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Abstract  

The increasing reliance on Internet-based services has rendered secure and efficient 
network traffic classification critical.Conventional methods for categorising traffic, 
such as port and payload methods, often struggle with the challenges posed by 
encrypted traffic.Deep learning techniques have emerged as a predominant method for 
traffic classification given their success in domains such as image recognition, 
document analysis, and genomics. This research proposes an enhanced DenseNet 
architecture that leverages deep learning to accurately classify encrypted Internet 
traffic categories.This approach introduces a compression layer into the DenseNet 
architecture to address the co-adaptation problem as a result of the information flow 
and optimise the accuracy of the CNN.An Intrusion detection dataset from the 
Canadian Institute of Cybersecurity was used to evaluate the architecture.The 
optimised DenseNet architecture was evaluated using metrics such as precision, 
recall, accuracy, F1-Score, False Positive Rate and Area under the ROC Curve.  
experimental results show that the approach can distinguish various encrypted Internet 
traffic categories 
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INTRODUCTION 
Internet traffic classification is a vital aspect of network management and security.As 

the volume and complexity of Internet traffic continue to expand, efficient and 

accurate classification methods are essential for distinguishing various applications 

that utilise the Internet, which is useful for operations such as network optimisation, 

security monitoring, and quality of service management [1].Conventional approaches 

to traffic classification, such as port-based and payload-based methods, have become 

less effective because of the widespread use of encryption and dynamic port 

allocation [2]. 

Consequently, machine learning techniques, particularly deep learning models, have 

gained prominence in recent years owing to their capacity to analyse complex patterns 

in network traffic data [3].These advanced methods can extract salient features from 

raw packet data or flow statistics, enabling a more precise classification of Internet 

traffic even in the presence of encryption [4].The development of sophisticated 

classification algorithms continues to be an active area of research, with ongoing 



efforts to enhance the accuracy, scalability, and adaptability to evolving network 

protocols and applications. 

Deep learning approaches for encrypted traffic classification have demonstrated the 

most promising results for Internet traffic classification.Owing to successes recorded 

in tasks such as image classification, voice recognition, and video classification, 

convolutional neural networks (CNN) have been utilised for Internet traffic 

classification.One of the most prominent variants of CNN is the DenseNet 

architecture [5], which enables information propagation through all the layers of the 

network; however, a significant drawback of the architecture is that as information is 

passed from the input to the output layer of the network, it can result in the detection 

of the same features by neurones, thereby resulting in reduced network capacity 

utilisation [6][7].This study addressed this drawback by introducing a compression 

layer into the DenseNet architecture to prune redundant neurones in the fully 

connected layer of the architecture. 

The contributions of this study are as follows. 

 An enhanced DenseNet architecture with a neuron pruning layer for efficient 

encrypted internet traffic classification 

 A classifier that can accurately distinguish between encrypted Internet traffic 

categories 

 Performance comparison of the proposed architecture with the conventional 

DenseNet architecture. 

The paper is organised as follows. A review of the literature, methodology, results, 

and discussions are presented. 

 

2. Literature review 

The DenseNet architecture was developed to ensure the maximum information flow 

between the various layers of the CNN architecture.It uses a feedforward architecture, 

in which each layer receives input feature maps from the preceding layers and passes 

its feature maps to all subsequent layers. Features are not combined through 

summation but through concatenation.Researchers have introduced various strategies 

to address the limitations of DenseNet architecture.Approaches involving supervised 

and semi-supervised learning have been used [8], while parameter-efficient fine-

tuning methods aim to decrease computational resource usage [9].Efforts are also 



being made to improve the interpretability of deep-learning models for encrypted 

traffic classification [10]. 

[11] stacked convolution layers to enhance feature extraction in the DenseNet 

architecture and mitigate redundancies.Squeeze excitation modules were employed to 

represent the interdependencies of salient feature maps. [12] incorporated PSA 

modules into the DenseNet architecture to improve computational efficiency by 

dividing the convolution kernels in the Dense PSA block into asymmetric 

convolutions. [13] utilised a squeeze and excitation module to model the 

interdependencies between the features of different convolutional layers. [14] 

introduced a variant of DenseNet inspired by ResNet that substitutes concatenation 

operations within dense blocks to reduce the model complexity and number of 

parameters. [15] employed dense blocks to modify the convolution layers in 

MobileNet, resulting in a higher recognition accuracy. [16] combined DenseNet and 

LSTM for multivariate tasks. However, this approach has the limitation of high 

computational time. [17] enhanced the DenseNet architecture using sliding dense 

blocks to reduce redundancies in the network. 

