
 

 

 
A Review of Reinforcement Learning: Current Trends and Future 

Prospects in Autonomous Systems 
 

 

Abstract 

This review focuses on the use of reinforcement learning (RL) for autonomous systems and 

current trends and future prospects. It is therefore the intended goal to critically evaluate the 

concept of RL for improving autonomous decision making with focus on current and 

emerging issues including; sample efficiency, scalability, and safety. This review 

methodology is a synthesis of 10 studies which has been conducted between the years 2021 

and 2024. However, these are some of the challenges that seem to plague RL even as it has 

potential to be used in realistic applications such as robots, self-driving cars and smart grid. 

The review also opines that due to developments of algorithms, computer intrinsics and 

safety mechanism, RL perhaps holds the key to the future for autonomous systems.   
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Introduction 

Reinforcement learning (RL) is one of the most influential areas in the sphere of machine 

learning that contributed to the growth of autonomous systems. RL is a learning model where 

an agent is put in a setting referred to as an environment, with the goal of finding actions that 

give the biggest rewards in future (Sutton &Barto, 2018). The principal concept of RL is 

applicable here because RL trains the machine to act in certain ways by trial, not rule and not 

supervised learning. Thus, RL has found applicability across numerous domains such as 

robotics (Levine et al., 2018), self-driving cars (Kiran et al., 2020), and smart grids (García et 

al., 2019) and has boosted the learning prospects of those domains.  



 

 

Now there are self-driving cars and robots, smart structures, and all other kinds of system that 

are an inalienable part of the modern world. These systems must function autonomously in 

order with optimal performance in their complex operational settings, this explains why they 

apply RL principles. However, there are some challenges associated with utilizing RL in 

autonomous mechanisms. The one of which one can think of considerable amounts is sample 

inefficiency since RL algorithms require an extremely large number of iterations to choose 

satisfactory policies (Hester et al., 2020). But the limitation is that scaling is still challenging 

as the applications of RL algorithms depend on the enormous computational resources to 

solve complex problems (Mnih et al., 2015). Furthermore, safety becomes a significant 

challenge when deploying RL in safety-sensitive areas such as autonomous vehicles become 

a crucial barrier (Akrour et al., 2020). 

To this some recent attempts have been made to surmount these restrictions. For instance, 

there has been the introduction of model-based RL strategies to address sample inefficiency 

based to the learned models about the environment. Further, it has been made easier to come 

up with a short and more efficient algorithm via deep RL, a combination of RL with deep 

neural networks [14]. Other innovations Yarats et al. (2020) such as transfer learning and 

multi-agent reinforcement Eric Zhou and Go (2019) also pledged that scalability and 

convergence rate can be improved in different applications. 

Considering the continuous enhancements with algorithms as well as the hardware of the RL 

this has a promising future in autonomous systems. But problems concerning theory’s 

generality, readability, and application persist as well. The future of RL in improving 

autonomous systems will largely depend on addressing these issues as well as guaranteeing 

the systems’ safety and stability in uncertain conditions. Thus, the integration of RL in AS is 

expected to open vistas for increasing efficiency, automation, and adaption of systems as 

more and more standalone systems come into use. 

Therefore, this paper overviews the current state of developments in RL and considers future 

ideas, concerning how it can help meet new demands for different autonomous systems. In 

the light of this analysis, the goal is to identify: where RL is now as well as what is still to 

come in order to review possibilities and illustrate how RL implements the further 

autonomous systems’ evolution. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reinforcement Learning 

Reinforcement learning is a rapidly developing direction. In the domain of machine learning, 

it has resulted in massive advancement over the past decade – be it the development of 

artificial players that can defeat humans in strategically demanding games like Go (Silver D 

et al., 2017) and StarCraft (Vinyals O et al, 2019). In cognitive neuroscience, RL models have 

been employed to acceptably describe various untold latent learning-related phenomena, at 

the behavioral level (Eckstein MK et al., 2020; Master SL et al., 2020) and also the neural 

level (Maes EJP et al., 2020). However, the hope that RL can point to reasonable and 

predictive latent variables obscures variability in what RL variables index, even in cognitive 

neuroscience. The success of RL has bred an illusion of omnipotence where RL can observe 



 

the brain and behavior and dissect out fundamental features. While this notion develops as 

RL methods become more widely used, it may result in overgeneralization or 

overinterpretation of results. 

Here, we claim that a more refined perspective is more appropriately justified by the evidence 

and by theory. We have thus provided a review of how each subfield applies RL and what 

parts are tended to share and what parts are unique. We then continue to identify and discuss 

where the use of cognitive neuroscience may have gone wrong, then establish that where RL 

is lodged, it remains a valuable tool for the field.Reinforcement Learning (RL) has emerged as a 

powerful tool in addressing complex decision-making problems across various domains, including 

robotics, autonomous driving, and clinical decision support systems (Ye Zhang et al., 2024; Jingda 

Wu et al., 2024). RL leverages the concept of agents learning from interactions with their environment 

to maximize cumulative rewards, enabling adaptive and autonomous behavior. However, scalability, 

sample efficiency, and safety remain persistent challenges limiting its broader application (Benjamin 

Kommey et al., 2024). Recent advancements have aimed at enhancing RL's robustness and 

applicability, such as integrating hierarchical frameworks, multi-agent systems, and deep learning 

techniques to improve decision-making in dynamic and uncertain environments (Min Hua et al., 2021; 

Qi Liu et al., 2023). 

