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Abstract 

Overfitting remains a significant challenge in training neural networks, often leading to poor 

generalization on unseen data. Dropout has emerged as a powerful regularization technique to 

mitigate overfitting by randomly deactivating neurons during training, thereby preventing co-

adaptation of features and encouraging diverse representations. This paper explores the 

theoretical foundations and practical implementations of dropout across various neural network 

architectures, including Convolutional Neural Networks (CNNs) and Recurrent Neural Networks 

(RNNs). Through empirical analysis on benchmark datasets such as CIFAR-10, MNIST, and 

others, dropout is shown to improve model robustness and accuracy significantly. The study also 

compares dropout with alternative regularization methods, such as weight constraints and batch 

normalization, highlighting its effectiveness in diverse scenarios. Despite its success, dropout's 

performance is influenced by hyperparameter tuning and dataset characteristics. The paper 

concludes by discussing limitations, such as computational overhead, and proposes directions for 

optimizing dropout for specific applications, including dynamic dropout rates and hybrid 

regularization techniques. 
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1- Introduction 

Deep neural networks have become indispensable across a wide array of domains, 

including computer vision, natural language processing, and quantum machine learning, 

delivering groundbreaking performance. However, their complexity and over-parameterization 

often lead to overfitting, where models memorize the training data at the expense of 



 

generalization to unseen inputs. Addressing this limitation is critical for deploying neural 

networks in real-world applications. 

Dropout, a regularization technique introduced by Srivastava et al. (2014), has emerged 

as one of the most effective solutions to prevent overfitting. By randomly deactivating a fraction 

of neurons during training, dropout forces the network to learn robust and diverse feature 

representations. This process can be interpreted as training an ensemble of subnetworks, 

significantly improving generalization and reducing the risk of co-adaptation among 

neurons[1][2][3]. 

Recent innovations have enhanced dropout's utility. FocusedDropout targets foreground 

features by selectively dropping units unrelated to the classification target, enhancing network 

focus and accuracy in tasks like image classification and object detection[4]. Energy-based 

dropout (EDropout) combines regularization with network pruning by optimizing neuron 

selection based on energy loss, achieving substantial reductions in parameter count while 

maintaining accuracy[2][5]. Furthermore, integrating dropout into quantum convolutional neural 

networks (QCNNs) has highlighted its potential in emerging paradigms like quantum machine 

learning, though with unique adaptations to handle quantum entanglement[3]. 

Dropout's flexibility extends to various neural network layers, including visible, hidden, 

convolutional, and recurrent layers. It has been integrated into long short-term memory (LSTM) 

networks for sequence processing and convolutional networks for spatial data, showcasing its 

versatility. Techniques such as Monte Carlo dropout enable uncertainty quantification, critical 

for applications requiring probabilistic predictions, while adaptive dropout approaches 

dynamically adjust dropout rates for optimal performance[5][1]. 

Beyond conventional regularization, dropout also plays a pivotal role in model 

compression and efficient training. Strategies like applying dropout selectively to high-weight 

neurons or integrating it with additional regularization methods like weight decay have proven 

effective in balancing robustness and performance[4][5]. These advancements highlight dropout 

as not just a tool for mitigating overfitting but as a central component in designing efficient, 

adaptive, and generalizable neural networks. 



 

This paper delves into dropout's foundational principles, recent developments, and 

applications across classical and quantum machine learning. By exploring its transformative 

impact on neural network training and generalization, we aim to underscore dropout's role as a 

cornerstone technique in modern deep learning. 

Background theory 

2. Theoretical Concept of Dropout 
Dropout neuronal units are developed using stochastic volatile memristive devices to 

address overfitting and nonideal synapse issues in neural networks. These units help achieve high 

classification accuracy by mitigating the negative effects of overfitting and nonideality in 

synaptic performance. The stochastic and volatile switching performances of the devices 

contribute to these benefits[6]. 

Dropout is used to interpret a DNN as a Bayesian model, allowing for uncertainty 

evaluation in predictions. The paper proposes a sampling-free method to evaluate uncertainty by 

converting a network trained with dropout into a Bayesian neural network with variance 

propagation. This approach is computationally efficient and statistically reliable, extending 

beyond feed-forward networks to include recurrent networks like LSTM[7]. 

In recent times, deep learning architectures have significantly evolved and 

expandedleading to improvements in various tasks, such as classification, object detection, and 

segmentation,etc. But, he utilization of larger and more complex deep learning 

architecturescomes with the downside of increased risks of overfitting during training. In order 

totackle the challenges in deep learning, researchers have put forward various 

regularizationtechniques with dropout being particularly prominent among them.The standard 

dropout  method can be used to relieve the overfitting issue, whichrandomly drops neurons from 

the neural network during training.For example, consider a neural network with an individual 

hidden linear layer of N units.Then the activation function Softmax is identical, taking the 

geometric arithmetic mean of the final output of the 2N workable networks under standard 

Softmax . This method iscloser to a machine learning approach, such as the bagging method , 

which has trainedthe instance separately and the output inference has used the arithmetic 

mean.Let us consider a single linear layer within a neural network. This layer is 

commonlyreferred to as a linear layer because it incorporates the behavior of a linear 



 

activationfunction, f (x) = x. In this (Figure 1) layer, the final neuron (which serves as the 

outputof the layer) is obtained by calculating the weighted sum of all the inputs. While 

thissimplified mathematical explanation holds empirically for certain non-linear networks, itis 

important to note that the estimation of the model involves minimizing a loss function[8].The 

ordinary least square (OLS) loss, 

 

Equation (1) represents the loss function used in general neural networks, whileEquation (2) 

corresponds to the loss function specific to dropout networks. In the dropoutnetwork, the dropout 

rate is denoted by d, which follows a Bernoulli distribution withparameter p. This implies that d 

takes value 1 with probability p and 0 otherwise. In thegiven network, the input is denoted by “I” 

and the weight associated with each input isrepresented by “w”. 

[8] 

Figure 1. An illustration of a standard neural network (A) and after applying dropout (B). 

During network training, the gradient descent approach is utilized for backpropagation.This 

results in the computation of the gradient of the dropout network, denoted byEquation (2), which 

subsequently feeds into the regular network, as shown in Equation (1)[8]. 

 



 

Now, a relationship can be established between the gradient of the dropout networkand the 

gradient of a regular network. Based on Equation (1), we can assume thatw0 = p _ w, where p 

represents the probability dropout variable. Therefore, this equationindicates that the weights in 

the regular network are scaled by the dropout probability, p[8]. 

 

Taking the derivative of Equation (4), 

 

Now, move on to the next step. When we calculate the expectation of the gradient forthe dropout 

network, we obtain the following expression: 

 

According to Equation (6), the expectation of the gradient with dropout is equivalentto 

the gradient of the regular neural network LN when the weights are scaled by p, denotedas w0 = 

p _ w[8]. 

3. Contribution of Dropout Regularization Methods 

explores implicit self-regularization in deep neural networks using dropout and its effects 

as a form of regularization that is inherently introduced through the training process. It discusses 

the various stages of self-regularization observable through dropout during the training process, 

which contributes to the robustness of the network against overfitting and how it can influence 

the generalization capabilities of the network[9]. 

In this section, we discuss the contribution of several commonly used dropout 

implementsbased on their performance under the dropout operation. The advantages ofdropout 

regularization methods play a vital role in consolidating knowledge, highlightingkey benefits and 



 

inspiring further research in the field of deep learning. The primary aim ofthis section is to 

highlight the advantages of dropout regularization methods and providea comprehensive and 

consolidated overview of the benefits. In the following section, weprovide a concise overview of 

the benefits that these methods offer[8]. 

 

 

3.1. Effectiveness Improving 

 SpatialDropout: Improves dropout in convolutional layers by dropping entire feature 

map channels, which can be more effective than traditional dropout for spatially 

correlated features[10]. 

 DropBlock: Further enhances effectiveness by dropping contiguous regions within the 

feature maps, encouraging the network to adapt to the absence of more significant 

portions of data, improving generalization over traditional methods[10]. 