Several researchers have applied the DenseNet architecture to Internet Traffic 

Classification tasks. [18] utilised a rap-DenseNet framework for network traffic 

classification.A limitation of this approach is its high computational intensity. [19] 

incorporated a normalisation layer into the DenseNet architecture for data stabilisation 

and enhanced the convergence speed. [20] employed a convolutional neural to 

classify Internet Applications.The technique achieved high accuracy; however, it has 

the limitation of misclassifying encrypted internet traffic. [21] utilised a fully 

connected neural network and a 1-dimensional convolutional neural network for 

classifying the Internet traffic payload.This approach achieved an accuracy of 

96%.However, this method is also computationally intensive. [22] employed an 

ensemble of CNNs to classify network traffic in the Cambridge dataset.An accuracy 

of 98% is achieved.However, this approach was susceptible to overfitting. [23] 

proposed a deep learning-based framework for encrypted network traffic that utilises 

stacked autoencoders, multiperceptrons, and convolutional neural networks.This 

method achieved low accuracy. 

The reviewed studies presented various techniques that have used DenseNet 

and other CNN variants for classification; however, a common limitation is the 

susceptibility to overfitting and the high computational overhead involved in training 



and deploying the DenseNet model.This study seeks to address this issue by 

integrating a compression layer that reduces the number of neurons by using neuron 

pruning. 

 

3. Methodology 

The methodology of this study focuses on the development of an enhanced 

DenseNet architecture for classifying encrypted Internet traffic. This technique 

addresses the challenges posed by traditional traffic classification techniques when 

dealing with encrypted data streams. The DenseNet architecture is enhanced by 

adding a compression layer for neuron pruning.The pruning of neurons is modelled as 

a tradeoff problem in which neurons are pruned withoutsacrificing the classification 

performance.The approach proposed in this study incorporates key improvements, 

such as the removal of redundant neurons in the neural network using the Upper 

Confidence Bound Multi-Armed Bandits algorithm to boost the classification 

performance of the neural network.The following subsections describe the dataset 

preparation, network architecture, training, and evaluation metrics used in this 

study.Figure 1 illustrates the key stages involved in the implementation of the 

optimised DenseNet architecture. 

 

Figure 1: Process flow of Internet traffic classification 

 

 

 

Dataset 

The Intrusion Detection dataset (ISCX) 2016 from the Canadian Institute of 

Cybersecurity was used to assess the deep-learning-based classification method.The  



ISCX-VPN dataset comprises Internet traffic transmitted through an encrypted 

Internet connection.Within the ISCX VPN category, six traffic categories are 

captured: VoIP, Streaming, Email, Chat, Peer-to-peer (P2P) traffic, and File Transfer. 

The categories of the ISCX dataset are shown in the Table 3.1 below 

Table 1: Internet traffic categories and applications 

Traffic Category VPN 

Voice over IP (VoIP)  Google Hangouts, VoipBuster and Skype 

Streaming Netflix, YouTube and Vimeo 

Email Thunderbolt, SMTP, POP3 and Gmail 

Chat Facebook, Google Hangouts, Skype, IAM and ICQ 

Peer to Peer (P2P) Bittorrent and uTorrent 

 

The dataset comprises packet capture files corresponding to specific application 

categories 

Pre-processing and Graph Construction 

The ISCX Packets with similar 5-tuple attributes {source IP, source port, destination 

IP. Destination port protocol}.The image construction approach used in [24] was 

adopted in this study, and packets from the ISCX dataset were converted to packet 

flows with a size of 100 bytes.These packets were then converted into flow-based 

two-dimensional histograms.The histograms were constructed by plotting the packet-

arrival time on the X-axis and the packet size for packets in a packet flow on the Y-

axis.Figure 2 illustrates the histograms for various categories captured from the ISCX 

dataset. 

 

 

 

 

 



 

Figure 2: Two-dimensional histograms constructed for Chat, Email, File Transfer, 

VoIP, P2P and Streaming categories 

Network Architecture 

The DenseNet architecture comprises convolution, pooling, and fully connected layers 

with each utilising a non-linear transformation whereܪ = indexes the layer ܪ. 

Transformation operations such as convolution, pooling, batch normalization, 

andrectified linear units are performed at each respective layer. The pooling layers in 

the architecture are divided into multiple dense blocks.These operations are 

condensed into multiple densely connected blocks.Figure 3 illustrates the DenseNet 

architecture with three dense blocks. 

 

 
Figure 3: DenseNet Architecture (Huang et al. (2016)) 

 



Figure 4 depicts the compression layer added to the DenseNet architecture in the 

optimisedDenseNet architecture.  

 
Figure 4: Enhanced DenseNet Architecture with Compression Layer 

The three major components of the proposed architecture are discussed below: 

Convolutional Layer: The convolutional layer is a fundamental part of the CNN.An 

input tensor is transformed into an output tensor by convolving the input with the 

filters. It is performed for input images with a size ܹ	ଵ 	× ଵܪ 	×  ଵ and accepts fourܥ

hyper-parameters namely: the number of filters, their spatial extent, the zero padding 

between the borders of the input and a stride with which filters are applied to each 

image. 