Moreover, RL’s role in addressing real-world problems, such as unsignalized intersections in 

autonomous vehicles and power system stability, has been highlighted, albeit with limitations 

in scalability and real-world validation (Mohammad Al-Sharman et al., 2024; Mohamed 

SadokMassaoudi et al., 2023). In clinical decision support systems, explainable RL methods 

have been proposed to increase transparency and user trust, showcasing its potential in 

sensitive fields (Anna MarkellaAntoniadi et al., 2021). These studies collectively underscore 

RL's transformative potential while emphasizing the need for further research to address 

ethical concerns, enhance interpretability, and develop scalable solutions suitable for practical 

applications. 

 

 

 

 

 



 

 

 

 

 

 

Figure 1: The diagram illustrates the core components of reinforcement learning, where an 

agent interacts with an environment by taking actions, transitioning through states, and 

receiving rewards to learn optimal behavior. 

 

 

 

 

 

 

 

 

 

 

 

Current Trends in Reinforcement Learning 

In the past few years, Reinforcement Learning (RL) has reached much of its development as 

a core methodology for fulfilling self-organizing and decision-making in different fields. RL 

has been increasingly popular and effective when combined with new technologies such as 

deep learning (Haarnoja et al., 2021). This section presents four progressive research trends 

that are actively influencing the modern picture of RL: sample efficiency, transfer learning, 

safe reinforcement learning, multi-agent reinforcement learning. 

Among the new patterns is a progression in the methods to step up the sample efficacy which 

remains one of the main drawbacks of traditional RL approaches. Contemporary approaches 



 

 

to RL incorporate model-based techniques to reduce the steps required for an agent to define 

the optimal actions. For instance, the model-based RL methods such as MuZero have 

established their ability to outperform previous outcomes, as well, to learn on the 

environmental dynamics and the best move (Schrittwieser et al., 2020). Other algorithms 

applying experience replay and prioritized sampling remains in refining the learning process 

based on the retention of the past best experience. 

Another area that has also been adopted in the recent past is transfer learning this aims at 

improving the RL application by reusing information that was acquired in the past. In order to 

compress the learning process and to enhance the learning performance in scenarios, where 

data is not easily available, transfer learning involves the transfer of acquired policies or 

features from a different domain. There are other strategies that are being exploited to apply 

the RL models in a number of shifts and these include domain adaptation and meta-RL 

(Zhang et al., 2021). These improvements have been largely useful in robotics because such 

policies take time to update to new physical settings. 

Safe RL has emerged as another important trend for using in high-risk areas like medical, 

financial and auto mobile industries. Modern RL algorithms use safety constraints and reward 

shaping to ensure that an agent acts uniformly and eliminate unwanted actions (Turchetta et 

al., 2021). Furthermore, the advancement of sparse RL has also helped agents to accomplish 

the set missions while being constrained by inadequate resource utilization (Zhou et al., 

2021). These advances are important for the application of RL systems in practical 

applications that are safety-critical. 

As the development of MARL proceeded, the usage of RL extended to areas that include 

multi-agent collaboration or rivalry. MARL methods are being applied in areas that require 

traffic management, incorporation of game elements, and decentralized resource management 

(Zhang et al., 2021). The communication protocols and shared learning frameworks have 

been enhanced to increase the scalability and dependency of multi-agent systems for more 

sophisticated and diverse interactions. 

Finally, the RL studies are shifting from performance to interpretability and explainability, as 

the deep RL makes decisions in a way that is not easily understandable. To enhance the 

interpretability of the developed RL models, visualization tools and XAI approaches are 

combined (Puiutta&Veith, 2021). These efforts are meant to close the gap between highly 

advanced algorithms and how they could be used in real-life decision-making contexts. 



 

 

 

 

 

 

 

 

 

Figure 2: illustrating the strengths and limitations of the studies titled "Current Trends in 

Reinforcement Learning. 

 

 

 

 

 

 

 

 

Literature Review  

Ye Zhang et al, (2024) Path planning is still one of the pivotal facets for robotics application 

areas like autonomous driving, minimally invasive surgery, and delivery robot. In this review, 

we first outline the drawbacks of traditional path planning techniques and the latest 

advancements in DRL-based path planning techniques. Then, it presents a literature review 

on constructing important components of DRL methods in recent years to help readers 

understand the fundamental concepts of DRL studies as well as the reasoning and concerns 

from a practical standpoint. During the practical training, there may be concerns such as little 

reward and the exploration–exploitation dilemma; thus, the paper summarizes the methods 



 

 

for improving training performance and optimizing the DRL path planning. Finally, the paper 

concludes with present day practical path planning applications’ limitations, challenges and 

identifies the future research areas. 

