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Abstract

In this paper, we compare results arising from implementing the new Poisson-Exponential-Gamma
distribution (PEG) to other competing two-parameter distributions such as the generalized Poisson
Lindley (GPL), the Poisson generalized Lindley (PGL), the Negative binomial (NB) and several others
to several frequency data sets exhibiting different characteristics and data with covariates exhibiting
over-or-under dispersion. In all, we show that the PEG does not perform better than most existing
distributions. We also demonstrate the equivalence of the GPL and the PGL (the latter being a
re-parameterized version of the former). We further show that the New Poisson generalized Lindley
(NGPL) distribution is also equivalent to the two-parameter discrete Lindley (TDL) distribution and
that in some cases, these two degenerate to the one-parameter geometric distribution (GD). Our results
here indicate the limitations of the PEG especially to under-dispersed data. For very strong over-
dispersed data, the NB, the New logarithmic distribution (NLD), the New Geometric Discrete Pareto
Distribution (NGDP) or the discrete Weibull(DW) perform much better. SAS PROC NLMIXED is
employed in our estimation. Adjusted group X

2 as well as Wald’s test statistics were computed using
estimated theoretical means and variances.
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1 Introduction

For count data exhibiting overdispersion as measured by the dispersion index (DI), which is a ratio of
s2/Ȳ with overdispersion manifesting if DI > 1. Several two and three parameter distributions have
been proposed for fitting such data. These include the Negative binomial, the Generalized Poisson, the
Poisson inverse Gaussian, the DW and several Poisson-Lindley mixture distributions, as well as several
three-parameter type distributions; which include the extended Com-Poisson, the quasi-negative binomial,
the generalized negative, the Delaporte distribution, the Inverse-trinomial and the negative exponential
generalized exponential distributions amongst several others. Umar & Yaya [36] have proposed a new
Poisson-exponential Gamma distribution (PEG), which is a two parameter distribution. Its properties are
discussed and its applications to three frequency data sets that exhibit over-dispersion are presented. The
PEG is said to be better than (i) the generalized Poisson Lindley (GPL) [25] and the new generalized
Poisson-Lindley (NGPL) [7] distribution The authors stated and i quote

It can be observed from the various results reported in Tables 1, 2, and 3 for all the three datasets
analysed that the proposed PEG distribution with the smallest estimated values of all the models
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assessment criteria is most efficient than any of the other five existing similar distributions
considered. In all the three tables of results, the new PEG distribution with the least values of
2logLik, AIC, AICC and BIC provided the best fit to the three data sets than any of the other
five existing distributions considered.

The main goal of this paper therefore is to ascertain the veracity of this claim since the results from the
PEG applications were exclusively based on the carefully selected data sets by extending the performance
of the PEG model to other variety of count data sets and compare its performances to other distributions
being employed in this paper.

The authors also compared the PEG to a host of one-parameter distributions, such as the, Poisson
(P), Poisson-Lindley (PL), the Poisson-Shanker (PS), the Poisson-Exponential (PS) as well as the two-
parameter Negative Binomial (NB). The PEG is presented as being better in performance to these other
models based on the selected data on which the application of the PEG is based.

However, since count data come in several forms, we propose to examine the PEG relative to its two
parameter counterparts GPL, NGPL, NB, NLD , DW, TDL and NGDP only, since it was established that
none of the one-parameter models outperform the PEG based on the goodness-of-fit criteria (-2logLL, AIC
and BIC) employed in the study for data exhibiting excess zeros and hyper over-dispersion [?]. We will
also extend our results to the case where we have an over-dispersed count data having covariates. SAS
PROC NLMIXED is employed for all our computations. The distributions employed in this study as well
as their likelihood functions are presented in the following sections.

2 Methodology

In this section we describe the probability distributions employed in this study. because the Poisson is the
underlying model for counter data, we also the Poisson in our discussion.

2.1 The New Poisson-Exponential Gamma Distribution-PEG

Yahya & Umar [36] proposed the new Poisson-Exponential Gamma (PEG) distribution with parameters
θ, α, which is a mixture of Poisson paramater is assumed to follow the Exponential-Gamma distribution
[33], that is,

Y |λ ∼ P (λ), and λ|θ, α ∼ EG(θ, α)

where, the Exponential -Gamma distribution [33] has the pmf:

f(y; α, θ) =
θ

θ + Γ(α)
(θ + θα−1yα−1)e−θy, y > 0, α > 0, θ > 0 (1)

The resulting unconditional pmf of is the PEG given by (2).

fPEG(y; θ, α) =
θ

y![θ + Γ(α)]
.
θ(θ + 1)αΓ(y + 1) + θα−1(θ + 1)Γ(α + y)

(θ + 1)y+α+1
(2)

y = 1, 2, . . . and α, θ > 0. The properties of the PEG are fully discussed in [36], however, we present below
expressions for the mean and variance of PEG as established in Yahya & Umar, viz:

µ =
θ + αΓ(α)

θ[θ + Γ(α)]

σ2 =
(θ + Γ(α))[θ2 + αθΓ(α) + 2θ + Γ(α + 2)]− [θ + αΓ(α)]2

θ2 [(θ + Γ(α)]2

(3)

The probability that Pr(Y = 0) becomes,

f(0) =
θ

θ + Γ(α)
.
θ(θ + 1)α + θα−1(θ + 1)Γ(α)

(θ + 1)α+1
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2.2 The Generalized Poisson-Lindley -GPL Distribution

The generalized Poisson-Lindley (GPL) distribution having Y ∼ GPL(α, γ = 1, θ), proposed in [25] has
the pmf given by:

f(y; α, γ = 1, θ) =
Γ(y + α)θα+1

(

α + y+α
1+θ

)

y!Γ(1 + α)(1 + θ)y+α+1
(4)

It is a mixture of Poisson distribution and the generalized-Lindley (GL) distribution ([37]). Its moments
are:

E(Y ) =
α(1 + θ) + 1

θ(1 + θ)
= µ (5a)

E(Y 2) = µ +
(α + 1)[α(1 + θ) + 2]

θ2(1 + θ)
− µ2 (5b)

Hence, variance is:

σ2 =
α(θ + 1)3 + θ2 + 3θ + 1

θ2(θ + 1)2
(6)

and the dispersion index is:

1 +
α(θ + 1)2 + 2θ + 1

αθ(θ + 1)2 + θ(θ + 1)

indicating over-dispersion for values of α and θ, with equi-dispersion occurring if

α(θ + 1)2 + 2θ + 1

αθ(θ + 1)2 + θ(θ + 1)
= 0

2.3 The New Generalized Poisson-Lindley Distribution-NGPL

The new generalized Poisson-Lindley (NGPL) distribution proposed in [7] is a mixture distribution of
Poisson and the two parameter Lindley (TPLD) distribution such that,

Y |λ ∼ P (λ), and λ|θ, α ∼ TPLD(θ, α)

where the TPLD is defined in [31] as:

f(y; θ, α) =
θ2

(θ + α)
(1 + αy)e−θy .