3.1.1. Data augmentation 

Utilizes various data manipulation techniques to enhance the volume and diversity of 

training data, which helps in improving the model's robustness and accuracy by simulating a 

wider array of possible input scenarios [11]. 

3.1.2. Preventing overfitting 

Dropout and its Variants (SpatialDropout, DropBlock): These techniques randomly deactivate a 

subset of neurons during training to prevent them from co-adapting too much, which helps in avoiding 

overfitting by ensuring that the network generalizes well to new, unseen data [10][4]. 

 

 

 

3.1.3. Enhancing data representation.  

Techniques like DropBlock not only prevent overfitting but also force the network to 

learn more robust features by not relying on any specific set of neurons, thus enhancing how data 

is represented internally within the network[10]. 

3.1.4. Preventing over-smoothing 



 

FocusedDropout: Targets over-smoothing by selectively retaining features directly 

related to the target variable, thereby preserving essential information while still benefiting from 

the regularization effects of dropout[4]. 
3.2. Efficiency Improving 

Dropout techniques can improve both the effectiveness and efficiency of a modelacross 

several processes[8]. 

3.2.1 Model Compression 

Several dropout methods have been utilized for model compressionpurposes. By using 

these methods, the model structure can be madeeasier to compress after the random dropout of 

neurons, such as by performing neuralpruning. Model summarization methods are used to 

reduce the number of modelparameters, which can lead to improved training efficiency and 

reduced overfitting[8]. 

3.2.2. Model uncertainty estimation 

Dropout techniques help in estimating model uncertainty by introducing stochasticity in 

the neural network's predictions, making the network's output sensitive to the absence of certain 

neurons, which can be interpreted as a measure of uncertainty[12]. 
3.2.3. Accelerate GCN training 

In a graph convolutional network, the node feature informationsampling process has been 

proposed by GraphSAGE (sample and aggregate) ,which efficiently accelerates GCN training. 

The training purpose requires only someneighbor nodes to execute the training procedure. After 

conducting our work, weobserved similarities between our approach and the FastGCN and AS-

GCN methods[8].  

4. Categorization of Dropout Regularization Approaches 

During the period from 2012 to 2022, we categorized each dropout 

regularizationapproach based on its year of introduction and development. The timeline of these 

dropoutregularization approaches is visually depicted in Figure 2. The graphical 

representationdepicts the temporal continuity of dropout regularization techniques, providing a 

clearoverview of their scenario over the years.Figure 3 illustrates the taxonomy of dropout 

approaches, categorized into three maincategories: internal structure change, data augmentation, 

and input information. Eachcategory further consists of several subcategories. By organizing the 

dropout approaches inthis taxonomy, we aim to provide a clear and systematic overview of the 



 

different types ofdropout techniques based on the changes they induce in the internal structure, 

their usagein data augmentation, and their impact on input information.This taxonomy serves as 

a valuable reference for nderstanding the various dropoutapproaches employed in deep learning. 

The following section provides an indepth analysisof the taxonomic classification[8]. 

 

Figure 2. A flow diagram illustrating the progression of dropout methods over the years . 



 

 

Figure 3. Taxonomy diagram according to dropout approaches. 

5. Dropout Based on Internal Structure Changes 
Various methods have been suggested for regularization in deep learning, beyond just 

dropout. Our review paper introduces the concept of internal dropout-based regularization, which 

alters weights and kernels during training but does not modify the input values. Traditional 

individual neuron dropout, as previously noted, involves randomly deactivating certain neurons 

during the training process. Each neuron is assigned a dropout probability, leading to its output 

being zeroed. This technique reduces dependence on particular neurons, aiding in the prevention 

of overfitting and promoting the learning of more stable and generalizable features. Conversely, 

group neuron dropout adopts a different strategy by deactivating whole groups or subsets of 

neurons at once, rather than individual ones. These groups might be organized by various 

criteria, such as their spatial location or their functional role within the network. We explore 

these and other prevalent methods in more detail in the subsequent subsection[8]. 

5.1. FNN and CNN-Based Neurons Drop Approaches 
In this section, we examine a range of well-known neuron dropout strategies applicable to 

both feedforward neural networks (FNNs) and convolutional neural networks (CNNs)[8]. 

5.1.1 DropBlock 
DropBlock is a structured form of dropout for convolutional layers where units in a 

contiguous region of a feature map are dropped together. This method is more effective than 

traditional dropout for CNNs as it handles the spatial correlation between units in convolutional 

layers [10] . 
Deep neural networks generally achieve high performance when their parameters 

areover-optimized and trained with significant amounts of noise and regularization 

techniqueslike weight decay and dropout. In the course of this research, a method known as 



 

Drop-Block is a form of a structured dropout that involves removing all units located within 

acontinuous region of a feature map (tensor). The size of the dropped regions (Figure 4) 

isdetermined by a hyperparameter, and during each training iteration, the dropped regionsare 

randomly selected.[8]. 

 
Figure 4. DropBlock structure visualization. 

Moreover, gradually increasing the number of units discarded during the trainingprocess 

leads to greater accuracy and makes the model less sensitive to variations inhyperparameters, 

such as the learning rate and batch size. The image classification taskusing AmoebaNet-B and 

ResNet-50 models has been shown to improve the accuracy ofthe model compared to other 

variations of dropout. Based on the experimental results,using dropout techniques such as 

AmoebaNet-B and ResNet-50 can improve the accuracyof image classification tasks compared 

to other dropout variations. Specifically, on theImageNet dataset, the baseline accuracy of 2% for 

ResNet-50 was beaten by using cutoutand AutoAugment and AmoebaNet-B achieved an 

improvement of around 0.3% accuracy[8] . 

5.1.2 MaxDropout 
While Dropout  randomly removes the neurons in the training phase, Maxdropout  

deactivatesthe neurons based on their activations. It first normalizes the tensor’s values and then 

setsto 0 every single output greater than a given threshold p, so the higher this value, the most 

likelyit to be deactivated. The original work shows it can improve ResNet18 results on CIFAR-0 

andCIFAR-100  datasets, and it also outperforms Dropout on the WideResNet-28-10 model [11]. 



 

 
Figure 5. This is a visualization comparing the effects of normal dropout and MaxDropout on anoriginal image[8]. 

 

5.1.3 AutoDrop Dropout 
AutoDropout automates the learning of dropout patterns via reinforcement learning, 

effectively adapting dropout rates and patterns to optimize network training. Though 

computationally intensive, it represents an advanced approach to dynamically adjusting dropout 

to enhance model training outcomes [12]. 

5.1.4 Attentiondrop 
This method involves adaptively dropping features based on attention information. It 

prioritizes features that are deemed less critical for the current task, thus forcing the network to 

rely on a broader set of features and potentially improving generalization[4] . 

5.2 Dropout with Recurrent Neural Networks (RNNs) 
One of the primary obstacles in implementing dropout with Recurrent Neural Networks 

(RNNs) is their recurrent nature, where the same weights are reused across different time steps. 

This recurrence can lead to issues when dropout causes varying units to be excluded at each time 

step, potentially leading to erratic and unstable behaviors that degrade RNN performance. Yarin 

Gal and Zoubin Ghahramani have developed a robust method for integrating dropout 

regularization into RNNs. Their paper presents a theoretically sound approach to applying 

dropout, with a mathematical model that incorporates noise addition to the hidden units. V. Pham 

and colleagues have shown that this technique of dropout regularization can enhance RNNs' 

effectiveness in tasks like handwriting recognition by applying dropout exclusively to 

feedforward connections and not to recurrent ones. Practically, they introduced dropout through 

a dedicated layer that maintains input values except at the dropped points. Another concept, 

"recurrent dropout," uses a "masking" tensor that affects the hidden state before activation. This 

tensor is randomly generated during each training cycle, based on a specified dropout rate. [8].  



 

 

6 . AVOID OVERFITTING 

To combat overfitting in deep neural networks, techniques like early stopping and 

dropout are employed. Early stopping prevents the model from learning too closely from the 

training dataset by halting the training process when improvements on a validation set cease. 