 

Jingda Wu et al., (2024) Autonomous driving (AD) refers to the capability of a vehicle to 

travel in traffic space and is an innovative solution for increasing transport efficiency, but it 

greatly depends on BP. Reinforcement learning (RL) turns into a crucial approach to 

designing these BP strategies. Thus, this paper provides a systematic review of RL-based BP 

strategies with focus on the development from 2021 to 2023. We comprehensively review 

and synthesize the literature, focusing on the changes in RL-based BP paradigms. To fill this 

gap, it is possible to identify the history of attempts at overcoming the practical problems 

encountered by AVs owing to new forms of RL. In order to assist readers, we provide a 

quantitative analysis that details the amount and variety of new RL configurations in recent 

years and identifies common patterns. Further, we discuss emerging near-term issues and 

possible future trends concerning the development of RL-based BP in AD. These directions 

include mitigating safety risks, developing sustained learning paradigms, improving data 

effectiveness, advocating for vehicular cloud networks, incorporating LLMs, and improving 

ethical concerns. 

 

Saksham & Chhavi Rana (2024) Deep Reinforcement learning (DRL) is the disruptive 

technology cutting through the horizon of Robotics and Autonomous Systems that has an 

approach of learning by reaching out to the environment. This chapter will also propose a 

panoramic view of the current state of the research conducted in the area of DRL and 

robotics. The literature is reviewed in a comprehensive and integrative manner, focusing on 

advances, methods, uses, and issues in this rapidly evolving domain. Therefore, this chapter 

is broken down into thematic sections such as the basic principles of DRL and DRL in robot 

control and navigation, object manipulation, as well as self-driving cars. It describes several 

general techniques for investigation, its performance is compared with actual issues and 

scenarios of Robotics applications. The ability of DRL in training robots to work 

independently and flexibly is illustrated through case studies and several practical 

applications can be observed. The complexity of hardware systems and settings used in these 

applications is described, which casts light upon real-life factors affecting DRL 



 

 

implementation in practice. Consequently, the present issues and limitations are also 

discussed in this chapter including, sample complexity, safety, and limitation of scalable DRL 

for robotics. Nevertheless, in presenting these challenges this chapter provides insights into 

the future research opportunities and new trends in evaluation metrics for DRL algorithms in 

the context of robotics. Thus, this chapter can be also useful for researchers, practitioners, and 

enthusiasts who focus on the integration of DRL with robotic systems. It sums up the current 

understanding, points to the significant achievements and identifies the emerging 

opportunities and challenges to enable robotics and autonomous systems to grow in the age of 

machine learning and artificial intelligence. 

 

Benjamin Kommey rt al., (2024) Reinforcement learning (RL) a subfield of machine 

learning, is not only fast growing in prominence but also found utility far from its 

conventional use in gaming systems. Various subfields of reinforcement learning, such as 

deep reinforcement learning and multi-agent reinforcement learning, are also rapidly 

growing. In this paper, a comprehensive survey on the field is given based on the perspective 

of Machine Learning (ML). It starts with giving an historical overview of the field, then goes 

on to offer a theoretical overview of the field. It then goes over the main RL problems and the 

strategies taken by various subfields before going over the state-of-the-art strategies. Some 

use cases in reinforcement learning are listed below and their feasibility and applicability 

tested. The paper concludes with pointing out some of the existing gaps or research questions 

in the field. 

 

Mohammad Al-Sharman et al. (2024)state that self-driving cars at unsignalized 

intersections are a difficult application of machine learning because of the conflicts incurred 

concerning the administration of multiagent systems with a high level of unpredictability. 

Decision-making for this safety-critical environment entails an understanding of the various 

abstractions involved in learning driving behaviours for effective vehicle movement. In this 

survey, we are interested in identifying cutting-edge approaches adopted in decision-making 

systems with a special focus on the RL integrated with deep learning traversing policies at 

unsignalized intersection areas. The reviewed schemes differ in the proposed driving 

scenario, in the assumptions made for the used intersection model, in the addressed 

challenges, and the learning algorithms used. We have mentioned comparisons for such 



 

 

techniques to show their drawbacks and advantages. From the findings of this study, it is 

apparent that a sound decision-making system for dealing with real-world unsignalized 

intersections remains nonexistent. In addition to our in-depth analysis and discussion of the 

topic, the interested players are encouraged to consider the following research objectives: 

According to our suggestions, non-overcautious as well as safe but feasible decision-making 

architectures can be trained and validated in actual unsignalized intersection conditions. 