Consequently, the pmf of the NGPL is given by:

f(y; θ, α) =
θ2

(θ + α)(1 + θ)y+1

(

1 +
α(y + 1)

(1 + θ)

)

, y = 0, 1, . . . (7)

where θ > 0, α > 0. Its moments are:

µ1 =
2α + θ

θ(α + θ)

σ2 =
2α2(1 + θ) + θ2(1 + θ) + αθ(4 + 3θ)

θ2(α + θ)2

(8)

f(0) for the model in (11) becomes

f(0) =
θ2(1 + α + θ)

(α + θ)(1 + θ)2
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2.4 The New Poisson generalized Lindley-NPGL

The New Poisson generalized Lindley (NPGL) proposed in [3] ia a mixture of Poisson and generalized
Lindley (GL) distributions. Here, the random variable Y having a Poisson distribution with parameter λ,
that is,

Y |λ ∼ P (λ), and λ|θ, α ∼ GL(θ, α)

while the parameter λ is assumed distributed as the Abouammoh et al. (2015) [1] Generalized Lindley
(GPL) distribution with pmf,

g(λ) =
θαλα−2

(θ + 1)Γ(α)
(λ + α − 1)e−θλ (9)

for λ > 0, α > 1 and θ > 0. Hence, employing the well established conditional formulation, then

f(y) =

∫

∞

0

f(y|λ)g(λ)dλ (10)

The integral in (10) when integrated out gives the unconditional NGPL distribution with parameters α, θ
with pmf,

f(y; α, θ) =
θαΓ(α + y − 1)[α(θ + 2) − θ + y − 2]

Γ(α)Γ(y + 1)(θ + 1)α+y+1
; y = 0, 1, . . . (11)

with α > 1 and θ > 0.
The mean and variance of the NGPL(α, θ) are given respectively as:

µ =
(α − 1)θ + α

θ(θ + 1)
(12a)

σ2 =
(α − 1)θ + α

θ(θ + 1)
+

(α − 1)θ2 + 2αθ + α

θ2(θ + 1)2
(12b)

The properties of both the GPL and NPGL distributions are fully discussed in [25]and [3] respectively and
would not be further discussed in this paper. However, the expressions for the means and variances of both
distributions are given respectively in (5) and (12).

2.5 The Negative Binomial-NB

The Negative binomial distribution (NB) has the probability mass function (pmf):

f(y; r, p) =
Γ(r + y)

y!Γ(r)
py(1 − p)r, y = 0, 1, . . . (13)

where r ∈ (0,∞) > p and p ∈ (0, 1). The mean and variance of the NB model with parameters r and p in
(13) are given respectively in (14a) and (14b) respectively.

Hence,

µ = rp/(1− p) =⇒ p =
µ

r + µ
(14a)

σ2 = rp/(1− p)2 =⇒ σ2=µ +
µ2

r
(14b)

Of course the NB is a mixture of the Poisson-Gamma distributions.
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2.6 The Two-parameter Discrete Lindley Distribution-TDL

Hussien et al. [19] proposed the two-parameter discrete Lindley distribution (TDL) which has the pmf:

f(y|p, β) =
(1 − p)2(1 + βy)py

1 + p(β − 1)
, y = 0, 1, 2, . . . , 0 < p < 1, β ≥ 0 (15)

The mean and variance of the TDL are given respectively in (16a) and (16b),

µ =
[1 − p + β(1 + p)]p

[1 + p(β − 1)](1− p)
(16a)

σ2 =
(1 − p)2 + (1 − 3p2 + 2p)β + 2(pβ)2

[1 + p(β − 1)]2(1 − p)2
(16b)

2.7 The New Geometric Discrete Pareto Distribution-NGDP

The NGDP proposed in [8] has the pmf:

f(y|q, α) =
qy

(y + 1)α
−

q(y+1)

(y + 2)α
, y = 0, 1, 2, . . . , 0 < q < 1, α ≥ 0. (17)

Its mean and variance can be computed from expressions in (18a) and 18b) respectively,

µy = qΦ(q, α, 2) (18a)

σ2
y = 2qΦ(q, α − 1, 2) − qΦ(q, α, 2)[3 + qΦ(q, α, 2)] (18b)

where Φ(z, s, a) =

∞
∑

k=0

zk

(a + k)s

2.8 The New logarithmic Distribution-NLD

Gómez-Déniz et al. [14] proposed the new logarithmic distribution (NLD) whose pmf has the form:

f(y|α, θ) =
log(1 − αθy) − log(1 − αθy+1)

log(1 − α)
; y = 0, 1, . . . , 0 < θ < 1; α < 1(α 6= 0) (19)

Its mean and variance can be computed from expressions in (20a) and 20b) respectively,

µY =
1

log(1 − α)

∞
∑

y=1

log(1 − αθy) (20a)

σ2
Y =

1

log(1 − α)

∞
∑

y=1

(2y − 1) log(1 − αθy) − µ2
Y (20b)
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3 Parameter Estimation:

For a single observation i, the log-likelihood for the NB, GPL, NGPL, PGL, TDL, PEG, NGDP and NLD
models are presented respectively in LL1 to LL8 in (21).

LL1 = log[Γ(r + y)] + y log(p) + r log(1 − p) − log y! − log[Γ(r)] (21a)

LL2 = log[Γ(y + α)] + (α + 1) log(θ) + log

[

α +
y + α

1 + θ

]

− log y! − log[Γ(1 + α)] − (y + α + 1) log(1 + θ) (21b)

LL3 = 2 log(θ) − log(θ + α) − (y + 1) log(1 + θ) + log

[

1 +
α(y + 1)

(1 + θ)

]

(21c)

LL4 = α log(θ) + log[Γ(α + y − 1)] + log[α(θ + 2) − θ + y − 2]

− log[Γ(α)] − log[Γ(y + 1)] − (α + y + 1) log(θ + 1) (21d)

LL5 = 2 log(1 − p) + log(1 + βy) + y log(p) − log[1 + p(β − 1)] (21e)

LL6 = log θ − log(y!) − log[θ + Γ(α)] − (y + α + 1) log(θ + 1)

+ log
[

θ(θ + 1)αΓ(y + 1) + θα−1(θ + 1)Γ(α + y)
]

(21f)

LL7 = log

[

qy

(y + 1)α
−

q(y+1)

(y + 2)α

]

(21g)

LL8 = log

[

log(1 − αθy) − log(1 − αθy+1)

log(1 − α)

]

(21h)

Maximum-likelihood estimation of (21) is carried out with PROC NLMIXED in SAS, which minimizes
the function −LL(y, Θ) over the parameter space Θ numerically. The integral approximations in PROC
NLMIXED is the Adaptive Gaussian Quadrature (Pinheiro & Bates, 1995) and our choice optimization
algorithm here is the Newton-Raphson techniques.