This method avoids the model's tendency to fit the noise and peculiarities in the training data 

rather than generalizing from it. On the other hand, dropout enhances the generalization of neural 

networks by randomly deactivating certain neurons during the training process. This randomness 

forces the network to learn more robust features that can perform well on unseen data, as it 

cannot rely on the presence of any particular neuron. Both techniques are crucial in developing 

neural network models that are not only deep and complex but also capable of generalizing well 

to new, unseen data[13]. 

 
 

7. Literature review 

Kaiyu Zhang(2020) addressed the challenges of small sample sizes in fault diagnosis by 

proposing a compact convolutional neural network (CNN) augmented with a multiscale feature 

extraction unit. This unit used 1D convolutional kernels of varying scales to extract diverse 

features, reducing network depth and mitigating overfitting. The compact CNN, consisting of 

shallow layers and a softmax classifier, processed these features efficiently while employing 

dropout to enhance generalization. The approach was evaluated on three datasets, demonstrating 

high accuracy and strong generalization, outperforming traditional CNNs and SVMs. Future 

work included automating hyperparameter selection, improving generalization for dynamic 

conditions, and addressing multi-label classification[14] . 

Ozan _Irsoy (2021) introduced a methodology for adapting the Hierarchical Mixture of Experts 

(HMoE) model, which organized multiple experts into a tree structure with gating functions at 

internal nodes and experts at the leaves. A novel dropout technique was applied to internal nodes, 

dropping entire subtrees to reduce overfitting and produce smoother outputs. The model was 

trained using a binary tree with stochastic gradient descent (SGD) and the Adam optimizer, 



 

employing cross-entropy loss for classification and squared loss for regression. Evaluations on 

datasets such as synthetic regression data, MNIST, CIFAR-10, and SSTB demonstrated that 

dropout reduced overfitting, improved generalization, and outperformed L1 and L2 

regularization for deep trees. Qualitative analysis highlighted the diverse representations and 

ensemble effects created by dropout, showcasing its ability to balance bias and variance and 

enhance model performance[15]. 

Albert Senen (2023) analyzed the convergence of dropout-based stochastic training in neural 

networks, provided theoretical guarantees for stationary points, and highlighted the influence of 

dropout probability on convergence rates. It showed that dropout mitigated overfitting, with less 

severe impacts on wide networks compared to deep ones[16]. 

Joshua Shunk (2022)introduced The NSDropout methodology had involved splitting the dataset 

into training, validation, unseen validation, and testing subsets. Training had been used to update 

weights, while validation had identified overfitting. A portion of the training data had been 

reserved for unseen validation to refine dropout criteria. Using a standard feed-forward 

architecture, NSDropout had selectively removed noisy neurons based on activation deviations 

calculated from training and validation data. Dropout masks had been iteratively refined, and 

backpropagation had updated gradients only for retained neurons. Techniques like SGD, 

momentum, and L2 weight decay had stabilized training, with dropout proportions tuned per 

layer (0.5–0.7 for input, 0.2–0.4 for hidden layers). Validation had dynamically influenced 

neuron retention, ensuring unbiased optimization. Evaluation on MNIST, Fashion-MNIST, and 

CIFAR-10 had shown that NSDropout had enhanced generalization, reduced reliance on large 

datasets, and achieved high accuracy, particularly with small datasets. Iterative mask refinement 

and hyperparameter tuning had been key to its robustness[17] . 

 

Aakash Ravindra Shinde(2024)proposed a methodology for mitigating overfitting in quantum 

convolutional neural networks (QCNNs). Datasets such as Medical MNIST, BraTS, and Stellar 

were prepared by splitting them into training, testing, and validation subsets, with dimensionality 

reduction techniques like principal component analysis (PCA) applied. QCNNs were designed 

with data encoding, convolutional layers, and pooling layers, which were optimized during 



 

training. Two post-training methods were tested: gate dropout, which proved ineffective due to 

accuracy losses, and Post-Training Parameter Adjustment (PTA), which effectively reduced 

overfitting by adjusting variational parameters. Validation accuracy and the testing-validation 

accuracy gap demonstrated that PTA successfully enhanced model performance 

and generalization. [18]. 

Ho-Chan Kim(2020) focused on reducing overfitting in neural networks using the MNIST 

dataset, tested multi-layer neural networks and convolutional neural networks (CNNs), including 

simple and deep CNNs. Techniques such as regularization, dropout, and data augmentation were 

applied to mitigate overfitting. Experiments evaluated the effects of weight decay, dropout, and 

training dataset size, using test and validation accuracy to measure generalization. Results 

showed that deep CNNs achieved the highest accuracy and were the most effective at reducing 

overfitting. Increasing the training dataset size had a greater impact on mitigating overfitting 

compared to regularization or dropout, highlighting the importance of data quantity in improving 

generalization[19]. 

Afshin GHOLAMYa (2023) explored the use of deep learning for geoscience problems, 

including solving inverse problems and predicting events like earthquakes and volcanic 

eruptions. Dropout training was applied to improve training speed and reduce overfitting by 

training sub-networks on different data portions and averaging their results. The geometric mean 

was identified as the optimal averaging method, outperforming the arithmetic mean. A theoretical 

analysis explained its success based on criteria like commutativity and continuity. Experiments 

validated the geometric mean’s effectiveness, showing superior generalization and prediction 

accuracy. The study concluded that the geometric mean was the best choice for dropout training, 

enhancing deep learning applications in geosciences[20] . 

Minghui Liu(2022) FocusedDropout was a regularization method designed to enhance 

classification performance and prevent overfitting in CNNs. It was tested on CIFAR10, 

CIFAR100, and Tiny ImageNet across architectures like ResNet, DenseNet, and VGGNet. The 

method identified target-related features by selecting the reference channel with the highest 

average activation value and retaining relevant units using a binary mask. To prevent overfitting, 

FocusedDropout was applied to 10% of training batches per epoch with increased weight decay. 

The training incorporated data augmentation and hyperparameter optimization. Evaluation 



 

demonstrated improved generalization and accuracy, outperforming methods like Dropout and 

SpatialDropout. Class Activation Mapping (CAM) confirmed its effectiveness in enhancing 

focus on target regions[4] . 

Nebojsa Bacanin(2020) proposed a hybridized enhanced bat algorithm (BA-OM) to address 

overfitting in CNNs by automating and optimizing dropout probability selection. Combining the 

bat algorithm (BA) with artificial bee colony (ABC) mechanisms, BA-OM balanced global 

search and local optimization to refine dropout rates. Experiments on MNIST and CIFAR-10 

datasets demonstrated the method’s effectiveness, achieving test accuracies of 71.76% on 

CIFAR-10 with a dropout rate of 0.671 and 99.19% on MNIST with a dropout rate of 0.5216. 

BA-OM outperformed other metaheuristic techniques, improved generalization, and streamlined 

dropout rate optimization. Future work was planned to explore broader applications and 

additional datasets[21] . 

Yuanyuan Chen(2021)developed The Adaptive Sparse Dropout (AS-Dropout) method was 

developed to address overfitting in deep neural networks (DNNs) by combining dropout with 

sparsity, ensuring only 2–5% of neurons remained active during training. Unlike traditional 

dropout, AS-Dropout adaptively calculated activation probabilities based on neuron activation 

values, prioritizing those with higher activation. The method involved normalizing activation 

values, applying a sigmoid function to compute probabilities, and dynamically selecting active 

neurons. It was tested on MNIST, COIL-100, and Caltech-101 using fully connected networks, 

VGGNet19, and ResNet50. AS-Dropout consistently outperformed traditional dropout, standout, 

and sparseout methods, achieving superior generalization and effectively mitigating overfitting, 

particularly in fully connected networks. However, its performance in convolutional neural 

networks was less satisfactory, requiring further refinement for broader applications. The method 

showed significant potential, especially for small datasets[22]. 

Claudio Filipi (2021)introduced MaxDropout, a novel regularization method that enhanced 

generalization in deep neural networks by deactivating the most active neurons in hidden layers, 

allowing less active neurons to learn more informative features. It used L2 normalization to scale 

activation values and selected neurons for retention based on a randomly chosen dropout rate. 