 

Qi Liu et al., (2023) Understanding the behavioural patterns of Connected and Autonomous 

Vehicles (CAVs) is very important for the safety and better performance of Intelligent 

Transport Systems in the future. However, to get to a condition of full autonomy, the period 

that involves mixed traffic with CAVs and human-driven cars needs time. Therefore, 

collaborative decision-making technology for CAVs is required to produce desired driving 

conduct to improve the conditions of mixed autonomy traffic. In the last few years, the DRL 

technique has been widely used in solving decision-making issues efficiently. Nevertheless, 

with the coming of computing technology, graph reinforcement learning (GRL) methods have 

shown that they have great potential to enhance the decision-making of CAVs, especially in 

representing the mutual impacts of vehicles and dynamic traffic scenarios. Therefore, to 

promote the research of GRL-based methods for Autonomous Driving, this paper suggests 

reviewing the GRL-based method for the decision-making technologies of CAVs. Firstly, the 

general GRL framework is introduced at the initial stage to get a brief idea about the 

decision-making technology. Next, this paper compares the methods of GRL-based decision-

making technologies with the construction methods of mixed autonomy traffic, representation 

graphs for the driving environment, and other relevant studies on graph neural networks 

(GNNs) and DRL for decision-making in autonomous driving. Furthermore, validation 

methods are aggregated to enable one to come up with simpler ways of testing decision-

making methods. Last but not least, the limitations and research opportunities in utilizing the 

GRL-based decision-making methods are discussed. 

 

Mohamed SadokMassaoudi et al., (2023) The rise of inverter-interfaced system-level 

resources has affected the electrical stability of power systems in a very significant manner. 

Integration of photovoltaic and wind power systems into the grid has brought unpredictable 

risks to the electricity industry. Recent DRL advancements have been in the research focus 



 

 

over the last few years underpinning its potential role in improving PS stability (PSS). The 

DRL architecture, which is widely adopted, learns from the dynamism inherent in PSs and 

generates near-optimal actions for a PSS. This article offers a thorough discussion of the 

emerging research approaches to DRL to derive PSS policies considering the characteristics 

of the power grid system. Besides, this paper provides a review of the theoretical benefits and 

the main pros and contras of the new DRL methods as effective tools for OPF. As for all the 

methods described, the discussion on their limitations, the challenges of the research 

methodology in large-scale PSS, and the opportunities are provided. This paper will seek to 

assist research in this area of DRL algorithms to adopt PSS against unseen faults and various 

PS topologies. 

 

Z.Frontistis et al.,(2023) This paper provides an overview of the current state of using ML in 

MBRs which is a relatively new technology in AWT. The review is centred on the 

application of ML techniques for the prediction of membrane fouling, the control of the 

fouling system, and the detection of fouling faults, to create new cleaning strategies. Major 

types of ML algorithms include artificial neural networks, support vector machines, random 

forest, and reinforcement learning; their capabilities and weaknesses in sophisticated 

wastewater application processes are highlighted. The primary barriers to the reproduction of 

ML are listed: data quality, interpretability and transferability. Lastly, future research gaps 

are provided, such as integrating ML with big data, IoT, and creating new hybrid models. The 

review also stresses the necessity of a transdisciplinary approach and funding for data 

management; it alludes to the need for introducing new policies related to data protection and 

security. If one solves these challenges, integration of ML into MBRs can push performance 

and energy utilization up with further fruitful results for water treatment. 

 

Based on Min Hua et al. (2021), CAVs have the potential to meet or provide the solution for 

future transportation demand through Balancing, Safe and Green Systems. However, 

controlling CAV control it is difficult because it requires a highly interconnected system and 

coordination in the network of the connected vehicle. Consequent to the recent development 

of exciting techniques in the treatment of difficult problems such as automobility and 

autonomy in self-driving cars and robotics, as well as human vehicle interface, MARL has 

proved useful for enhancing the performance of CAVs. However, it does not have a recent 



 

 

evaluation of conventional MARL algorithms for CAVs. In light of such scarcity, the 

following paper undertakes a systematic review of MARL in CAV control. The paper begins 

with the state definition of MARL along with problems it seeks to solve and its inherent 

capabilities of dealing with multiple people. It then provides a critical evaluation of the 

MARL application in several control areas for CAVs with an emphasis on the risky aspects 

of driving such as platooning control, lane changing and unsignalized intersections. Further, 

the paper discusses some of the most important simulators that are crucial for creating and 

evaluating MARL algorithms. Finally, it reviews the current issues in applying MARL for 

CAV control, such as macro-micro learning, cooperation, incorporation of other traffic types, 

and sim2real difficulties. Possible approaches include hierarchical MARL, decentralized 

MARL, adaptive interactions, as well as offline MARL. This paper suggests multi-agent 

reinforcement learning as an approach to handling the interactions of connected and 

automated vehicles about platooning, lane changing and intersections among others. MARL 

can be expected to provide more efficient solutions than the outmoded structures in real-

world applications, thereby resulting in better traffic management and safety and optimal 

usage of fuel to provide more dependable transport systems. The paper also offers an 

overview of MARL algorithms and simulation platforms at the current moment, which is 

useful for putting these complex control methodologies into practice. However, applying 

MARL in real-life CAV systems is still limited and there are challenges which include issues 

of vehicle interaction in real-life scenarios and managing many interacting systems where 

some of the systems involve human-driven vehicles. Further studies are required to resolve 

such issues and confirm the applicability of this method in various and varying traffic 

environments. This paper may prove to be useful for practitioners and researchers striving to 

create more accurate and robust CAV systems shortly. 