4 Applications

4.1 Data Set I

This dataset in Table 1 gives the distribution of the number of Haemocytometer yeast cell counts per
square presented in [30] and recently re-analyzed in [36]. The data has observed mean of 0.4599 and
variance 0.6046, hence the dispersion index (DI) is 1.3146 > 1, indicating mild over-dispersion of the data.
The results of applications of the models described above are presented in Table 1. The following fit criteria
are employed to access the performances of the various models

• Pearson’s goodness-of-fit test,

X2 =

K
∑

i=0

(yi − m̂i)
2

m̂i

• -2LL: Twice the log-likelihood

• AIC: Akaike Information criterion

• BIC: Bayesian Information Criterion

• Root mean squared error (RMSE) defined as:

√

√

√

√

1

K + 1

K
∑

i=0

(yi − m̂i)2, such that,

K
∑

i=0

m̂i = n.
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• Wald’s test Statistic,

X2 =

n
∑

j=1

(yj − m̂j)
2

σ̂2
j

where n is the number of observations in the data.

Y Count P NB GPL NPGL PEG TDL NGPL NGDP
0 128 118.0627 126.7259 126.9315 126.9314 126.3275 126.5635 126.5636 126.724
1 37 54.2962 42.0847 41.7448 41.7448 42.1846 42.1919 42.1917 42.080
2 18 12.4852 12.8355 12.8874 12.8874 13.3999 12.9668 12.9668 12.849
3 3 1.9140 3.7988 3.8539 3.8539 3.8052 3.7950 3.7950 3.799
4 1 0.2201 1.1071 1.1283 1.1283 0.9809 1.0750 1.0750 1.104

Total 187 186.9781 186.5520 186.5459 186.5459 186.6981 185.5172 186.5922 186.556
(0.2420) (1.5551) (1.5825) (1.5825) (1.2828) (1.4828) (1.4828) (1.5487)

ya 8 15 15 15 13 16 15 16

MLE λ̂=0.4599 p̂=0.2779 θ̂=2.9037 θ̂=2.9037 α̂=4.0146 p̂=0.2402 θ̂=3.1631 α̂=-0.2278

r̂=1.1950 α̂=1.0799 α̂=2.0799 θ̂=5.6001 β̂=0.3879 α̂=2.6374 q̂=0.2752
µ 0.4599
σ2 0.6046
ȳ 0.4599 0.4599 0.4601 0.4601 0.4595 0.4599 0.4599 0.4598
s2 0.4599 0.6369 0.6412 0.6412 0.6138 0.6301 0.6301 0.6363

-2LL 347.7 340.0 340.0 340.0 339.4 339.9 339.9 340.0
AIC 349.7 344.0 344.0 344.0 343.4 343.9 343.9 344.0
BIC 352.9 350.5 350.4 350.4 349.8 350.3 350.3 350.5

X2

W 244.5117 176.5640 175.3745 175.3745 183.2001 178.4725 178.4716 176.7257
d.f. 185 184 184 184 184 184 184 184

pvalue 0.0022 0.6399 0.6635 0.6635 0.5028 0.6011 0.6011 0.6366

X2

g 11.7722 3.0711 2.9801 2.9801 2.4712 2.9326 2.9326 2.8658
d.f. 3 2 2 2 2 2 2 2

p-value 0.0082 0.2153 0.2254 0.2254 0.2907 0.2308 0.2308 0.2386
RMSE 9.2744 3.3195 3.1894 3.1894 3.2114 3.3232 3.3231 3.3138

Table 1: Parameter Estimates and Expected Values under three Models

Results:
We observe the following:

• For results in Table 1, all the models have their expected values not summing to n = 187 the sample

size, within the range of Y . For example, the PEG for instance has

4
∑

i=0

m̂i = 186.6981 < 187. This

has been shown to be the case for all discrete distributions ([23], [24]). The m̂4 = 0.9809 reported
is not the expected value employed in computing the grouped Pearson’s X2

g , but the 1.2828 in the
parentheses, to ensure that

∑

m̂i = 187 within 0 ≤ Y ≤ 4. Clearly, the sum of expected frequencies
187.6 reported for the NB model in Table 1 of [36] can therefore not be correct.

• The parameter estimates presented in Yahya & Umar for the NB and PEG, as well as the -2LL, AIC
and BIC are not reproducible in SAS PROC NLMIXED or in R optim application.

• Again for the PEG, the expected values do not sum to n = 187 until ya = 13. At Y = 13 (which
is outside the range of observed Y), the mean and variance of PEG are equal those of the expected
theoretical values of 0.4595 and 0.6138 respectively. Indeed, all the models converge to their theoret-
ical means and variances at the values of ya presented in the Table. All the two-parameter models
converge at about ya equal 15 or 16.

• We observe that the Generalized Poisson-Lindley (GPL) of [25] and the new Poisson-Generalized
Lindley (NPGL) presented in [3] are equivalent and the latter is just a re-parameterized version of
the GPL. They both give the same estimates of the θ parameter, same -2LL, AIC and BIC values
but different α parameter estimates with the NPGL estimate being 1 + α̂GPL.

• Similarly, the New Generalized Poisson-Lindley (NGPL) presented in [8] behaves very much like the
two-parameter Discrete Lindley (TDL) distribution presented in [19].
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• The PEG is the most parsimonious model for this data set, amongst the models considered here when
the Pearson’s X2 and AIC criteria are employed

• With the Wald’s GOF and RMSE criteria however, the GPL and its equivalent NPGL are the most
parsimonious.

• All the models considered here with the exception of the Poisson fit this data set well. Both the
NGDP and NLD exponentiated models behave similarly and only the results for the former are
presented here.

4.2 Example Data Set II

The data set in in this example presented in Table 2 is the number of mistakes in copying groups of random
digits [20]. The data has also been re-analyzed in [29] and presented in Table 2 of [36]. The sample size
here is n = 60, µ = 0.7833 and σ2 = 1.2573 leading to a dispersion index DI = 1.605 > 1. Thus, the data
is over-dispersed.

