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ABSTRACT 
 
Aims: In this article, the drugs used in the treatment of Diabetic Nephropathy are analysed 
using the topological indices, and a QSPR analysis of the chemical properties is done. 
Study design:  The degree based topological indices are used for this structural analysis of 
chemical compounds of these drugs.  The graph structure of a chemical structure is derived 
from a chemical component by considering the atoms as vertices and the bonds connecting 
two atoms as edges, the edge-partitions are computed and used to obtain the topological 
indices. 
Results: The topological indices of these drugs are calculated and compared with the 
theoretical properties of the drugs. The diagrammatic visualization of the data is plotted in 
Box graph, Line graph and in scatter diagram. The theoretical values are compared with 
these topological indices and the regression equations are found. The relation between the 
properties of chemicals in terms of topological indices is given as regression equations. 
These equations contain vital information about the structural relationship and the numerical 
invariants and the properties in terms of numerical values and may be used for drug design.   
Conclusion: The computed topological indices are visualized in various aspects and the 
regression analysis among the chemical properties of the drugs and the topological indices 
is done. This degree-based QSPR analysis helps to design medicines for the diabetic 
nephropathy. 

 
Keywords: QSPR Analysis, Drug design, diabetic nephropathy, nephropathy, topological 
indices.  
 

1. INTRODUCTION  
Diabetic nephropathy stands as a formidable complication of diabetes mellitus, constituting a 
significant burden on global healthcare systems and posing substantial challenges to patient 
management. Characterized by progressive kidney damage and eventual renal failure, 
diabetic nephropathy not only diminishes quality of life but also heightens mortality rates 
among affected individuals. Despite considerable advancements in medical science, the 
prevalence of this condition continues to rise, underscoring the critical need for 
comprehensive research to elucidate its pathogenesis, identify effective preventive 
measures, and devise innovative therapeutic strategies. 
Preventing and managing diabetic nephropathy involves controlling blood sugar levels 
through diet, exercise, and medication as prescribed by a healthcare provider. Managing 
high blood pressure is also crucial, as it can further damage the kidneys. In advanced 
stages, treatments may include medications to lower blood pressure, as well as dialysis or 
kidney transplant for those with kidney failure. Regular monitoring of kidney function through 



 

 

blood and urine tests is essential for people with diabetes to detect any signs of kidney 
damage early and take appropriate steps to manage it. Additionally, maintaining a healthy 
lifestyle and following medical advice can help reduce the risk of developing diabetic 
nephropathy and slow its progression if already present. The pathophysiology of diabetic 
nephropathy is multifaceted, involving a complex interplay of metabolic, hemodynamic, and 
inflammatory factors. Chronic hyperglycemia serves as the primary instigator, triggering a 
cascade of molecular events that culminate in glomerular injury, tubular dysfunction, and 
interstitial fibrosis. Furthermore, aberrations in the renin-angiotensin-aldosterone system, 
oxidative stress, and activation of pro-inflammatory pathways contribute synergistically to the 
progression of renal damage. Understanding the intricate mechanisms underlying diabetic 
nephropathy is pivotal in delineating novel targets for intervention and advancing the 
development of more efficacious treatment modalities. 

Numerous risk factors predispose individuals with diabetes to the development and 
progression of nephropathy. Beyond glycemic control, hypertension emerges as a key 
determinant, exacerbating renal injury through its hemodynamic effects and amplifying the 
deleterious impact of hyperglycemia on the kidneys. Genetic susceptibility, obesity, 
dyslipidemia, and smoking further augment the risk, highlighting the multifactorial nature of 
diabetic nephropathy. Moreover, emerging evidence suggests that socio-economic 
disparities, inadequate access to healthcare, and suboptimal adherence to therapeutic 
regimens contribute significantly to the disproportionate burden of nephropathy among 
certain demographic groups. 

In light of the escalating prevalence of diabetes and its attendant complications, diabetic 
nephropathy looms large as a global health crisis necessitating urgent attention and 
concerted research efforts. By unraveling the intricacies of its pathogenesis, delineating 
modifiable risk factors, and exploring innovative therapeutic avenues, the scientific 
community endeavors to mitigate the burden of diabetic nephropathy and improve outcomes 
for affected individuals worldwide. 

In the realm of drug discovery and development, The Quantitative Structure-Property 
Relationship (QSPR) analysis emerges as a powerful computational tool, offering 
unparalleled insights into the structure-activity relationships governing the pharmacological 
behavior of small molecules and biomolecules alike. The intricate interplay between 
molecular structure and physicochemical properties underpins the efficacy, selectivity, and 
safety of candidate compounds, thereby necessitating sophisticated predictive models to 
expedite the drug discovery process.  