MaxDropout was applied by replacing standard Dropout layers or combining it with regularizers 

like Cutout. Experiments on CIFAR-10 and CIFAR-100 datasets using ResNet18 and 



 

WideResNet architectures showed that MaxDropout outperformed standard Dropout, achieving 

better generalization and reduced overfitting, with further improvements when combined with 

Cutout. The method demonstrated strong potential for image classification tasks, with plans for 

broader applications and implementation in additional frameworks[23]. 

Sanghun Lee(2020) revisited spatial dropout to address the limitations of conventional element-

wise dropout in convolutional layers, which failed due to correlations from weight sharing and 

local connectivity. Spatial dropout, which dropped entire feature maps, effectively mitigated 

neuron co-adaptation while maintaining structural integrity. Experiments on CIFAR-10 and 

CIFAR-100 datasets with VGG, Wide-ResNet, and DenseNet-BC architectures showed 

significant improvements, particularly with DenseNet-BC achieving a 3.32% error rate on 

CIFAR-10 using only 3 million parameters. Training employed SGD with Nesterov momentum 

over 300–600 epochs. Results demonstrated spatial dropout’s superior regularization and 

efficiency, with future work aimed at mathematical enhancements and integration with pre-

training[24] . 

Zhuang Liu(2022) investigated dropout's potential to address underfitting and overfitting by 

introducing two techniques: early dropout, which was applied during initial training to improve 

data fitting in underfitting models, and late dropout, which was introduced later to enhance 

generalization in overfitting models. Experiments with Vision Transformers (ViT), Mixer, and 

ConvNeXt architectures on ImageNet-1K, COCO, and ADE20K datasets utilized the AdamW 

optimizer, cosine learning rate schedules, and dropout rates between 0.1 and 0.7. Metrics such as 

top-1 accuracy, training loss reduction, and gradient variance alignment highlighted the 

effectiveness of these techniques. Early dropout consistently reduced training loss and improved 

test accuracy in underfitting scenarios, while late dropout improved generalization in overfitting 

cases. Models trained with these methods outperformed baselines in object detection, 

segmentation, and classification tasks, showcasing dropout's potential for large-scale neural 

network training and encouraging further research on scheduling strategies[25] . 

Ioannis E. Livieris (2021) developed a novel Dropout Weight-Constrained Recurrent Neural 

Network (DWCRNN) to address the challenge of forecasting cryptocurrency prices, which were 

highly nonlinear and fluctuating. By combining weight-constrained RNNs with dropout 

techniques, the model effectively reduced overfitting and improved generalization. It utilized 



 

daily price data for BTC, ETH, XRP, LTC, and the CCi30 index from January 2017 to June 

2019, with 27 months for training and 3 months for testing, and applied data transformations for 

stationarity. The model was evaluated using MAE and RMSE across forecasting horizons of 7, 

14, and 21 days and outperformed state-of-the-art algorithms like LSTM, BiLSTM, CNN, and 

regression models. Optimal dropout rates (10%-20%) were identified, and statistical tests 

validated its superior accuracy. While the model showed promise, limitations included unclear 

interactions between weight constraints and dropout techniques and the need for dynamic re-

training to adapt to evolving data. Future research was proposed to focus on real-world trading 

system applications to assess profitability[12] . 

Bihi Sabiri(2022) proposed two techniques, early stopping and dropout, to address overfitting in 

deep learning models. Early stopping prevented overfitting by halting training when validation 

loss stopped improving, using strategies such as predefined epochs and validation monitoring. 

Dropout enhanced generalization by randomly deactivating neurons during training, encouraging 

the network to learn diverse features. Experiments on datasets like MNIST, SONAR, and 

Diabetes demonstrated that dropout improved accuracy and reduced loss across datasets, with 

accuracy on the Diabetes dataset increasing from 75% to 81% and loss decreasing from 81% to 

45%. Early stopping further minimized overfitting by stopping training at optimal points, 

improving generalization while reducing training time. Both techniques effectively improved 

model robustness, with future research aimed at dynamic dropout adjustments, network 

compression, and sparse representations to reduce complexity[13] . 

Kishan K C (2021) introduced a Bayesian Joint Inference Framework to tackle overfitting and 

uncertainty calibration in neural networks by jointly inferring network depth and applying 

dropout regularization. The framework used a beta process to model network depth, enabling 

theoretically infinite hidden layers, and a conjugate Bernoulli process to control neuron 

activations. Structured Stochastic Variational Inference (SSVI) efficiently approximated the 

marginal likelihood for optimization. Experiments on synthetic, UCI, and image datasets, 

including MNIST and CIFAR-10, demonstrated the framework's superiority in accuracy, 

uncertainty calibration, and overfitting prevention, outperforming state-of-the-art methods like 

vanilla dropout and stochastic depth. It dynamically adjusted network depth and neuron 

activations to create compact, efficient structures and proved effective in continual learning 



 

tasks, reducing catastrophic forgetting on rotated and permuted MNIST datasets. The framework 

achieved well-calibrated predictions, with future work aimed at enhancing dynamic adaptation 

and scalability for real-world applications[26]. 

Xiaobo Liang (2021)proposed R-Drop, a consistency training strategy to address inconsistencies 

caused by dropout between training and inference stages. R-Drop minimized the bidirectional 

Kullback-Leibler (KL) divergence between the output distributions of two sub-models generated 

via dropout during training, adding this as a regularization term to the negative log-likelihood 

loss. Experiments across 18 datasets and five tasks, including translation (e.g., WMT14), 

summarization (e.g., CNN/DailyMail), and classification (e.g., CIFAR-100, ImageNet), 

demonstrated its effectiveness. Tested on models like Transformer, BART, RoBERTa-large, and 

Vision Transformer (ViT), R-Drop achieved state-of-the-art results, such as BLEU scores of 

30.91 and 43.95 on WMT14 English→German and English→French, respectively, and 

improved model generalization and robustness against overfitting. While computational cost 

increased due to dual forward passes, future work aimed to explore pre-training stages, apply R-

Drop to other architectures like CNNs, and optimize efficiency[27] . 

B. H. Pansambal (2023 ) focused on addressing overfitting in neural networks by applying 

dropout regularization at different layers, including visible and hidden layers, to improve 

performance and generalization. Dropout worked by randomly deactivating a percentage of 

neurons during training, reducing co-adaptation and enabling better generalization. The approach 

iteratively formed "thinned networks" by retaining subsets of neurons based on dropout rates 

(e.g., 20%, 30%, 40%, 50%) and aggregating their outputs. Experiments showed that a dropout 

rate of 0.30 achieved the highest accuracy (87.93%) for visible layers, while 0.40 yielded 

85.17% for hidden layers. While dropout effectively reduced overfitting and enhanced accuracy, 

it increased computational costs due to iterative training. Future work aimed to integrate dropout 

with other regularization techniques, such as L2 regularization, to improve efficiency and reduce 

computational overhead[5] . 

Karshiev Sanjar (2021) introduced Weight Dropout, a regularization technique for deep neural 

networks that deactivated weight connections instead of entire neurons to reduce overfitting and 

improve generalization. It was implemented in convolutional neural networks (CNNs) using a 

pre-trained ResNet-50 model and employed a dynamic Bernoulli-based dropout mask that was 



 

updated at each training step. Batch gradient descent (BGD) was used for optimization, 

processing features through batch normalization, activation functions, and weight dropout layers. 

Evaluations on MNIST, CIFAR-10, and skin lesion segmentation datasets showed superior 

performance, with validation accuracy of 94.51% (MNIST), 91.68% (CIFAR-10), and leading 

segmentation metrics (pixel accuracy: 96.27%, Dice coefficient: 88.59%, IoU: 51.48%). Despite 

its effectiveness, the approach increased computational complexity and risked losing critical 

information. Future work aimed to enhance scalability and efficiency by refining the dropout 

process with more informed selection criteria[28]. 