Y Count P NB GPL NPGL PEG TDL NGPL
0 35 27.4128 33.9494 34.3865 34.3866 34.1181 33.2677 33.2677
1 11 21.4734 14.4920 13.9056 13.9054 14.3309 15.0807 15.0807
2 8 8.4104 6.3905 6.3513 6.3512 6.3395 6.6569 6.6569
3 4 2.1961 2.8480 2.9222 2.9222 2.8474 2.8814 2.8814
4 2 0.4301 1.2759 1.3361 1.3362 1.2882 1.2285 1.2285

Total 60 59.9227 58.9558 58.9017 58.9016 58.9241 59.1151 59.1151
(0.5073) (2.3201) (2.4344) (2.4345) (2.3641) (2.1134) (2.1134)

ya 10 25 31 23 26 23 21

MLE λ̂=0.7833 p̂=0.4551 θ̂=1.3876 θ̂=1.3875 α̂=0.8288 p̂=0.3799 θ̂=1.6324

r̂=0.9381 α̂=0.6703 α̂=1.6703 θ̂=1.1693 β̂=0.1933 α̂=0.6308
µ 0.7833
σ2 1.2573
ȳ 0.7833 0.7833 0.7849 0.7849 0.7831 0.7833 0.7833
s2 0.7833 1.4375 1.4771 1.4771 1.4583 1.3386 1.3386

-2LL 155.1 146.7 146.5 146.5 146.7 146.7 146.7
AIC 157.1 150.7 150.5 150.5 150.7 150.7 150.7
BIC 159.2 154.9 154.6 154.6 154.7 154.9 154.9

X2

W 94.7022 51.6074 50.2239 50.2228 50.8709 55.4170 55.4171
d.f. 58 57 57 57 57 57 57

pvalue 0.0017 0.6769 0.7253 0.7253 0.7030 0.5347 0.5347

X2

g 8.9142 1.7895 1.5211 1.5210 1.7556 1.9058 1.9058
d.f. 3 2 2 2 2 2 2

p-value 0.0305 0.4087 0.4674 0.4674 0.4157 0.3856 0.3856
RMSE 5.8806 1.8611 1.6055 1.6054 1.7939 2.1317 2.1317

Table 2: Parameter Estimates and Expected Values under three Models

4.3 Results:

Again the results for this data set are identical to all the observations made for the results in Table 1.
Here too, the parameter estimates presented in Table 2 of [36]for the NB and PEG models can not be
reproduced here, the exception being the Poisson. For the PEG, θ is correctly estimated but the parameter
α is incorrectly estimated. Further, the -2LL, AIC and BIC presented in [36] are un-realized in this study.
Again we see here the equivalences that GPL ≡ NPGL and that similarly, NGPL ≡ TDL. Further, the
GPL and NPGL are the most parsimonious models for this data set. They both behave better than the
PEG.

4.4 Example III: Insurance Data

This example data set is from [2] (p.379) and gives the distribution of the number of accidents in the
age-group 26-30 years during the first year of service for a group of railyard shunters and was previously
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analyzed in [?]. Here n = 227, ȳ = 0.5815 and s2 = 0.5719. Thus the dispersion index here is 0.9834 < 1.
The data is therefore under-dispersed. The results of applying the PEG model to this data set is presented
in Table 3, where the Y’s are the number of insurance claims and the counts are the frequencies of each
claim for a given number of claims. This example allows us examine the behavior of the PEG model when
the data is under-dispersed. In the last two columns are the results from NGDP and NLD models. These
models, because of their variance functions allow for under and over-dispersed data.

Y Count PEG GPL TDL NGPL NGDP NLD
0 121 141.7501 126.9549 121.1050 136.2706 121.7622 125.0343
1 85 54.2834 73.7241 84.1072 61.3464 82.4026 78.4176
2 19 19.9380 21.4578 18.1254 20.7432 19.2040 20.4530
3 1 7.1532 4.1736 3.1021 6.2369 3.1442 2.7443
4 0 2.5269 0.6103 0.4792 1.7583 0.4283 0.3118
5 0 0.8829 0.0716 0.0698 0.4759 0.0521 0.0347
6 1 0.3058 0.0070 0.0098 0.1252 0.0059 0.0038

Total 227 226.8402 226.9994 226.9985 226.9568 226.9993 226.9995
ya 18 10 10 15 10 10

MLE α̂=1.7454 α̂=414.57 p̂=0.1177 α̂=1000.0 α̂=-2.6390 α̂=-37.4399

θ̂=2.0920 θ̂=712.90 β̂=4.8990 θ̂=3.4329 q̂=0.0744 θ̂=0.1103
µ 0.5815
σ2 0.5719
ȳ 0.5867 0.5815 0.5815 0.5816 0.5826 0.5683
s2 0.8940 0.5823 0.5181 0.7513 0.5236 0.5182

-2LL 469.7 450.2 445.6 459.0 446.5 447.3
AIC 473.7 454.2 449.6 463.0 450.5 451.3
X2

g > 29.1652 4.8385 1.8210 > 18.0 1.9758 2.3065
d.f. 3 3 2 2 3 3

p-value 0.0000 0.1840 0.4023 0.0000 0.5774 0.5113
X2

W 144.5680 221.9356 249.4413 172.0204 246.8261 249.4825
d.f. 224 224 224 224 224 224

p-value 1.0000a 0.5264 0.1169 0.9959a 0.1412 0.1166
RMSE 14.2442 5.0721 1.0144 10.8704 1.3701 3.0671

Table 3: Parameter Estimates, Expected Frequencies and GOFs

Results
We have employed the GPL, the TDL, NGPL, NGDP and the NLD here. The parameter estimates under
the NGPL are such that they generated highly inflated standard errors. However, both the PEG and
NGPL give over estimated observed variances and consequently fail to fit the data. On the other hand the
GPL and TDL behave well and both fit the data well with the GPL being the most parsimonious. Clearly,
the PEG and NGPL do not handle under-dispersed data well. The NGDP and NLD also fit the data well
and either would be a suitable candidate for under-dispersed frequency count data.

5 Excess Zero Data Examples

5.1 Example IV: Accident Data

The data for this example is presented in [15]. The data is in Table 4 and provides the frequency distribution
of number of accidents among 647 machine operators in a fixed period. The observed mean and variance
are 0.4652 and 0.6919 respectively, with the dispersion index (DI) being 1.49 > 1. The data is therefore
over-dispersed. The percentage of zeros in the observed data is 69.1% while the corresponding percentage
under the Poisson model is 100e−0.4652 = 62.8%. Thus, this data set exhibits excess zeros. Ignoring the
zero outcome in modeling such data usually lead to biasness etc. [18]. We therefore explore the zero-
inflated model application to the PEG and subsequently compared with corresponding models for other
distributions previously presented.

The probability mass function of a zero-inflated distribution (ZI) is a two-part process manifested by
the structural zeros part and the process that generates random counts and can be written in the form
proposed in [21]:
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Pr(Y = y|φ) =

{

φ + (1 − φ) Pr(Y = 0) if yi = 0

(1 − φ) Pr(Y = yi)) if yi = 1, 2, · · ·
(22)

where φ ∈ (0, 1) is the extra proportion of zeros and Y is the count random variable with specified
parameters. A constant inflation parameter φ is modeled here in the logit form. That is, φ = 1/[1 +
exp(−a0)].
In Table 4 are the results of applications of zero-inflated models to this data set.