At its core, QSPR analysis seeks to establish quantitative correlations between the 
physicochemical properties of chemical entities and their molecular structures, thereby 
enabling the rational design and optimization of drug candidates with desired attributes. 
Leveraging principles from computational chemistry, statistical modeling, and machine 
learning, QSPR methodologies afford researchers the ability to predict a diverse array of 
molecular properties encompassing solubility, lipophilicity, bioavailability, toxicity, and 
biological activity. By elucidating the intricate nuances of molecular interactions and 
structure-activity relationships, QSPR analysis transcends traditional trial-and-error 
approaches, fostering a paradigm shift towards rational and data-driven drug design 
strategies.  

The foundational principles of QSPR analysis emanate from the rich tapestry of theoretical 
chemistry, wherein molecular structures are represented as mathematical descriptors 
encapsulating pertinent physicochemical attributes. Through the judicious selection of 
molecular descriptors and robust statistical algorithms, QSPR models endeavor to capture 



 

 

the underlying patterns and correlations intrinsic to structure-property relationships. Notably, 
the advent of computational chemistry techniques, encompassing molecular docking, 
quantum mechanics, and molecular dynamics simulations, has further enriched the 
predictive capabilities of QSPR methodologies, enabling the elucidation of intricate 
molecular mechanisms underlying drug-receptor interactions and pharmacological 
responses. 

A topological index [9] is a numerical value or set of values derived from the molecular 
structure of a chemical compound. It encapsulates information about the connectivity of 
atoms within the molecule but does not consider the spatial arrangement of atoms. Some of 
the well-known topological indices are Wiener Index [8, 22], Sum Connectivity Index, Randic 
Index [20], Geometric Arithmetic [5, 10] Index, Zagreb Indices [1, 16]. The molecular 
descriptors [2, 18] are numerical or categorical representations of various aspects of a 
molecule's structure, composition, or properties. These descriptors are crucial in the field of 
cheminformatics [3, 4, 7, 12] and computational chemistry, as they serve as the basis for 
quantitative structure-activity [17] or structure-property relationship models [6, 21]. 

In this article, we studied the QSPR analysis of drugs used in the treatment of diabetic 
nephropathy, namely (i) Avapro, (ii) Benazepril, (iii) Enalapril, (iv) Losontron, and (v) Tritace.  
The Physio-chemical properties are compared with the theoretical values calculated from the 
topological indices and the regression lines are plotted.   

 
2. METHODOLOGY  
The medicines used in the treatment of diabetic nephropathy are found and their chemical 
structures and the physio-chemical properties of these chemicals are taken from 
Chemspider (Table 1).  We found various topological indices for these structures and the 
physical properties are compared with the topological indices. The properties are attained in 
terms of the topological indices as regression lines. The graphs of the chemical structure are 
given in the following figure: 

Figure 1: Chemical structures of the drugs 

 
 
The chemical properties such as (a) Density, (b) Index of refractivity, (c) Boiling point, (d) 
Enthalpy of vaporization,   (e) Flash point,   (f) Molar refractivity,   (g) Polar surface Area,   
(h) Polarizability, (i) Surface tension, (j) Molar volume of these medicines are extracted from 
Chemspider and are shown in Table 1:   



 

 

 
Table 1: The Physio-chemical properties of the chemicals used in the Diabetic 
Nephropathy treatment 

Name 
of the 
chemic
al 

Dens
ity 

Index 
of 
refract
ion 

Boili
ng 
poin
t 

Enthalpy 
of 
vapouriza
tion 

Flas
h 
Poi
nt 

Molar 
Refracti
vity 

Polar 
Surfa
ce 
Area 

Polarizab
ility 

Surfa
ce 
tensi
on 

Mola
r 
Volu
me 

Avapro 1.3 1.690 648.
6 

95.6 346 125.4 87 49.7 54.4 328.2 

benaze
pril 

1.3 1.608 691.
2 

106.4 371
.8 

116.1 96 46 58.9 335.8 

enalap
ril 

1.2 1.550 582.
3 

91.6 306 99.5 96 39.5 51.3 312.6 

losarta
n 

1.4 1.681 682 105.1 366
.3 

118.2 93 46.9 53.3 312.5 

Tritace 1.2 1.556 616.
2 

96.1 326
.4 

111.4 96 44.2 50.2 346.8 

 
 

