristic,reducing 
unnecessary exploration. 

Fasterinsimplegraphsbut 
prone to getting stuck in 
suboptimal paths if the 
heuristicis misleading. 

Balances exploration and 
exploitation, making it 

effectiveforcomplex,dynamic 
problems. 

 
Heuristic 

Dependency 

Strongly depends on the 
heuristic for efficiency but 
guaranteescorrectnesswith 

admissible heuristics. 

Fully relies on the 
heuristic, making its 
accuracycriticaltothe 
algorithm’s success. 

Partially dependent on 
heuristic;pheromonedynamics 

compensate for heuristic 
weaknesses. 

 
Parallelism Sequential, typically 

processesonepathatatime. 
Sequential,focusingon one 

path at a time. 

Highly parallelizable, as 
multipleantscanexplorepaths 

simultaneously. 

 
Applications 

Usedinnavigation,robotics, 
and scenarios requiring 

optimal paths. 

Common in quick 
pathfinding,likevideo 
games,wherespeedis 

more critical than 
accuracy. 

Idealforcomplexoptimization 
problems, such as TSP, 

network routing, and dynamic 
systems. 

 
 
 
 

4.4 ComparingbetweenHybirdShortestPathAlgorithmstypes. 
 

Table 8 contrasts the use cases, complexity, and flexibility of ML-Based Pathfinding, Dynamic A*, 
andGA-BasedPathfinding.ML-BasedPathfindingusesmachinelearningtoforecastthebestroutes; it 
works well in dynamic settings but needs a lot of trainingdata and processingpower. Dynamic A* 
adds overhead for static issues but ensures optimalityin real-time scenarios such as robot navigation 
byincrementallyadaptingto graph changes. Despite its delayed convergence and need on parameter 
tuning, GA-Based Pathfinding effectively explores vast, complicated networks by applying 
evolutionaryprinciples. Dynamic A* is effective in adaptive scenarios, GA flourishes in large-scale, 
intricate optimization tasks, and ML shines in high-dimensional domains. 
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Table8.ComparingthedifferencesbetweenML-BasedPathfinding,DynamicA*,andGA-Based Pathfinding: 
 

 
Aspect 

 
ML-BasedPathfinding 

 
DynamicA* 

 
GA-BasedPathfinding 

 

 
Approach 

Uses machine learning 
models (e.g., neural 

networks, reinforcement 
learning)topredictoptimal 

pathsbasedonhistorical and 
real-time data. 

ExtendstheA*algorithmto 
handle changes in graph 
topology or edge weights 

during execution, adapting 
incrementally. 

Uses principles of natural 
selection (mutation, 

crossover,andselection)to 
evolve paths toward an 

optimal solution. 

 
 

Adaptability 

Highlyadaptivetodynamic 
environments by learning 
from data and adjusting in 

real-time. 

 
Adaptsdynamicallytochanges 

in the graph without 
recalculating the entire path. 

Adaptive through population 
evolutionbutlessresponsive 

to real-time changes 
comparedtoMLorDynamic 

A*. 

 
Optimality 

Provides near-optimal 
solutions,dependingonthe 
qualityof trainingdata and 

model accuracy. 

Guarantees optimality in 
dynamic environments if 

changesarehandledcorrectly. 

Does not guarantee the 
shortest path but can find 
near-optimalsolutionsfor 

complex problems. 

 
Complexity 

Computationallyintensive 
dueto model trainingand 
inference requirements. 

Moderatecomplexity;efficient 
indynamicgraphsbutrequires 

additional logic for 
incremental updates. 

Computationallyexpensive 
for large problems due to 

iterative evolution and 
evaluation of populations. 

 
KeyLimitation 

Requires high-quality 
training data and 

computationalresourcesfor 
training and inference. 

Lesseffectiveforstaticgraphs 
due to additional overhead for 

incremental updates. 

Convergence can be slow, 
andperformancedependson 
carefully tuned parameters. 

 
 

SearchSpace 

 
Learnstooptimizeinhigh- 
dimensional and multi- 

variable spaces. 

Focusesonlyonportionsofthe 
graph affected by changes, 

reducing unnecessary 
recalculations. 

Exploreslargesearchspaces 
by evolving solutions, 

makingitsuitableforhighly 
complex networks. 

 

 
Parallelism 

 
Parallelizable for prediction 
tasks,especiallywhenusing 

distributed machine 
learning. 

 
Sequentialbutefficientin 
focusing onlyon relevant 

graph changes. 

 
Highly parallelizable, as 

multiple solutions 
(populations)canbeevolved 

simultaneously. 
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Applications 

Intelligenttransportation 
systems. 

Dynamicenvironmentslike 
robotnavigationorurban 

exploration. 

Logisticsandsupplychain 
optimization. 

Real-timeIoTnetwork 
optimization. 

 
 

Disasterresponseandadaptive 
routing. 

Networkroutingforlarge, 
complex systems. 

-Autonomousnavigation 
(e.g., drones, vehicles). 

Schedulingandresource 
allocation. 

Heuristic 
Dependency 

Reliesonpredictivemodels 
rather than explicit 

heuristics. 

Requiresaheuristictoestimate 
path costs, similar to standard 

A*. 

No explicit heuristic; 
solutionsevolvebasedon 

fitness evaluation. 
 
 

Whencomparingshortestpathalgorithms,traditionaltechniquessuchasBellman-FordandDijkstra's 
areeffectiveanddependableinstaticsituationsbutineffectiveindynamic,adaptivenetworks.Greater 
flexibilityand scalabilityareprovided byheuristic algorithms like A* andACO, which perform well in 
dynamic systems but need careful tweaking. Lastly, by fusing accuracy with flexibility and 
sustainability, hybrid algorithms such as Dynamic A* and ML-based models offer the most reliable 
results. We believe that hybrid algorithms, particularlythose based on machine learning, provide the 
most promising way forward. They are perfect for complex, dynamic systems because they provide 
scalability and flexibilitythat are unrivaled byheuristic and classical approaches. But in the end, the 
particular application will determine which algorithm is best, taking sustainability, adaptability, and 
computational efficiency into account. 

 
Conclusion 

In network optimization, shortest path techniques are essential for striking a balance between 
scalability, flexibility, and efficiency. Traditional algorithms, such Bellman-Ford and Dijkstra's, 
function well in static networks but poorly in dynamic ones. Although they mostly rely on heuristic 
quality, heuristic approaches such as A* and Ant Colony Optimization effectively and adaptably 
handletheseproblems.Precisionand flexibilityarecombinedinhybridtechniques,suchas Dynamic 
A*andmachinelearning-basedalgorithms,whichperformwellincomplicatedanddynamicsituations but 
demand a large amount of processing power. Hybrid approaches that combine the advantages of 
machine learning, heuristic, and classical methods are the way of the future for shortest path 
algorithms. Promising avenues for enhancing security, scalability, and computational efficiency are 
providedbyemergingtechnologieslikeblockchainandquantumcomputing.Thesedevelopmentswill 
guaranteethatshortestpathalgorithmsremainrelevantinmeetingtheneedsofcontemporarynetworks by 
redefining their function. These algorithms will continue to play a crucial role in facilitating 
effective, flexible, and dependable network communication across a range of applications by 
overcoming present constraints and integrating sustainability. 
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