Regular Models Zero-Inflated Models
Y Count NB GPL NGPL PEG ZINB ZIGPL ZINGPL ZIPEG
0 447 445.8864 446.3985 441.5707 446.3011 447.0000 447.0000 447.0000 447.0000
1 132 134.8957 133.7239 140.2033 134.3026 130.1862 130.2621 130.6287 130.3477
2 42 43.9920 44.4548 44.5160 44.0433 47.7803 47.6738 47.2299 47.4009
3 21 14.6924 14.9354 14.1343 14.7665 15.4765 15.4760 15.4174 15.6667
4 3 4.9647 5.0017 4.4878 4.9997 4.6795 4.6960 4.7485 4.7521
5 2 1.6893 1.6652 1.4249 1.7021 1.3544 1.3638 1.4086 1.3468

Total 647 646.1205 646.1795 646.3371 646.1154 646.4768 646.4717 646.4332 646.5141
ya 19 18 18 21 18 21 16 18

p̂=0.3497 α̂=0.7364 θ̂=2.1495 α̂=0.7013 p̂=0.2377 α̂=1.9492 α̂=19.2937* α̂=3.7745

r̂=0.8651 θ̂=2.2446 α̂ ≈ 0.000 θ̂=1.8884 r̂=2.0880 θ̂=33799 θ̂=3.0183 θ̂=4.3792

φ̂=0.2855 φ̂=0.2779 φ̂=0.2470 φ̂=0.1562
µ 0.4652
σ2 0.6919
ȳ 0.4652 0.4654 0.4652 0.4652 0.4652 0.4652 0.4652 0.4652
s2 0.7154 0.7150 0.6817 0.7175 0.6968 0.6973 0.7000 0.6961
X2

g 3.9091 3.5172 4.5209 3.6996 3.3066 3.2889 3.2592 3.1132
d.f. 3 3 3 3 2 2 2 2

p-value 0.2714 0.3185 0.2104 0.2958 0.1914 0.1931 0.1960 0.2109

X2

W 624.8 625.11 655.7069 622.9144 641.4920 640.9940 638.5115 642.0974
d.f. 644 644 644 644 643 643 643 643
-2LL 1184.5 1184.3 1185.0 1184.5 1183.8 1183.8 1183.8 1183.6
AIC 1188.5 1188.3 1189.0 1188.5 1189.8 1189.8 1189.8 1189.6
BIC 1197.5 1197.2 1197.9 1197.4 1203.2 1203.2 1203.2 1203.0

RMSE 3.0974 2.8978 5.0409 2.9767

Table 4: Distribution of Number of accidents among machine operators

Results:
The results from Table 4 indicate the following:

• For all the models, the sum of expected values did not sum to the sample size n = 647 until ya which
is outside the range of the data, 0 ≤ Y ≤ 5. Thus the theoretical means and variances of these
models are not realized until ya.

• For the regular models, the most parsimonious model is the Generalized Poisson-Lindley (GPL). The
New generalized Poisson-Lindley give an approximate parameter estimate for α ≈ 0.0000 indicating
that for this data set, the GPL converges to the Geometric distribution with parameter,

(

θ̂

1 + θ̂

)

=
2.1495

3.1495
= 0.6825.

That is, a one-parameter geometric distribution GD (0.6825).

• All the regular models estimate the observed mean of 0.4652 well, but overestimate the observed
variance of 0.6919, the exception being the NGPL.

• Because of strong deviations of these estimated variances from the observed variance, we need to fit
zero-inflated corresponding models to this data set which exhibits mild excess zeros to ameliorate
these deviations.
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• The results of the ZI models are presented in the last four columns of Table 4. With exception of
the NGPL, all the estimated variances in the regular models are greater than the observed variance.
The zero-inflated models on the other hand tempered these estimates by lowering their estimates,
thus bring them closer to the observed variance of 0.6919. Here, however, the ZIPEG is the most
parsimonious model.

• The ZINGPL provides estimate for α whose estimated standard error is extremely large-thus casting
doubt on the adequacy of this model for zero-inflated data.

5.2 Example V

This example is again taken from [?] and relate to claim counts of third party liability vehicle insurance
in a Zaire insurance company [34]. The data in Table 5 are therefore the distribution of claims from 4000
vehicle polices.

Regular Models Zero-Inflated Models
Y Count NB GPL NGPL PEG ZINB ZIGPL ZINGPL ZIPEG
0 3719 3719.2220 3718.7790 3681.5495 3719.0678 3719.2243 3719.0000 3718.9997 3719.0760
1 232 229.9009 229.5918 293.0978 228.5440 229.8990 229.2586 228.2113 228.5374
2 38 39.9106 41.3967 23.3343 42.0282 39.9103 41.3928 42.8720 42.0270
3 7 8.4156 8.1604 1.8577 8.2743 8.4155 8.2272 8.0540 8.2741
4 3 1.9313 1.6484 0.1479 1.6624 1.9313 1.6823 1.5130 1.6624
5 1 0.4648 0.3361 0.0118 0.3370 0.4648 0.3478 0.2842 0.3370

Total 4000 3999.8453 3999.9135 3999.9990 3999.9138 3999.8453 3999.9088 3999.9343 3999.9138
(0.6195)

ya - 13 10 14 15 14 14 14
p̂=0.2854 α̂=0.1332 α̂=0.0014 α̂=0.0906 p̂=0.2854 α̂=0.2264 α̂ ≈ 0.000 α̂=0.0906

r̂=0.2166 θ̂=3.9018 θ̂=11.5622 θ̂=3.8597 r̂=0.2166 θ̂=3.8565 θ̂=4.3231 θ̂=3.8597

φ̂ ≈ 0.000 φ̂= 0.2289 φ̂= 0.6261 φ̂= 0.0001
µ 0.0865
σ2 0.1225
ȳ 0.0865 0.0864 0.0865 0.0866 0.0865 0.0864 0.0865 0.0866
s2 0.1210 0.1192 0.0940 0.1199 0.1210 0.1196 0.1190 0.1199
X2

g 1.1738 2.3660 > 36.000 2.4969 1.1736 2.2429 3.4229 2.4970
d.f. 3 3 2 3 2 2 2 2

p-value 0.7593 0.5000 0.0000 0.4759 0.5561 0.3258 0.1806 0.2869

X2

W 4048.6975 4110.1005 5214.5678 4087.5685 4048.7284 4099.2354 4117.0158 4087.6800
d.f. 3997 3997 3997 3997 3996 3996 3996 3996
-2LL 2367.1 2367.9 2414.8 2368.0 2367.1 2367.8 2368.6 2368.0
AIC 2371.1 2371.9 2418.8 2372.0 2373.1 2373.8 2374.6 2374.0
BIC 2383.7 2384.4 2431.4 2384.6 2392.0 2392.7 2393.5 2392.9

Table 5: Distribution of claims from an Insurance Company

The observed data has a mean of 0.0865 and thus under the Poisson model the percentage of expected
zeros would be exp(−0.0865)=91.72%. However the observed data has about 93.98% zeros. Because the
percentage of observed zeros is not too far from that expected under the Poisson, the data therefore exhibits
moderate excess zeros.

Results:
Results from Table 5 indicate the following observations:

• All the regular models (with the exception of the NGPL) fit the data very well, with the NB being
the most parsimonious. The NGPL does not fit well at all.

• The zero-inflated corresponding models do not show much improvemts but the estimated variances
are adjusted upwards to match better the observed variance in both ZIGPL and ZINGPL.