Pooling Layer:The pooling layers reduce the size of the representations with a fixed 

downsampling transformation.Each channel in the input is independent of the others 

and spatially downsampled. 

Compression Layer:The DenseNet architecture consists of a compression layer that 

is used to reduce the number of feature maps. However, this approach relies on an 

arbitrary setting of the compression factor.In this study, the neurons in the fully 

connected layers were pruned using the Upper Confidence Multi-Armed Bandits 

Algorithm which was integrated into the enhanced DenseNet.This approach provides 

a more efficient means of reducing the number of feature maps, thereby compressing 

DenseNet without degrading classification performance. 

Experimental Setup 

The dataset used in this study was stored in Google Drive.A Google Colaboratory 

environment was used to train and evaluate the architecture to enable the use of its 

free GPU resources.Empirical tests were conducted to compare enhanced and 

conventional DenseNet architectures.The DenseNet classifier was trained using 

stochastic gradient descent with an initial learning rate set to 0.1, and The RelU 

activation function and cross-entropy loss function were used to minimise loss.The 

dataset was divided into 80% for training and 20% for testing. 



Results and Discussion 

Conventional and enhanced DenseNet architectures were evaluated. The two 

architectures were evaluated using performance metrics such as precision, recall, F1 

Score, Area under the ROC Curve, and False Positive Rate. Table 2 shows the 

performance of the Conventional DenseNet architecture in the evaluation metrics. The 

Peer-to-peer Category recorded near-perfect results for all the metrics.Overall, the 

classifier provided a balance between precision and recall and effectively controlled 

the false positive rates.The Chat category displayed the lowest classification 

performance, a phenomenon that can be explained by the heterogeneous nature of 

Chat traffic. 

Table 2: Performance of Conventional DenseNet Classifier 

 Precision Recall F1-

Score 

FPR TP TN FN FP 

Chat 83 89 86 1.91 170 1781 22 34 

Email 94 88 91 0.21 63 1888 9 4 

File 

Transfer 

91 83 87 1.61 276 1675 55 27 

Peer to Peer  

(P2P) 

99 98 98 0.40 453 1498 6 8 

Streaming 84 96 89 3.09 268 1683 11 52 

VoIP 96 94 95 2.36 721 1230 47 29 

 

Figure 5 illustrates the confusion matrix of the conventional CNN classifier which 

shows that P2P, Streaming and File Transfer achieved the best results. The classifier 

distinguishes between the various categories.The conventional classifier struggles to 

distinguish between VoIP and Streaming categories. 



 
Figure 5: Confusion Matrix for DenseNet Classifier 

P2P recorded the highest AUC from the curve in the figure below, closely followed 

by the Streaming, VoIP, Email and Chat categories. 

 
Figure 6: ROC Curve for DenseNet Classifier 

The classification performance of the Enhanced DenseNet architecture is also 

evaluated.Table 3 shows the performance in metrics such as precision, recall, F1 

score, area under the ROC curve, and false-positive rate.The enhanced DenseNet 

architecture outperformed the conventional DenseNet architecture in the file transfer 

and streaming categories. 

Table 3: Performance of Enhanced DenseNet Classifier 

 Precision Recall F1-Score FPR TP TN FN FP 

Chat 81 85 83 2.5 213 2472 44 44 



Email 90 94 90 0.48 87 2691 8 8 

File 

Transfer 

92 85 89 1.83 369 2324 74 74 

P2P 99 100 100 0.46 600 2188 15 15 

Streaming 83  96 89 1.54 348 2354 24 24 

VoIP 99 96 97 0.82 33 1749 66 66 

 

Figure 7 illustrates the confusion matrix, showing that the VOIP category was the 

most correctly classified category, followed by P2P, File Transfer, Streaming, Chat 

and Email.Unlike the conventional classifier, the enhanced classifier was able to 

distinguish between streaming and VoIP categories. 

 
Figure 7: Confusion Matrix for Enhanced DenseNet Classifier 

The ROC curves for all categories in Figure 8 showed impressive performances 

across all traffic categories.P2P had the highest classification, followed by Email, 

Streaming, Chat and File Transfer.Overall, the classifier maintained high positive 

rates for all categories while maintaining low false-positive rates. 

 



 

 

 

 

 

 

 

 

 

 

 

Figure 8: ROC Curve for Enhanced DenseNet Classifier 

 

Conclusion and Future Work 

In this study, we introduce a novel DenseNet architecture for identifying Internet 

traffic application categories.The experimental results demonstrate that the approach 

used in this study outperforms the conventional DenseNet architecture.The key insight 

behind the approach utilised is the conversion of traffic flows into two-dimensional 

graphs.As shown, the optimiseedDenseNet architecture can successfully distinguish 

encrypted Internet traffic categories.Future studies can further optimise the DenseNet 

architecture by compressing the input images before they are fed into the 

classifier.Another approach would be to incorporate modalities, such as payload and 

temporal features, into the dataset to further improve the classification performance of 

the classifier. 
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