 

Antoniadi A.M. et al. (2021) Machine Learning and other Artificial Intelligence tools AI 

applications generally hold a tremendous near and long-term potential for revolutionizing 

almost every segment of medicine. However, in many applications outside the medical field, 

the opacity of AI applications has become an issue in the latest years. This is most 

conspicuous where users are expected to decipher the outcomes generated by AI systems. 

XAI gives a reason that enables a user to know why a particular output has been obtained by 

the system. The output is then used to interpret data within a specific context. Additionally, 

Clinical Decision Support Systems (CDSSs) are another area that is lacking in XAI. These 



 

 

systems assist medical practitioners in clinic decision-making, and in the case of lack of 

explainability, could cause under or over-reliance situations. Explanations of how this 

recommendation is going to be arrived at will help practitioners to be much more precise and 

in some cases save lives. The importance of XAI in CDSS and the medical field is further 

heightened by what the medical field and many are facing: the requirement of ethical and fair 

decision-making and that; An AI trained with historical data can be a positive reinforcement 

of historical actions and bias which need to be revealed. We therefore conducted a systematic 

literature review of work done so far in the use of XAI in CDSS. The least common is XAI-

enabled CDSS for text analysis while tabular data processing XAI-enabled systems are the 

most common. More work is demanded from developers in terms of local explanations 

compared to post-hoc and ante-hoc techniques, as well as model-specific and model-agnostic 

methods were almost equally represented. Some of the advantages associated with the use of 

XAI include but are not limited to; it may improve clinicians’ decision confidence or it can 

generate hypotheses about causality which can lead to increased acceptability and trust in the 

system as well as the possibility of its integration in clinical processes. However, we 

identified a complete absence of XAI as a concept in the context of CDSS and a general 

absence of user studies investigating the requirements of clinicians. Some suggestions are 

made for the use of XAI in CDSS and some possibilities, issues, and research directions are 

discussed.



 

 

Table 1 : List of reviewed papers 

Re
f 

Title Limitations Strengths Aim of the 
Study 

Result Datasets 
Used 

ML 
Algorithms 

Techniques 
Used 

Discussion  

[1] Path Planning in 
Robotics (Ye 
Zhang et al., 
2024) 

Sparse 
rewards; 
exploration-
exploitation 
balance; 
practical 
training 
challenges 

Comprehensiv
e review of 
DRL in path 
planning; 
enhancement 
methods for 
DRL; 
practical focus 

Summarize 
DRL 
methods 
and propose 
enhancemen
ts for path 
planning in 
robotics 

The review 
highlights 
DRL's 
potential 
but notes 
gaps in 
optimizatio
n and 
training 

Not 
explicitly 
mentione
d 

Deep 
Reinforceme
nt Learning 
(DRL) 

Review of 
practical 
DRL 
training 
methods and 
enhancemen
ts 

This study 
emphasizes 
the potential 
of DRL in 
robotics but 
identifies gaps 
in practical 
implementatio
n, particularly 
in addressing 
sparse 
rewards and 
balancing 
exploration-
exploitation 
during 
training. It 
suggests that 
future 
research focus 
on improving 
training 
methodologie
s to enhance 
DRL's real-
world 
applicability. 

[2] Behaviour Safety Quantitative Review RL- Future Not Reinforceme Quantitative The study 



 

 

Planning in 
Autonomous 
Driving (Jingda 
Wu et al., 2024) 

vulnerabilities
; ethical 
concerns; data 
inefficiency 

analysis; 
novel 
categorization 
of RL-based 
BP; future 
directions 
highlighted 

based 
behaviour 
planning 
strategies in 
autonomous 
driving 
from 2021–
2023 

directions: 
safety, 
collaboratio
n, and 
integration 
of large 
language 
models 

explicitly 
mentione
d 

nt Learning 
(RL) 

analysis; 
focus on 
collaboratio
n and ethical 
consideratio
ns 

underscores 
the 
significance 
of RL in 
autonomous 
driving, 
particularly in 
behavior 
planning. It 
identifies 
safety, ethical 
considerations
, and data 
inefficiency as 
challenges 
and 
recommends 
integrating 
collaboration 
techniques 
and large 
language 
models to 
address these 
gaps. 

[3] DRL in Robotics 
(Saksham & 
Chhavi Rana, 
2024) 

Sample 
efficiency; 
scalability; 
and safety 
concerns 

Thematic 
organization; 
integration of 
hardware and 
software 
considerations
; case studies 

Overview of 
DRL in 
robotics, 
focusing on 
control, 
navigation, 
and object 

Demonstrat
es DRL’s 
autonomy 
and 
adaptability 
but 
highlights 

Not 
explicitly 
mentione
d 

Deep 
Reinforceme
nt Learning 
(DRL) 

Case 
studies, real-
world 
applications, 
and 
challenges 
in DRL 

Highlighting 
DRL's 
autonomy and 
adaptability in 
robotics, the 
study 
discusses 



 

 

manipulatio
n 

scalability 
and safety 
challenges 

challenges 
like 
scalability and 
safety 
concerns. It 
stresses the 
need for 
integrating 
DRL with 
hardware-
software 
systems and 
applying case 
studies to 
validate 
effectiveness. 