• The ZINGPL gives a parameter estimate α̂ ≈ 0.0000 indicating again convergence to the zero-inflated

geometric model with estimated parameter r̂ = 0.8121 which is equivalent to r̂ =
θ̂

1 + θ̂
=

4.3231

5.3231
=

0.8121. Further, the ZINGPL now fits the data with a p-value of 0.1806.
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• The NB is the most parsimonious among both the regular and zero-inflated models. It performs much
better than the PEG. So too is the regular GPL model and its corresponding zero-inflated ZIGPL
model.

6 GLM Applications

Our example data here is the U.S. Medical Expenditure Panel Survey (MEPS) data set relating to the
number of doctor visits (Y=docvis) in 2003 for a number of elderly patients as well as several other
covariates relating to patients’ characteristics (Hilbe, [17]. The covariates are:

• private insurance coverage (supplemental to Medicare) (0,1)

• medicaid-eligibility for low income Medicaid coverage (0,1)

• female-gender of patients (1 if female, 0 if male)

• actlim-limitation of activity (0,1)

• totchr-number of chronic conditions

• phylim-physical limitation (0,1)

• educyr-number of years of educational attainment.

We present the first and last five observations for this data set (n = 3677).

Obs docvis female phylim private medicaid educyr actlim totchr

1 4 1 0 1 0 15 0 3

2 6 1 1 0 0 8 1 2

3 2 1 1 0 1 11 0 2

4 11 0 0 1 0 13 0 3

5 3 1 0 1 0 14 0 1

---------------------------------------------------------------------------

3671 5 1 1 1 0 16 0 1

3672 2 0 0 0 0 6 1 2

3673 15 1 1 0 1 12 1 3

3674 8 1 1 1 0 9 1 6

3675 6 1 0 1 0 13 0 2

3676 14 1 1 0 0 3 1 2

3677 10 0 1 0 0 4 1 1

We also created the interaction term femedu of female and educyr.
For data having covariates x1, x2, . . . , xp, the linear predictor therefore becomes,

x′β = β0 + β1female + β2phylim + β3private + β4medicaid + β5educyr + β6actlim + β7totchr + β8femedu

the parameters µi in NB and PIG; θi in GPL,NPGL and PEG; GP; and pi in TDL are modeled respectively
as follows:

µi = exp(x′β); θi = exp(x′β); θi = exp(x′β + offset); pi = 1/[1 + exp(−x′β)]; i = 1, 2, . . . , 3677.

Here, the pi, are modeled in the logit form. We may first note here that the data is grossly over-dispersed
with a dispersion parameter DI=6.5178 under the Poisson model. The results therefore in Table 6 gives the
performances of the distributions considered as alternatives to the Poisson. For GLM analyses, we shall
employ the fit criteria to access the performances of the various models, -2LL, AIC, BIC, and Wald’s X2.
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Distributions

Parameter NB GPL NGPLb TDL NPGLa PEG GP PIG
Intercept 0.6412 -0.1840 -1.1701 0.1549 -0.1840 -0.1950 0.7806 0.7707
female 0.2870* -0.2603* -0.2606* 0.2632* -0.2603* -0.2619* 0.2939* 0.3036*
phylim 0.1975* -0.1800* -0.1802* 0.1826* -0.1800* -0.1810* 0.1866* 0.1878*
private 0.1445* -0.1313* -0.1314* 0.1326* -0.1313* -0.1321* 0.1428* 0.1450*
medicaid 0.0835 -0.0753 -0.0754 0.0777 -0.0753 -0.0756 0.0302 0.0290
educyr 0.0445* -0.0407* -0.0408* 0.0415* -0.0407* -0.0409* 0.0390* 0.0390*
actlim 0.0761 -0.0694 -0.0695 0.0719 -0.0694 -0.0694 0.0245 0.0176
totchr 0.2682* -0.2458* -0.2460* 0.2482* -0.2458* -0.2471* 0.2450* 0.2479*
femedu -0.0278* 0.0254* 0.0254* -0.0258* 0.0254* 0.0255* -0.0268* -0.0272*

ML r̂=1.5677* α̂=0.9772* α̂=1.0124* β̂=0.4399* α̂=1.9772* α̂=1.9360* δ̂=0.5839* β̂=5.3636*
-2LL 21166 21141 21141 21154 21141 21140 21020 21065
AIC 21186 21161 21161 21174 21161 21160 21040 21085
BIC 21248 21223 21223 21236 21223 21222 21103 21147
X2

W 4569.7399 4598.2752 4649.5680 4651,6360 4600.0054 4576.8044 4015.1579 3651.8763
d.f. 3667 3667 3667 3667 3667 3667 3667 3667
p-value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00004 0.56712

Table 6: Parameter estimates & GOF statistics for the Distributions
b Bhatti et al (2019), a Atikankul(2023), a Significant at α = 0.01.

A Poisson model applied to the response variables has Wald’s X2
W = 29, 463.8387 on 3676 d.f., giving

a dispersion parameter of 8.0152, which clearly indicates very strong over-dispersion, considering the size
of the data. In Table 6 are the estimated parameters, together with their computed Wald’s GOFs and
corresponding -2LL, AIC and BIC values.
In the last two columns of Table 6 are the results of applying both the generalized Poisson of the second
kind (GP), [12] and the Poisson-Inverse Gaussian (PIG), Wilmot [34] models to the data. Results in Table
6 indicate the following:

• Based on the -2LL, AIC and BIC, the Generalized Poisson has the smallest values and would be
considered the most parsimonious on these criteria. This is followed by the PIG. The PEG gives
lower AIC and BIC than the other models and may be preferable over the NB, GPL, TDL and the
NPGL.

• Based on the Wald’s test statistic, X2
W however, the PIG is the only model that fits the data with a

p-value of (0.56712). All the other models fail to fit the data. Although,

• the GP has the lowest AIC criterion, but the PIG gives the only significant or better p-values based
on Wald’s GOF. This is why it is important that we should employ as many criteria as possible in
selecting the most parsimonious model.

• We observe again that the GPL and NPGL are equivalent with the latter giving a +1 parameter
estimate for α̂.

• The Models NB, GP and PIG are presented here because they are all parameterized in terms of
their means µ. We observe that both the GP and PIG provide better fits with the former being
more parsimonious in terms of AIC and BIC, while the latter performs better based on the Wald’s

goodness-of-fit test statistic X2
W =

N
∑

i=1

(yi − m̂i)
2

σ̂2
i

.