Panissara Thanapol (2021) addressed overfitting and poor generalization in CNNs trained with 

limited data by exploring combinations of data augmentation, dropout, and batch normalization 

techniques. Using a contracted CIFAR-10 dataset with only 10% of the original samples, 

augmentation methods such as rotation, width and height shifts, shear transformations, and 

random erasing were tested individually and in combination. Dropout (omission rates: 0.5–0.8) 

was applied with augmentation, while batch normalization was used to stabilize activations, 

though it was not combined with dropout due to adverse effects. Injecting augmentation during 

training, particularly at 30 epochs, yielded the best results. The highest test accuracy (61.5%) 

was achieved by combining width and height shift augmentation with dropout injected at 30 

epochs. Random erasing showed poor performance, while batch normalization with 

augmentation provided marginal gains. Limitations included dataset specificity and increased 

computational costs, with future work aimed at applying these strategies to other datasets and 

optimizing CNNs for limited data scenarios[29] . 

Hongqian Qi (2025)DeepQA: A Unified Transcriptome-Based Aging Clock Using Deep Neural 

Networks" paper featured a novel deep learning framework utilizing a Mixture of Experts (MoE) 

architecture capable of handling diverse data types. This model employed the hinge-mean-

absolute-error (Hinge-MAE) loss function for effective training on both healthy and unhealthy 

subjects, adapting to deviations in chronological age. Unlike traditional models, DeepQA 

analyzed all gene expression data directly using saliency maps to identify significant genes, 

avoiding the biases of prior gene selection and reducing computational intensity. The model used 

a comprehensive human bulk RNA-Seq dataset, incorporated data augmentation like Gaussian 

noise for enhanced robustness, and was implemented in Python and PyTorch on modern GPU 



 

hardware. The evaluation involved cross-validation on both subject types, focusing on accuracy 

and noise robustness. This approach addressed major challenges in biological age prediction, 

such as bias in age estimation of unhealthy subjects and data integration across multiple cohorts, 

enhancing prediction accuracy and applicability[30]. 

F Yuanbiao Guo(2025)Session-based recommendation with quaternion-enhanced attention 

calculation" paper involved several steps, initially encoding all session items uniformly using 

Word Embedding. Each session was graphically represented with a unique adjacency matrix. 

The core technique used a quaternion-enhanced graph attention mechanism to update item 

representations by calculating learnable weights for both item and session representations. 

Contributions from various time nodes were aggregated using a positional attention mechanism 

to form a primary session representation. This, combined with item representations, was refined 

through a self-attention mechanism enhanced by quaternion weights to produce a high-quality 

session representation. Quaternion calculations further optimized weight quality during critical 

computational stages and reduced model parameters. The methodology concluded by predicting 

behaviors using the final representations to calculate recommendation scores. Experimentally 

validated on benchmark datasets, the method showed improved performance over baseline 

models, highlighting the benefits of integrating quaternion algebra into session-based 

recommendation systems[31]. 

Jae Hyung Kim (2025)Forecasting Natural Gas Price Movements Using Machine Learning and 

Deep Learning Models: A Comparative Study" involved collecting and preprocessing historical 

natural gas price data and sentiment data from January 2023 to June 2024. The analysis used 

various models, including traditional methods like SARIMA, machine learning techniques such 

as Logistic Regression and Random Forests, and advanced deep learning models like Neural 

Networks and CNNs, all enhanced with sentiment analysis and visualization techniques. The 

models were evaluated using accuracy, MSE, MAPE, and R², along with a Wilcoxon signed-rank 

test to assess performance. The study emphasized the effectiveness of deep learning models in 

capturing the complex dynamics of the volatile natural gas market[32]. 

 



 

 

Table 1-Comparison table 

author Dataset Advantage Disadvantage Limitatio
n Algorithm Result 

Kaiyu 
Zhang 

- CWRU 
dataset: For 
small sample 
and cross-
load 
diagnosis.  
- SQ dataset: 
For variable 
speeds and 
fault 
severities.  
- Escalator 
dataset: For 
real-world 
industrial 
applications. 

- Mitigates 
overfitting 
while 
preserving 
feature 
richness.  
- Enhances 
generalization 
with shallow 
architecture 
and dropout.  
- Achieves 
high accuracy 
with limited 
samples and 
varying 
speeds. 

- Requires 
time-
consuming 
hyperparamet
er 
optimization. 

- Limited 
generalization 
under dynamic 
operational 
conditions.  
- Does not 
address multi-
label 
classification 
or unbalanced 
datasets. 

- Compact 
CNN with 
multiscale 
feature 
extraction.  
- 1D 
convolutional 
kernels for 
multiscale 
analysis.  
- Gradient 
descent with 
exponentially 
decreasing 
learning rate. 

- 
Demonstrated 
high accuracy 
and strong 
generalization 
across 
datasets.  
- 
Outperformed 
traditional 
CNNs and 
SVM-based 
methods. 

Ozan 
_Irsoy 

Synthetic 
regression 
data, MNIST, 
CIFAR-10, 
SSTB 

- Reduces 
overfitting by 
distributing 
decision-
making across 
the tree. 
- Produces 
smoother 
outputs. 
- Improves 
generalization 
across 
datasets. 
- Outperforms 
L1/L2 
regularization, 
especially for 
deep trees. 

- Adapting 
dropout to 
hierarchical 
structures 
may add 
complexity 
compared to 
flat 
architectures. 

- Effectiveness 
depends on 
selecting 
appropriate 
dropout rates. 
- Results may 
vary for deep 
trees and 
different 
datasets. 

Hierarchical 
Mixture of 
Experts 
(HMoE) with 
custom dropout 
applied at 
internal gating 
nodes. 
- Training: 
SGD with 
Adam 
optimizer. 
- Loss 
functions: 
cross-entropy 
(classification), 
squared loss 
(regression). 

- Dropout 
effectively 
reduces 
overfitting 
(smaller 
training-
validation 
error gaps). 
- Higher 
dropout rates 
yield smoother 
outputs. 
- Improves 
generalization 
across tasks 
and datasets. 

Albert 
Senen 

Wide and 
deep neural 
networks, 
arborescence-
shaped 
networks. 

Reduces 
overfitting; 
ensures 
convergence 
to stationary 
points; 
effective in 
wide 
networks. 

Convergence 
impaired by 
exponential 
dependence 
on depth. 

Dropout 
probability 
significantly 
affects 
convergence; 
bounds may 
not fully 
represent real-
world 
behaviors. 

SGD with 
dropout, 
compact 
projections, 
explicit risk 
function for 
arborescence 
networks. 

Guaranteed 
convergence 
to stationary 
points; slower 
in deep 
networks; 
better 
performance 
in wide 
networks with 
fewer dropout 
layers. 

Joshua MNIST, Increased Training takes 1. Split dataset 



 

Shunk Fashion-
MNIST, 
CIFAR-10; 
Dataset split 
into training, 
validation, 
unseen 
validation, 
and testing 
subsets. 
Training data 
further 
divided for 
unseen 
validation. 

Improves 
generalizatio
n and reduces 
overfitting by 
selectively 
dropping 
noisy 
neurons; 
reduces 
dependence 
on large 
training 
datasets; 
achieves 
superior 
accuracy with 
small 
datasets; 
dynamically 
updates 
dropout 
masks. 

 

training time 
compared to 
standard 
neural 
networks and 
traditional 
dropout 
methods; 
requires more 
computational 
effort due to 
iterative 
refinement of 
dropout 
masks. 

up to four 
times longer 
than standard 
networks; 
additional 
hyperparamete
r (p) adds 
complexity; 
sorting 
operations for 
mask creation 
consume 
significant 
computational 
resources. 

into subsets.  
2. Calculate 
neuron 
activation 
averages for 
each class.  
3. Identify and 
drop noisy 
neurons using 
dropout masks.  
4. Perform 
forward 
propagation 
with thinned 
layers.  
5. Perform 
backpropagatio
n using SGD.  
6. Refine 
dropout masks 
iteratively.  
7. Evaluate on 
unseen 
validation and 
testing 
datasets. 

Superior 
generalizatio
n and 
accuracy 
across 
datasets; 
achieved 
near-perfect 
accuracy with 
as few as 750 
MNIST 
examples; 
significantly 
lower error 
rates 
compared to 
traditional 
dropout and 
other 
regularization 
techniques. 

 

Aakash 
Ravindra 
Shinde, 

Medical 
MNIST, 
BraTS, 
Stellar 
datasets 
split into 
training, 
testing, and 
validation 
subsets. 
Dimensional
ity reduction 
(e.g., PCA) 
was applied 
to adapt data 
to circuit 
capacity. 