[4] Reinforcement 
Learning in 
Machine 
Learning 
(Benjamin 
Kommey et al., 
2024) 

Scalability 
issues; 
insufficient 
exploration of 
real-world 
applications 

Historical 
perspective; 
an exhaustive 
list of RL 
applications 

Review RL 
advancemen
ts and 
highlight 
core 
problems in 
ML 
applications 

Highlights 
RL 
scalability 
issues but 
emphasizes 
it's 
expanding 
applicabilit
y across 
domains 

Not 
explicitly 
mentione
d 

Reinforceme
nt Learning 
(RL) 

Historical 
analysis; 
categorizatio
n of RL 
applications 

This review 
identifies RL's 
scalability 
issues and 
limited real-
world 
application 
exploration as 
key 
challenges. It 
emphasizes 
the expanding 
applicability 
of RL across 
domains and 
suggests 



 

 

focusing on 
improving 
scalability 
through 
advanced 
algorithms. 

[5] Decision-
Making in 
Unsignalized 
Intersections 
(Mohammad Al-
Sharman et al., 
2024) 

Limited real-
world 
validation; 
challenges in 
non-
overcautious 
safe 
navigation 

Focused 
analysis on 
unsignalized 
intersections; 
comparison of 
algorithms 

Explore RL 
and deep 
learning 
techniques 
for 
autonomous 
driving at 
unsignalized 
intersections 

Identifies 
challenges 
and 
suggests 
future 
directions 
for robust 
decision-
making 

Not 
explicitly 
mentione
d 

Reinforceme
nt Learning 
(RL); Deep 
Learning 

Comparison 
of RL-based 
decision-
making 
techniques 

The study 
points out 
challenges in 
navigating 
unsignalized 
intersections 
without being 
overly 
cautious. It 
compares RL-
based 
techniques 
and suggests 
developing 
robust 
algorithms for 
safe decision-
making in 
complex 
scenarios. 

[6] GRL for CAVs 
Decision-
Making (Qi Liu 
et al., 2023) 

Limited 
application in 
real-world 
mixed traffic 
scenarios; 
validation 

Proposes GRL 
framework; 
explores 
GNNs and 
dynamic 
modelling for 

Review 
GRL 
methods for 
decision-
making in 
connected 

Suggests 
GRL as a 
solution for 
improving 
safety and 
efficiency 

Not 
explicitly 
mentione
d 

Graph 
Reinforceme
nt Learning 
(GRL); 
Graph 
Neural 

GRL 
framework 
development
; graph 
representatio
n of the 

This work 
discusses the 
potential of 
GRL in 
enhancing 
decision-



 

 

challenges decision-
making 

and 
autonomous 
vehicles 

in mixed 
traffic 

Networks 
(GNNs); 
DRL 

driving 
environment 

making for 
connected and 
autonomous 
vehicles, 
particularly in 
mixed traffic 
conditions. 
However, it 
highlights 
validation and 
application 
limitations in 
real-world 
scenarios. 
Future work 
could focus 
on improving 
the 
adaptability of 
GRL 
frameworks. 

[7] DRL in Power 
System Stability 
(Mohamed 
SadokMassaoud
i et al., 2023) 

Scalability 
challenges; 
limited 
exploration of 
unseen faults 

Explores DRL 
for optimal 
power flow; 
assesses grid 
uncertainties 

Review 
DRL 
techniques 
for 
stabilizing 
power 
systems 

Emphasizes 
DRL’s role 
in grid 
stability but 
notes 
scalability 
and unseen 
faults 

Not 
explicitly 
mentione
d 

Deep 
Reinforceme
nt Learning 
(DRL) 

Optimizatio
n methods; 
dynamic 
grid 
modelling 

The study 
explores 
DRL’s role in 
stabilizing 
power 
systems, 
emphasizing 
its 
effectiveness 
in handling 
grid 



 

 

uncertainties. 
It highlights 
challenges 
such as 
scalability and 
handling 
unseen faults, 
proposing 
advanced 
optimization 
techniques as 
a solution. 

[8] ML in 
Membrane 
Bioreactor 
Systems 
(Zacharias 
Frontistis et al., 
2023) 

Data quality; 
interpretabilit
y; 
transferability 

Highlights 
interdisciplina
ry 
collaboration; 
identifies 
future ML 
trends in 
wastewater 
systems 

Review ML 
algorithms 
for 
membrane 
fouling 
prediction 
and 
wastewater 
treatment 
optimization 

Identifies 
challenges 
and 
proposes 
IoT 
integration 
and hybrid 
models 

Not 
explicitly 
mentione
d 

Reinforceme
nt Learning 
(RL); 
Artificial 
Neural 
Networks 
(ANNs); 
SVM; RF 

ML 
integration 
with IoT; 
hybrid 
modelling 

This review 
identifies 
interpretabilit
y and data 
quality as 
critical 
challenges in 
applying ML 
to wastewater 
systems. It 
suggests IoT 
integration 
and hybrid 
models to 
enhance ML’s 
effectiveness 
in addressing 
real-world 
applications. 