6.1 Under-dispersed GLM

The asthma inhaler data presented in Greenwald et al. [16] and [11], which comprises of 5209 daily count
observations from 48 children suffering from asthma during the school day, for a certain period in Denver,
Colorado. The students are aged 6 to 13 years. The covariates here are: (i) the percentage of humidity
(humidity), (ii) the barometric pressure (in mmHG/1000-pressure), (iii) the average daily temperature (in
Fahrenheit degree/100- temperature), and (iv) the morning levels of PM25, which are small air particles
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less than 25mm in diameter (particles). The linear predictor here is x′β = β0 +β1humidity+β2pressure +
β3temperature +β4particle. The response variable (Y), which is the inhaler use count, has a sample mean
of 1.2705, sample variance of 0.9183, and therefore, a dispersion index DI = 0.6637 < 1. Thus, the data is
under-dispersed. In Table 7 are the results of the applications of some of the models discussed above to
the inhaler data.

Distributions

Parameter P GPL NPGL* TDL NGDP NLD DW
Intercept -2.2132 9.0891 9.6351 -5.2305 -4.9008 -3.7526 1.6193
humidity -0.1125 0.1126 0.1123 -0.1974 -0.0064 -0.3741** 0.2477**
pressure 4.0950 -4.0987 -4.2543 6.6845 4.9708** 2.7998 -5.1593
temperature -0.2035 0.2036 0.2023 -0.3553 -0.0471 -0.5706** 0.4150**
particles 0.0225 -0.0225 -0.0226 0.0380 0.0217** 0.0346 -0.0317

ML α̂=962.71 α̂=1513.98 β̂=11.0305 α̂=-2.5050* α̂=-1790.77 β̂=2.1282*
-2LL 13905.47 13908 13907 13500 13448 14,134 13,472
AIC 13915.47 13920 13919 13512 13460 14,146 13,484
BIC 13948.26 13959 13958 13551 13500 14,186 13,524
X2

W 3448.93 3444.34 3446.25 4570.63 4898.21 4332.80 5162.92
d.f. 5204 5203 5203 5203 5203 5203 5203
p-value 1.0000 1.0000 1.0000 1.0000 0.9988 1.0000 0.6508

Table 7: Parameter estimates & GOF statistics for the Distributions
* Atikankul (2023) Model; * significant at the 5% point

Results:
Results from Table 7 indicate that the Poisson, the Generalized Poisson-Lindley (GPL) and the New
Poisson generalized Lindley (NPGL) did not improve on the under-dispersion of the data. The GPE and
the NGPL ([8] did not converge and as earlier stated, they both are not suitable for strong under-dispersed
count data. However, in the last two columns are results from applying (a) the New Geometric Discrete
Pareto Distribution (NGDP), NLD and the Discrete Type I Weibull (DW) distribution with pmf [26]:

f(y|q, β) = qyβ

− q(y+1)β

y = 0, 1, . . . (23)

The parameter q is modeled in the logit form, viz: q = 1/(1 + exp(−x′β)). The NGDP and DW perform
much better than the others and both seem capable of handling under-dispersed count data well.

6.2 Case of Mixed-Level of Dispersion

The bids data taken from [10] is a data set with mixed level of dispersion, where the the conditional
distribution is over-dispersed relative for some covariate pattern but is under-dispersed for another covariate
pattern. The response variable (Y) here is the number of bids received by 126 US firms that were targets
of tender offers during a certain period of time. The response variable Y, has ȳ = 1.7381 and s2 = 2.0509
with a DI=1.180, which indicates moderate over-dispersion and 0 ≤ Y ≤ 10. The following covariates are
employed in our analysis. In Table 8 are the results of applications of our models to this data set.

• bid price-taken as the price at a particular week divided by the price 14 working days before the bid,

• size-that is, the total book value of assets measured in billions of dollars,

• regulator, a dummy variable that is equal to 1 if there was an intervention by federal regulators and
0 otherwise.

Results:
The results in Table 8 indicate the followings:
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Distributions

Parameter P NB GPL NPGL* TDL PEG DW
Intercept 1.5318 1.5276 1.9857 1.9857 0.9212 1.9788 -3.5165
price -0.7849 -0.7824 0.7814 0.7814 -1.4240 0.7824 1.4767
size 0.0362 0.0369 -0.0368 -0.0368 0.0687 -0.0369 -0.1126
regulator 0.0547 0.0544 -0.0543 -0.0543 0.0919 -0.0544 -0.0569

ML r̂=33.3289 α̂=33.4711 α̂=34.4710 β̂=23.0210 α̂=33.3289 β̂=1.9409
-2LL 394.3 393.9 393.9 393.9 361.3 393.9 385.1
AIC 402.3 403.9 403.9 403.9 371.3 403.9 395.1
BIC 419.6 418.1 418.1 418.1 385.5 418.1 409.3
X2

W 123.2578 116.3302 116.3641 116.3641 144.2486 116.3302 126.5202
d.f. 122 121 121 121 121 121 121
p-value 0.4511 0.6030 0.6021 0.6021 0.6552 0.6030 0.3474

Table 8: Parameter estimates & GOF statistics for the Distributions
* Atikankul (2023) Model

• The PEG, NB, GPL and NPGL (Atikankul, 2023) all behave alike for this special data set. The
parameters of the NB are the negatives of those of the other three because of parameterization.
The parameter α for the NPGL is 34.4710 as against that of GPL of 33.4711 as expected since
αngpl = 1 + αgpl theoretically.

• All the four produce the same -2LL, AIC, BIC as well as equivalent Wald’s goodness-of-fit statistic
X2

W .

• The dispersion parameters σ̂2
1/µ̂i, i = 1, 2, . . . , 126 for the Poisson, NB, GPL, NPGL and PEG did

not indicate the mixed level of the data as reflected in Table 9. For these five distributions, the
minimum DI and maximum DI are all greater than 1 reflecting over-dispersion as expressed as a
variance-function for these models. The exception of course being the Poisson, with DI being 1
across the entire data.

• However, both TDL and DW models exhibit the inherent mixed level of dispersion in the data, with
the DI being less than 1.00 for some observations-indicating under-dispersion and being greater than
1.00 for other observations-indicating over-dispersion. These two distributions would therefore be
suitable for this data set with the TDL being the most parsimonious of the two in terms of AIC and
BIC, while the DW will be the most parsimonious of the two if the Wald’s GOF criterion is employed.

µ̂i σ̂2
i DI

Models Min Max Min Max Min Max
P 0.9241 4.0316 0.9241 4.0316 1.0000 1.0000

NB 0.9253 4.0777 0.9510 4.5766 1.0278 1.1223
GPL 0.9254 4.0773 0.9510 4.5738 1.0276 1.1218

NPGL 0.9254 4.0773 0.9510 4.5738 1.0276 1.1218
TDL 0.9948 5.0656 0.5070 12.7112 0.5097 2.5093**
PEG 0.9253 4.0777 0.9510 4.5766 1.0278 1.1223
DW 0.8037 7.0230 0.5608 16.4058 0.6978 2.3360 **

Table 9: Minimum and Maximum Values of Estimated moments with corresponding DI

** Exhibit Under and over-dispersions

6.3 Zero-Inflated GLM Application:

In this section, we would compare the PEG model to the other models considered in this study to a
data set exhibiting excess zeros.an example Our example data here is the very well analyzed German
National Health Registry (GNHR) [17] data set which comprises of 3874 respondents. The data has 3874
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observations (it is a subset of the main data set, which has 27,300 observations) and 16 variables including
the response variable docvis, number of doctor’s visits. We have however presented below the first and
last five observations from this subset data and the five explanatory variables of interest, namely, gender
(1=female, 0 if male), the age of the individual (age); kids-number of children, educ-years of education and
marital status (1 if married; 0 if not married).
The response variable Y has a range [0,121] with mean 3.162881 and variance 39.387611. Thus, the
dispersion index (ID) here is 12.4531, indicating a very strong over-dispersion. In addition, 41.58% of the
data have zero counts which indicate excess zeros in the data.