 

Successfully 
reduced 
overfitting 
with PTA, 
improved 
validation 
accuracy, 
enhanced 
generalization 
across 
datasets, and 
preserved 
quantum 
circuit 
integrity. 

Gate dropout 
method was 
ineffective, 
causing 
significant 
accuracy 
drops. PTA 
requires 
careful 
parameter 
selection and 
adjustment. 

Gate dropout 
highlights 
QCNN 
vulnerability; 
PTA is 
dependent on 
manual or 
empirical 
determination 
of adjustment 
thresholds. 

1. Prepare 
datasets and 
apply 
dimensionality 
reduction. 
2. Train QCNN 
with data 
encoding, 
convolutional, 
and pooling 
layers. 
3. Use PTA to 
adjust selected 
parameters. 
4. Validate and 
test 
performance 
using accuracy 
metrics. 

PTA reduced 
overfitting, 
improved 
validation 
accuracy, and 
increased 
generalizatio
n across 
datasets, with 
consistent 
success in 
mitigating 
overfitting. 

 

Ho-Chan 
Kim 

MNIST 
dataset with 
60,000 
training 
images and 
10,000 test 
images, each 
depicting a 
28x28 
grayscale 
digit. Data 

Deep CNNs 
consistently 
achieved the 
highest 
accuracy and 
better 
generalization. 
Increasing 
training data 
size 
significantly 

Techniques 
like 
regularization 
and dropout 
were less 
effective than 
increasing 
training data 
size or using 
advanced 
architectures 

The study 
focused solely 
on the MNIST 
dataset, 
limiting 
generalization 
to other 
datasets or 
tasks. 
Regularization 
and dropout 

1. Prepare 
datasets with 
augmentation.  
2. Test multi-
layer neural 
networks and 
CNNs (simple 
and deep).  
3. Apply 
regularization, 
dropout, and 

Deep CNNs 
outperformed 
other models, 
achieving the 
highest 
accuracy. 
Increasing 
dataset size 
was more 
effective in 
reducing 



 

augmentation 
techniques 
like flipping 
and rotation 
were used. 

reduced 
overfitting 
compared to 
regularization 
or dropout. 

like deep 
CNNs. 

were not as 
impactful in 
reducing 
overfitting. 

data 
augmentation.  
4. Measure 
performance 
using test and 
validation 
accuracy. 

overfitting 
than 
regularization 
or dropout. 

Afshin 
GHOLAM
Ya, 

Historical 
geoscience 
data, 
including 
seismic 
activity and 
volcanic 
eruption 
patterns, 
used for 
inverse 
problem-
solving and 
prediction 
tasks. 

 

The 
geometric 
mean 
improved 
training 
efficiency, 
reduced 
overfitting, 
and enhanced 
generalizatio
n and 
prediction 
accuracy in 
dropout 
training. 

 

The study 
mainly 
focused on 
theoretical 
and 
experimental 
validation of 
the geometric 
mean, 
potentially 
overlooking 
other 
promising 
combination 
methods. 

Limited to 
geoscience 
applications, 
the findings 
may not 
generalize 
across other 
fields or 
datasets. 

 

1. Apply deep 
learning 
models with 
dropout 
training.  
2. Train sub-
networks on 
different data 
portions.  
3. Combine 
results using 
the geometric 
mean.  
4. Evaluate 
performance 
through 
prediction 
accuracy and 
generalization 
metrics. 

 

The geometric 
mean 
outperformed 
other methods 
like the 
arithmetic 
mean, 
providing 
better 
generalization 
and prediction 
accuracy for 
dropout-
related deep 
learning tasks. 

Minghui 
Liu 

CIFAR10, 
CIFAR100, 
and Tiny 
ImageNet 
datasets 
used for 
classificatio
n tasks. 

 

Improved 
classification 
performance 
and 
generalizatio
n; effectively 
focuses on 
target 
features 
while 
preventing 
overfitting. 

 

Requires 
careful tuning 
of 
hyperparamet
ers, such as 
dropout 
participation 
rate and 
weight decay, 
for optimal 
performance. 

FocusedDrop
out relies on 
spatial 
invariance 
and may not 
generalize 
well to non-
image data or 
tasks where 
spatial 
alignment is 
less critical. 

 

1. Select the 
reference 
channel with 
the highest 
average 
activation 
value.  
2. Identify 
target-related 
units using 
spatial 
invariance.  
3. Generate a 
binary mask 
to retain target 
units.  
4. Apply 
FocusedDrop
out to 10% of 
batches with 
increased 
weight decay.  
5. Train 
models with 
data 
augmentation 
and 

Achieved 
improved 
accuracy and 
generalizatio
n across 
CNN 
architectures; 
outperformed 
baseline 
methods like 
Dropout, 
SpatialDropo
ut, and 
DropBlock; 
enhanced 
target focus, 
as verified by 
Class 
Activation 
Mapping 
(CAM). 

 



 

hyperparamet
er 
optimization. 

 

Nebojsa 
Bacanin 

MNIST and 
CIFAR-10 
datasets. 
MNIST: 
Two 
convolution
al layers, 
two pooling 
layers, one 
fully 
connected 
layer. 
CIFAR-10: 
Three 
convolution
al layers, 
three 
pooling 
layers, two 
fully 
connected 
layers. 
Datasets 
were 
divided into 
training, 
validation, 
and testing 
subsets. 

 

Automated 
and optimized 
dropout 
probability 
selection; 
balanced 
exploration 
and 
exploitation 
using 
hybridized bat 
algorithm 
(BA-OM); 
achieved 
superior test 
accuracy and 
generalization 
compared to 
other methods. 

Requires a 
complex 
combination 
of 
metaheuristic 
techniques, 
which 
increases 
computational 
complexity. 

Results are 
limited to 
MNIST and 
CIFAR-10 
datasets; 
broader 
generalization 
to other 
datasets and 
tasks is yet to 
be tested. 

 

1. Use a 
hybridized 
enhanced bat 
algorithm (BA-
OM).  
2. Alternate 
between BA's 
global search 
and ABC's 
local 
optimization.  
3. Evaluate 
dropout 
probabilities 
based on test 
accuracy.  
4. Optimize 
dropout rates 
iteratively. 

Achieved test 
accuracy of 
71.76% on 
CIFAR-10 
with a dropout 
rate of 0.671 
and 99.19% on 
MNIST with a 
dropout rate of 
0.5216. 
Outperformed 
other 
metaheuristic 
techniques like 
PSO, FA, and 
CS in 
optimizing 
dropout rates. 

Yuanyuan 
Chen 

MNIST, 
COIL-100, 
and Caltech-
101 
datasets. 
Neural 
network 
architectures 
included 
fully 
connected 
networks, 
VGGNet19, 
and 
ResNet50. 

 

Effectively 
mitigates 
overfitting by 
combining 
dropout with 
sparsity; 
adaptively 
calculates 
activation 
probabilities, 
improving 
generalization; 
particularly 
effective for 
small datasets. 

Requires 
careful 
tuning of the 
shift 
parameter to 
control 
neuron 
activation 
probabilities. 

 

Less effective 
in 
convolutional 
neural 
networks 
compared to 
fully 
connected 
networks; 
further 
refinement is 
needed for 
broader 
applicability. 

1. Normalize 
activation 
values to a 
defined range.  
2. Compute 
activation 
probabilities 
using a 
sigmoid 
function.  
3. Retain 2–5% 
of neurons 
dynamically 
based on 
calculated 
probabilities.  
4. Evaluate 
performance 
using 
recognition 
errors and 
training-testing 
error analysis. 

AS-Dropout 
outperformed 
traditional 
dropout, 
standout, and 
sparseout 
methods, 
achieving 
better 
generalization 
and effectively 
preventing 
overfitting, 
particularly in 
fully 
connected 
networks. 



 

Claudio 
Filipi 

CIFAR-10 
and CIFAR-
100 
datasets, 
comprising 
60,000 
images with 
varying 
class 
distributions
. Evaluated 
on 
ResNet18 
and 
WideResNet 
architectures
. 