[9] MARL in CAV Communicati Comprehensiv Review Proposes Not Multi-Agent Simulation The study 



 

 

Control (Min 
Hua et al., 2021) 

on reliability; 
mixed traffic 
challenges; 
sim-to-real 
validation 

e review of 
MARL 
applications; 
real-world 
scenarios 

MARL for 
connected 
and 
automated 
vehicle 
control 

hierarchical 
and 
decentralize
d MARL as 
potential 
solutions 
for complex 
traffic 
conditions 

explicitly 
mentione
d 

Reinforceme
nt Learning 
(MARL) 

platform 
review; 
hierarchical 
and 
decentralize
d MARL 

discusses 
hierarchical 
and 
decentralized 
MARL as 
promising 
solutions for 
traffic control 
in connected 
and 
automated 
vehicles. It 
highlights 
communicatio
n reliability 
and sim-to-
real validation 
as key 
challenges to 
address in 
future 
research. 

[10
] 

Explainable AI 
in CDSS (Anna 
MarkellaAntoni
adi et al., 2021) 

Limited focus 
on user 
studies; 
imbalance 
between local 
and global 
explanations 

Highlights 
XAI benefits; 
proposes 
guidelines for 
ethical AI 
implementatio
n 

Review 
XAI 
applications 
in Clinical 
Decision 
Support 
Systems 
(CDSS) 

Recommen
ds XAI for 
enhancing 
trust and 
decision 
confidence 
in clinical 
workflows 

Not 
explicitly 
mentione
d 

Explainable 
AI (XAI) 

Local and 
global 
explanation 
techniques; 
model-
specific and 
model-
agnostic 
approaches 

The review 
advocates for 
XAI to 
enhance trust 
in clinical 
decision-
making. It 
discusses the 
need for user-
centered 



 

 

studies and 
balancing 
local and 
global 
explanations, 
emphasizing 
guidelines for 
ethical and 
interpretable 
AI systems. 

 

 

 

 

 

 

 

 

 



 

 

Findings  

The studies reviewed provide a comprehensive overview of reinforcement learning (RL) and 

its applications across various domains, while also highlighting specific strengths and 

limitations. Path Planning in Robotics (Ye Zhang et al., 2024) emphasizes the potential of 

Deep Reinforcement Learning (DRL) in improving robotic navigation and decision-making. 

However, it identifies practical challenges, such as sparse rewards and the exploration-

exploitation trade-off, as barriers to real-world implementation. Similarly, DRL in Robotics 

(Saksham & Chhavi Rana, 2024) highlights DRL’s adaptability and autonomy but notes 

scalability and safety concerns as key areas needing improvement. In both cases, future 

research is suggested to focus on enhancing training methodologies and integrating DRL into 

complex, real-world scenarios. 

In the field of autonomous driving, studies like Behavior Planning in Autonomous Driving 

(Jingda Wu et al., 2024) and Decision-Making in Unsignalized Intersections (Mohammad 

Al-Sharman et al., 2024) underscore the critical role of RL in behavior planning and safe 

navigation. While these studies showcase strengths such as quantitative analyses and practical 

algorithm comparisons, challenges such as safety vulnerabilities and data inefficiency remain 

significant hurdles. Similarly, GRL for CAVs Decision-Making (Qi Liu et al., 2023) 

proposes innovative frameworks like Graph Reinforcement Learning (GRL) to enhance 

decision-making in connected and autonomous vehicles, but emphasizes the need for better 

real-world validation and adaptability in mixed traffic scenarios. 

In power systems, DRL in Power System Stability (Mohamed SadokMassaoudi et al., 2023) 

illustrates DRL’s potential in stabilizing grids under uncertain conditions but points to 

scalability challenges and limited exploration of unseen faults. On the other hand, ML in 

Membrane Bioreactor Systems (Zacharias Frontistis et al., 2023) identifies the importance 

of integrating IoT and hybrid models to improve machine learning (ML) applications in 

wastewater treatment, while addressing interpretability and data quality challenges. 

In multi-agent systems, MARL in CAV Control (Min Hua et al., 2021) advocates for 

hierarchical and decentralized Multi-Agent Reinforcement Learning (MARL) as promising 

solutions for traffic control but highlights issues like communication reliability and sim-to-

real validation. Finally, Explainable AI in CDSS (Anna MarkellaAntoniadi et al., 2021) 

focuses on enhancing trust and usability in clinical decision-making using Explainable AI 



 

(XAI). It stresses the need for ethical AI implementation and a balance between local and 

global explanations. 