Our model formulation here is based on the five explanatory variables employed in Saffari et al. (2019),
namely, sex, age, kids, educ and marital status. If we let the linear predictor xβ be defined as in (24),

xβ = b0 + b1female + b2age + b3children + b4educ + b5married (24)

Then, the mean µ = rp/(1−p) for the Negative binomial, the parameter θi in GPL, NPGL and PEG are
modeled as exp(xβ), while the parameter p in the TDL is modeled in the logit form p = 1/(1+exp(−xβ)).
The zero-component of the zero-inflated models is also modeled in the logit form, viz:

log

(

φi

1 − φi

)

= a0 + a1female + a2age + a3children + a4educ + a5married (25)

The results of implementing these models are presented in Table 10.

ZINB ZIGPL ZIPGL* ZITDL ZINGPL** ZIPEG ZIGD ZINGDP ZINLD
Log link Parms

Intercept 0.6112 -0.9108 -0.9108 1.0005 1.0005 -1.1741 1.0005 1.3580 1.1769
female 0.2142 -0.2122 -0.2122 0.1839 0.1839 -0.2179 0.1839 0.2274 0.2013
age 0.0205 -0.0176 -0.0176 0.0173 0.0173 -0.0216 0.0173 0.0234 0.0199
kids -0.0219 0.0203 0.0203 -0.0088 -0.0088 0.0180 -0.0088 0.0042a -0.0119a

educ -0.0233 0.0211 0.0211 -0.0270 -0.0270 0.0269 -0.0270 -0.0391 -0.0214a

married -0.1724 0.1448 0.1448 -0.1718 -0.1718 0.1885 -0.1718 -0.2636 -0.1756

r̂= 0.5435 α̂ ≈ 0.000 α̂=1.000 β̂ ≈ 0.000 α̂ ≈ 0.000 α̂=0.5292 na α̂=0.3455 α̂=0.8336
Logit link Parms

Intercept -1.6058 -1.6866 -1.6855 -0.1399 -0.1399 -1.4677 -0.1389 -0.9557 -1.1490
female -2.2433 -1.2951 -1.2951 -0.8232 -0.8232 -2.1893 -0.8232 -1.7995 -1.3830
age -0.0333 -0.0203 -0.0203 -0.0235 -0.0235 -0.0348 -0.0235 -0.0379 -0.0242
kids 0.8220 0.6802 0.6802 0.3731 0.3731 0.7974 0.3731 0.7113 0.6496
educ 0.1291 0.0928 0.0928 0.0437 0.0437 0.1252 0.0437 0.1059 0.0870
marrieda -0.4016 -0.4311 0.4311 -0.1733 -0.1733 -0.3682 -0.1733 -0.2875 -0.3823
-2LL 16565 16668 16668 16662 16662 16,570 16,662 16,563 16,553
AIC 16591 16694 16694 16688 16688 16,596 16,686 16,589 16,577
BIC 16672 16776 16776 16769 16769 16,678 16,761 16,670 16,660
X2 5799.637 6967.963 6968.041 7010.514 7010.816 5803.973 7010.816 5441.204 5478.641
d.f. 3861 3861 3861 3861 3861 3861 3862 3861 3861
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ptextzero 0.4192 0.4309 0.4309 0.4157 0.4157 0.4195 0.4157 0.4205 0.4157

Table 10: Parameter Estimates
* Atitunku; ** Bhatti et al., a not significant.

6.4 Results

Results from Table 10 indicate the followings:

• Zero-inflated models ZITDL and ZINGPL do not converge readily and are most intractable to im-
plement.

• None of the models fit the data. However, the ZINLD (the zero-inflated New logarithmicDistribution,[14])
ZINB outperforms others in terms of having lowest -2LL, AIC and BIC. This is followed by the
ZINGDP (the zero-inflated New Geometric Discrete Pareto Distribution, [8]). These are closely
followed by the ZINB (zero-inflated Negative Binomial).
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• In terms of the Wald’s GOF criterion, the ZINGD has the lowest value of the test statistic, 5,441.204
on 3861 d.f.

• Covariate parameter estimates of ZIGPL and ZIPGL are identical as previously observed. The α̂
parameter estimated under the ZIGPL is approximately zero and the corresponding estimate for the
ZINPGL is as expected 1.00.

• For the ZITDL and ZINGPL, they similarly provide equivalent covariates’ parameter estimates.
However, the parameter estimate β̂ and α̂ are approximately zeros. Thus, the two distributions
reduce to zero-inflated geometric distribution. The last column in Table 10 gives the estimated
parameters and goodness-of-fit test statistics under the ZIGM. We observe that these are identical
to those of ZITDL and ZINGPL.

• The estimated proportion of zeros from our models are presented as pzero for all the models, compared
to the observed (1611/3874)=0.4158. In this regard the ZINLD, ZITDL, its equivalent ZINGPL and
the ZIGD provide close estimates while the ZINB is also reasonably close.

• All the models did not fit this data because the data is strongly skewed to the right. The range of
the response variable is [0,121] but 97.91% of the data are in the range [0,20]. Thus, right truncated
model would hopefully be appropriate for this data set.

7 Conclusions:

Results from this study have shown that the Poisson-Exponential-Gamma distribution proposed in [36] does
not necessarily outperform the GPL [25], the NB or other similar two-parameter distributions. It does not
fair well for under-dispersed count data but is a good alternative to count data exhibiting over-dispersion.
We also established here that the New Poisson generalized Lindley distribution (NPGL) proposed in [3] is
a re-parameterization of the generalized Poisson Lindley (GPL) distribution earlier proposed in [25], while
the two Lindley-type distributions can provide adequate fits for some frequency data sets as considered
in this study and some data having covariates, the two distributions are however not suitable for data
exhibiting very strong over-dispersion as a result of excess zeros. The choice of which model is the most
parsimonious depends on the data sets under consideration based on the variety of data sets considered
in this study. However, the PEG distribution re-considered here adds to the literature and knowledge of
discrete distributions that can be applied to over-dispersed count data as they provide alternatives for
fitting any variety of over-dispersed count data. It should be noted here that the GPL converges faster
than the NPGL. For mixed under and over-dispersed data, the NB, GPL and NPGL seem impervious of
this as they return estimated dispersion indices that are greater than 1.0000.
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