 

Encourages 
less active 
neurons to 
learn more 
informative 
features, 
improving 
generalizatio
n and 
reducing 
overfitting; 
outperforms 
standard 
Dropout and 
enhances 
performance 
when 
combined 
with Cutout. 

 

Requires 
careful 
tuning of the 
dropout rate 
threshold; 
additional 
computation
al 
complexity 
due to L2 
normalizatio
n and 
selection of 
neurons to 
deactivate. 

 

Limited to 
image 
classification 
tasks; broader 
applications 
like object 
detection and 
speech 
recognition 
need further 
testing. 

 

1. Apply L2 
normalization 
to neuron 
activation 
values.  
2. Identify the 
most active 
neurons.  
3. Retain 
neurons below 
a threshold 
determined by 
a random 
dropout rate.  
4. Multiply the 
activation 
tensor by a 
generated mask 
to deactivate 
selected 
neurons.  
5. Incorporate 
MaxDropout 
into training 
with data 
augmentation 
methods. 

MaxDropout 
outperformed 
standard 
Dropout on 
CIFAR-10 
and CIFAR-
100 datasets, 
achieved 
better 
generalizatio
n, and further 
improved 
performance 
when 
combined 
with Cutout. 

 

Sanghun 
Lee 

CIFAR-10 
and CIFAR-
100 datasets 
(60,000 
32×32 color 
images) 

Effectively 
mitigates 
neuron co-
adaptation 
while 
maintaining 
structural 
integrity of 
convolutional 
layers.  
Improves 
regularization, 
reduces error 
rates, and 
increases 
model 
efficiency.  
Outperforms 
standard 
dropout, 
achieving 
significant 
error 
reduction. 

No explicit 
disadvantages 
mentioned; 
possibly 
increased 
training time. 

Evaluated only 
on CIFAR-10 
and CIFAR-
100 datasets 
and specific 
architectures.  
Further 
mathematical 
analysis and 
testing with 
pre-training 
are needed. 

Spatial dropout 
replaces 
standard 
dropout, 
dropping entire 
feature maps in 
CNNs.  
Training used 
Stochastic 
Gradient 
Descent (SGD) 
with Nesterov 
momentum 
(0.9) and 
weight decay 
(0.0001). 

Achieved a 
3.32% error 
rate on 
CIFAR-10 
with 
DenseNet-BC 
using only 3 
million 
parameters.  
Demonstrated 
superior 
regularization 
and 
performance 
compared to 
standard 
dropout. 

Zhuang 
Liu 

ImageNet-1K 
(initial 
evaluations), 
COCO, 
ADE20K 

Early dropout 
reduces 
underfitting 
by improving 

Additional 
hyperparamet
er tuning 
required for 
dropout rates 

Effectiveness 
depends on 
specific model 
architectures 
and dataset 

Early dropout: 
Applied 
during initial 
training and 

Early dropout 
reduced 
training loss 
and improved 
test accuracy 



 

(downstream 
tasks). 

data fitting 
and lowering 
training loss. 
Late dropout 
mitigates 
overfitting 
and enhances 
generalizatio
n accuracy in 
large models. 

 

and activation 
epochs. 

characteristics. 
Early dropout 
may not help 
models that are 
already 
overfitting. 

deactivated 
later. Late 
dropout: 
Introduced in 
later training 
phases. Both 
utilize 
dropout with 
variable rates 
(0.1 to 0.7). 

 

in underfitting 
regimes. Late 
dropout 
enhanced 
generalization 
accuracy for 
overfitting 
models, 
outperforming 
baselines. 

Ioannis E. 
Livieris 

Daily price 
data for BTC, 
ETH, XRP, 
LTC, and 
CCi30 index 
from January 
2017 to June 
2019. 
Training data 
covered 27 
months, and 
testing data 
spanned 3 
months. 

DWCRNN 
significantly 
reduced 
overfitting 
and improved 
generalizatio
n. It captured 
reliable 
patterns 
while 
filtering out 
noise, 
outperformin
g other 
models in 
forecasting 
accuracy. 

 

Requires 
extensive 
tuning of 
dropout rates 
and 
hyperparamet
ers. The 
interaction 
between 
weight 
constraints 
and dropout 
techniques 
remains 
unclear. 

Effectiveness 
in real-world 
trading 
systems was 
not tested. The 
model's 
adaptability to 
dynamic 
market 
changes and 
new data needs 
further 
research. 

Dropout 
Weight-
Constrained 
Recurrent 
Neural 
Network 
(DWCRNN), 
combining 
weight 
constraints 
and dropout 
techniques 
applied to 
feed-forward 
connections to 
improve 
forecasting. 

 

DWCRNN 
outperformed 
state-of-the-art 
models (e.g., 
LSTM, CNN, 
SVR) with 
lower MAE 
and RMSE 
across all 
datasets and 
forecasting 
horizons, 
demonstrating 
superior 
accuracy and 
efficiency. 

Bihi 
Sabiri 

MNIST, 
SONAR, and 
Diabetes 
datasets. 

Dropout 
reduced 
overfitting, 
improved 
generalization, 
and forced the 
network to 
learn diverse 
features. Early 
stopping 
minimized 
overfitting and 
saved training 
time. 

Dropout can 
hinder 
performance 
during 
training as it 
suppresses 
neuron 
activations. 
Early 
stopping may 
halt training 
prematurely, 
risking 
underfitting. 

Dropout 
requires 
careful tuning 
of probabilities 
and may not 
completely 
eliminate 
overfitting. 
Early stopping 
depends 
heavily on 
validation set 
monitoring. 

Dropout 
randomly 
deactivates 
neurons 
during 
training with 
specified 
probabilities 
(e.g., 0.25 to 
0.5). Early 
stopping halts 
training when 
validation loss 
stops 
improving. 

 

Dropout 
improved 
accuracy on 
the Diabetes 
dataset from 
75% to 81% 
and reduced 
loss from 
81% to 45%. 
On MNIST, 
accuracy 
increased 
from 98% to 
99%, and loss 
decreased 
from 5% to 
3%. 

 

Kishan K 
C 

Synthetic 
datasets, UCI 
datasets, and 
image 
datasets like 
MNIST, 
FashionMNI
ST, SVHN, 
and CIFAR-
10. 

Dynamically 
adjusts 
network 
depth and 
neuron 
activations 
based on 
data, 
achieving 

Computationa
l complexity 
due to infinite 
hidden layer 
modeling and 
the need for 
approximatio
ns like 
Structured 
Stochastic 

Requires 
further 
improvements 
for real-world 
scalability 
and dynamic 
adaptation to 
evolving 
datasets. 

 

Bayesian Joint 
Inference 
Framework 
using a beta 
process for 
network depth 
and conjugate 
Bernoulli 
process for 
neuron 

Achieved 
superior 
performance 
in accuracy 
and 
uncertainty 
calibration, 
dynamically 
adjusted 



 

compact, 
efficient 
structures. 
Enhances 
accuracy, 
uncertainty 
calibration, 
and 
robustness to 
overfitting. 

 

Variational 
Inference 
(SSVI). 

activations, 
optimized via 
SSVI. 

network 
depth, and 
reduced 
catastrophic 
forgetting in 
continual 
learning 
tasks. 

 

Xiaobo 
Liang 

18 datasets 
across 5 
tasks: neural 
machine 
translation 
(e.g., 
WMT14), 
abstractive 
summarizatio
n (e.g., 
CNN/DailyM
ail), language 
understandin
g (GLUE 
benchmark), 
language 
modeling 
(e.g., 
Wikitext-
103), and 
image 
classification 
(e.g., CIFAR-
100, 
ImageNet). 

Improved 
model 
generalizatio
n and reduced 
overfitting. 
Achieved 
state-of-the-
art results 
across 
multiple 
datasets. 
Enhanced 
consistency 
between 
training and 
inference. 

 

Increased 
computation
al cost due 
to dual 
forward 
passes per 
input 
sample. 

 

Tested only 
during fine-
tuning; 
performance 
during pre-
training was 
not explored. 

 

R-Drop: 
Minimizes the 
bidirectional 
Kullback-
Leibler (KL) 
divergence 
between 
output 
distributions 
of two sub-
models 
generated via 
dropout 
during 
training. 