In comparison, while DRL applications in robotics and power systems focus on scalability 

and practical integration, RL-based research in autonomous driving and MARL emphasizes 

real-world adaptability and ethical considerations. Studies in XAI and ML for environmental 

systems, meanwhile, highlight the importance of interdisciplinary collaboration and user-

centric approaches. Across all domains, the need for robust validation, scalability, and ethical 

implementation remains a recurring theme, emphasizing the multidimensional challenges and 

opportunities in RL research. 

 

 

 

 

 

 

 

 

Extract Statics: 



 

 

Figure 3: Strengths vs Limitations in Studies 

 

Analysis: 

This chart highlights the balance between the strengths and limitations identified in various 

studies on reinforcement learning (RL) in autonomous systems. Studies that demonstrate 

more strengths than limitations indicate areas of significant progress, such as improved 

frameworks or methodologies. Conversely, studies with more limitations reveal gaps in 

research, such as scalability or real-world validation challenges. For example: 

 Studies on DRL frameworks often showcase practical adaptability (strength) but 

suffer from scalability issues (limitation). 

 Research on MARL emphasizes real-world simulation applications but faces 

challenges with mixed traffic and sim-to-real transfer. 

This chart suggests a need for research prioritizing areas with higher limitations, ensuring the 

field progresses evenly. 

 



 

figure4: Future Prospects by Study 

Analysis: 

This chart reflects the varied future research directions proposed in the studies. For instance: 

 Studies on DRL in robotics emphasize enhancements in training and exploration-

exploitation balancing. 

 GRL frameworks in connected and autonomous vehicles (CAVs) recommend 

leveraging graph representations to improve safety and efficiency. 

 Explainable AI (XAI) focuses on increasing trust and usability in clinical decision-

making. 

The diversity in future prospects underscores the vast potential of RL across domains, 

emphasizing safety, scalability, and interdisciplinary integration as recurring themes. 

 

 



 

Figure 5: Strengths to Limitations Ratio 

Analysis: 

This ratio measures the balance of strengths against limitations in each study, offering a 

comparative view of robustness. A higher ratio signifies studies with stronger contributions 

relative to their challenges, such as comprehensive reviews or innovative frameworks. 

 Research on DRL in power systems or robotics tends to have balanced ratios, showing 

maturity in certain areas. 

 Studies like MARL in CAVs reveal lower ratios, indicating areas requiring more 

research and validation. 

The strengths-to-limitations ratio emphasizes the importance of addressing challenges to 

enhance the overall impact of RL research. 

 

 

 

 



 

 

Discussion  

The selection of the discussed studies together demonstrates the progress and issues of using 

ML and DRL in robotics, autonomous vehicles, electric power systems, and clinical decision 

aid. First, there is a focus on how DRL can be used to tackle decision-making challenges 

when the environment is unpredictable. For instance, its use in autonomous driving makes it 

possible to solve behaviour planning and navigation problems in conditions such as 

unsignalized intersections and mixed traffic situations. Similarly, its successful application in 

robotics is showcased in the form of navigation, object manipulation, and control, but 

scalability and the actual implementation challenge are still a limiting factor.   

The ML application underlines the medical domain and the importance of the integration of 

the XAI into the CDSS. Such a need is especially pressing in sectors that involve crucial 

choices that affect human lives in some way. However, the studies raise the issue of the lack 

of user-centred approaches to XAI for CDSS and the requirement for more tangible and 

application-oriented suggestions.  

Albeit, the review also provides new insights into graph reinforcement learning (GRL) to 

support CAVs for collaborative decision-making. GRL is capable of modelling dynamic 

traffic environments which provides hope to solutions for mixed autonomy traffic but is 

limited by challenges in validation and scalability. 

In all of them, there are issues like data quality, interpretability, safety, and scalability, among 

others. Hierarchical and Decentralized models, Cloud-based Collaborative systems, and 

Hybrid models are some of the emerging models that hold great potential, but these concepts 

require rigorous research and testing in practice. 

 

 

 

 

 

 

 



 

 

Conclusion  

To sum up, the discussed papers reveal the significance of developing methods based on ML 

and DRL to solve various and versatile issues in several fields like robotics, autonomous cars, 

electric power systems, and clinical decision-making. Such progress shows that using ML 

algorithms is becoming possible transforming decision-making, improving the safety and 

optimization of processes. However, there are still several limitations, which include the 

issues of scale, data quality, interpretability, and ethical ones. The application of fresh 

concepts such as XAI, MARL, and GRL proves that such models are viable but need fine-

tuning before they can be used in practice.  

They all stress paying particular attention to actors, sparse reward signals, sample efficiency 

and safety issues in improving the application of ML and DRL. They also call for non-trivial 

approaches to integration and validation as well as for frameworks to address particular 

domain issues. Future research must address the issue of increased algorithm clarity, 

flexibility within complex environments, and inclusion of the newest trends, such as cloud 

networks and IoT.  

By anticipating these challenges, both ML and DRL will be able to reach their primordial 

objectives to push the advancement of automation, decision-making, and intelligent systems. 

Such endeavours will help create safer, more efficient solutions across industries to put in 

motion a smarter and more efficient future. 

 

Disclaimer (Artificial intelligence) 
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