 

Achieved 
state-of-the-art 
BLEU scores 
of 30.91 
(WMT14 
English→Ger
man) and 
43.95 
(WMT14 
English→Fren
ch) and robust 
improvements 
across all tasks 
and datasets. 
 

 
 B. H. 
Pansamb
al 

Not explicitly 
specified in 
the 
paragraph, 
but the 
methodology 
focuses on 
neural 
networks 
with visible 
and hidden 
layers for 
general use 
across 
datasets. 

Reduced 
overfitting, 
improved 
generalization, 
and enhanced 
accuracy for 
larger 
networks by 
randomly 
deactivating 
neurons and 
creating 
diverse sub-
networks.    

Increased 
computational 
costs due to 
iterative sub-
network 
creation 
during 
training. 

Requires 
careful 
selection of 
dropout rates 
and batch 
sizes to 
achieve 
optimal 
performance; 
computational 
overhead 
remains 
significant for 
larger 
networks. 

 

Dropout 
regularization: 
Randomly 
deactivates a 
subset of 
neurons 
during 
training based 
on a specified 
dropout rate, 
iteratively 
forming 
"thinned 
networks." 

 

Achieved best 
accuracy of 
87.93% for 
visible layers 
with a 0.30 
dropout rate 
and 85.17% 
for hidden 
layers with a 
0.40 dropout 
rate, 
effectively 
reducing 
overfitting. 
 

Karshiev 
Sanjar 

MNIST, 
CIFAR-10, 
and a skin 
lesion 

Reduced 
overfitting 
and improved 
generalizatio

Increased 
computational 
complexity 
due to 

Risk of losing 
critical 
information 
by 

Weight 
Dropout: 
Randomly 
deactivates 

Achieved 
94.51% 
validation 
accuracy on 



 

segmentation 
dataset. 

n. Achieved 
higher 
validation 
accuracy and 
superior 
performance 
in 
segmentation 
tasks 
compared to 
baseline 
models. 

 

dynamic 
dropout mask 
updates. 

deactivating 
connections, 
which could 
impact 
performance 
in certain 
scenarios. 

 

weight 
connections 
using a 
Bernoulli 
distribution, 
dynamically 
updating the 
dropout mask 
during 
training. 

 

MNIST, 
91.68% on 
CIFAR-10, 
and top 
performance 
on 
segmentation 
tasks (pixel 
accuracy: 
96.27%, Dice 
coefficient: 
88.59%, IoU: 
51.48%). 
 

Panissara 
Thanapol 

CIFAR-10 
dataset, with 
five 
contracted 
versions 
created 
(each 
containing 
10% of the 
original 
samples) to 
simulate 
limited data 
scenarios. 

 

Improved 
generalizatio
n and reduced 
overfitting by 
combining 
data 
augmentation
, dropout, and 
batch 
normalization 
techniques. 

 

Increased 
computation
al overhead 
due to 
complex 
augmentatio
n and 
dropout 
combination
s. 

 

Results were 
dataset-
specific and 
may not 
generalize to 
other 
scenarios 
with limited 
data. Batch 
normalization 
could not be 
combined 
with dropout 
effectively. 

 

Combined 
data 
augmentation 
(e.g., width 
and height 
shifts, 
rotation, 
shear), 
dropout 
(omission 
rates: 0.5–
0.8), and 
batch 
normalization. 
Injected 
augmentation 
during 
training (best 
at 30 epochs). 

 

Achieved the 
highest test 
accuracy of 
61.5% by 
combining 
width and 
height shift 
augmentation 
with dropout, 
injected at 30 
epochs during 
training. 
 
 

Hongqian 
Qi 

Human bulk 
RNA-Seq 
datasets. 

Uses MoE 
architectur
e and 
Hinge-
MAE loss, 
handles 
heterogene
ous data 
without 
prior gene 
selection. 

 

Requires 
significant 
computati
onal 
resources. 

 

Risk of 
overfitting; 
needs 
large, 
diverse 
datasets for 
effective 
training. 

 

Mixture of 
Experts 
architecture
, Hinge-
MAE loss 
function. 

 

Evaluated via 
cross-
validation on 
healthy and 
unhealthy 
subjects; 
specific 
metrics not 
detailed. 
 

F 
Yuanbiao 
Guo 

Benchmar
k datasets 
used for 
validation. 

 

- 
Incorporates 
quaternion-
enhanced 
attention to 
improve 
weight 

- Increased 
complexit
y due to 
quaternion 
calculation
s. 

 

- Risk of 
overfitting 
with 
complex 
quaternion 
enhanceme

- 
Quaternion-
enhanced 
graph 
attention 
for item 

- 
Outperforme
d baseline 
models, 
validating 
the efficacy 
of 



 

calculations 
and reduce 
parameters.  
- Uses 
positional 
attention to 
aggregate 
time node 
contributions 
effectively. 

nts. 
 

and session 
representati
ons, 
combined 
with 
positional 
and self-
attention 
mechanism
s. 

 

quaternion 
enhancemen
ts in 
improving 
recommenda
tion 
accuracy. 
 

Jae 
Hyung 
Kim 

Historical 
and 
sentiment 
data from 
online 
forums, 
daily 
records 
from Jan 
2023 to 
Jun 2024. 

 

Combines 
multiple 
modeling 
techniques 
with 
sentiment 
analysis 
and 
visualizatio
ns for 
comprehen
sive 
analysis. 

 

Complexit
y in 
handling 
and 
integrating 
various 
data types. 

 

High 
computatio
nal demand 
and data 
requiremen
ts for deep 
learning 
models. 

 

Includes 
SARIMA, 
Logistic 
Regression, 
Decision 
Trees, 
Random 
Forests, 
Neural 
Networks, 
RNNs, 
CNNs. 

 

Models 
evaluated on 
accuracy, 
MSE, MAPE, 
R²; deep 
learning 
models 
performed 
best in 
capturing 
complex data 
relationships. 

 

 

 

 

8. discussion 

The discussion highlights various advanced regularization techniques to combat 

overfitting and improve generalization in deep learning models. FocusedDropout demonstrated 

superior performance by selectively retaining target-related features in CNNs, outperforming 

traditional methods. Similarly, the DWCRNN effectively forecasted cryptocurrency prices, 

surpassing state-of-the-art models, though it required further exploration of dynamic re-training 

and weight constraints. Early stopping and dropout techniques improved robustness by halting 

training at optimal points and deactivating neurons randomly. Weight Dropout enhanced 

generalization by targeting weight connections but increased computational complexity. Lastly, 

data augmentation combined with dropout yielded the best results for limited data scenarios, 



 

despite dataset-specific limitations and higher computational costs. These studies underline the 

effectiveness of tailored approaches while identifying areas for future refinement and broader 

applications. 

9. Conclusion 

Dropout has proven to be a highly effective regularization technique for mitigating 

overfitting and enhancing generalization in neural networks. By introducing stochasticity during 

training, dropout prevents co-adaptation of neurons, fostering robust and diverse feature learning. 

Empirical evidence demonstrates its effectiveness across a variety of architectures, including 

CNNs, RNNs, and Transformers, and on datasets such as CIFAR-10, MNIST, and ImageNet. 

Advanced dropout variants, such as FocusedDropout, SpatialDropout, and WeightDropout, have 

further refined its applicability, addressing specific architectural challenges and enhancing 

performance in targeted scenarios.Despite its widespread adoption, dropout is not without 

limitations. Challenges such as computational overhead, sensitivity to hyperparameter tuning, 

and dataset-specific effectiveness persist. Recent advancements, including adaptive dropout rates 

and hybrid approaches, show promise in overcoming these challenges and improving scalability. 

Furthermore, integrating dropout with other regularization methods, such as data augmentation 

and batch normalization, has yielded notable results, particularly in limited data scenarios.The 

study of dropout underscores its pivotal role in modern deep learning, both as a standalone 

method and in combination with other techniques. Future research should focus on refining 

adaptive mechanisms, exploring broader applications, and enhancing computational efficiency to 

ensure dropout remains a cornerstone in building robust, generalizable neural networks. 

Disclaimer (Artificial intelligence) 
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