3. TERMINOLOGIES 
Given a graph 𝐺 = (𝑉𝐺 , 𝐸𝐺), the neighbourhood of a vertex 𝑥 is a subset of vertices 𝑁𝐺(𝑥) 

such that every element of 𝑁𝐺(𝑥) is adjacent to 𝑥 in 𝐺 and the degree of a vertex 𝜌𝐺(𝑥) is the 
number of vertices in the neighbourhood of 𝑥, that is |𝑁𝐺(𝑥)|. In this article, we compare the 
theoretical properties of the chemicals with the following topological indices:  

 
Definition 3.1: The First-Zagreb index [1] is defined as  

𝑇1(𝐺) = ∑ 𝜌(𝑥) + 𝜌(𝑦)

𝑥𝑦 𝜖 𝐸(𝐺)

 

Definition 3.2: The Second-Zagreb index [1,19] is defined as 

𝑇2(𝐺) = ∑ 𝜌(𝑥). 𝜌(𝑦)

𝑥𝑦 𝜖 𝐸(𝐺)

 

Definition 3.3: The Harmonic index is defined as 

𝑇3(𝐺) = ∑
1

𝜌(𝑥) + 𝜌(𝑦)
𝑥𝑦 𝜖 𝐸(𝐺)

 

Definition 3.4: The Hyper-Zagreb index is defined as 

𝑇4(𝐺) = ∑ (𝜌(𝑥) + 𝜌(𝑦))
2

𝑥𝑦 𝜖 𝐸(𝐺)

 

Definition 3.5: The forgotten index [14] is defined as 

𝑇5(𝐺) = ∑ 𝜌(𝑥)2 + 𝜌(𝑦)2

𝑥𝑦 𝜖 𝐸(𝐺)

 

Definition 3.6: The ABC index is defined as 

𝑇6(𝐺) = ∑ √
𝜌(𝑥) + 𝜌(𝑦) − 2

𝜌(𝑥). 𝜌(𝑦)
𝑥𝑦 𝜖 𝐸(𝐺)

 

Definition 3.7: The Randic index [20] is defined as 

𝑇7(𝐺) = ∑ √
1

𝜌(𝑥). 𝜌(𝑦)
𝑥𝑦 𝜖 𝐸(𝐺)

 

https://www.drugs.com/avapro.html
https://www.drugs.com/mtm/benazepril.html
https://www.drugs.com/mtm/benazepril.html
https://www.drugs.com/enalapril.html
https://www.drugs.com/enalapril.html
https://www.drugs.com/losartan.html
https://www.drugs.com/losartan.html


 

 

Definition 3.8: The Sum-connectivity index is defined as 

𝑇8(𝐺) = ∑ √
1

𝜌(𝑥) + 𝜌(𝑦)
𝑥𝑦 𝜖 𝐸(𝐺)

 

Definition 3.9: The Sombor index [11] is defined as 

𝑇9(𝐺) = ∑ √𝜌(𝑥)2 + 𝜌(𝑦)2

𝑥𝑦 𝜖 𝐸(𝐺)

 

Definition 3.10: The Reduced Sombor index [13, 15] is defined as 

𝑇11(𝐺) = ∑ √(𝜌(𝑥) − 1)2 + (𝜌(𝑦) − 1)2

𝑥𝑦 𝜖 𝐸(𝐺)

 

 

4. RESULTS AND DISCUSSION 
The topological indices are calculated for the drugs in this section. The topological indices 
we consider for this work are listed in the terminologies section. The computed topological 
indices are plotted in Heatmap diagram, Box graph, Line graph, and Scatter diagram. The 
result starts from the following Theorem: 

Theorem 4.1 :  
If 𝐺 is the molecular graph of Benazepril, then the topological indices are respectively, 

𝑡1(𝐺) = 153, 𝑡2(𝐺) = 176, 𝑡3(𝐺) = 7.33, 𝑡4(𝐺) = 731, 𝑡5(𝐺) = 379, 𝑡6(𝐺) = 23.52,  
𝑡7(𝐺) = 70.79, 𝑡8(𝐺) = 15.50, 𝑡9(𝐺) = 110.34, 𝑡10(𝐺) = 65.30. 

Proof: 
From the molecular graph of Gabapentin, we have the following edge-partition:  
𝐸1,2 = 1, 𝐸1,3 = 4, 𝐸22 = 12, 𝐸2,3 = 10, 𝐸(3,3) = 6.  Now, 

(i) Consider,      

        𝑇1(𝐺) = ∑ 𝜌(𝑥) + 𝜌(𝑦)

𝑥𝑦 𝜖 𝐸(𝐺)

 

                    =  ∑ 𝜌(𝑥) + 𝜌(𝑦)

𝑥𝑦 ∈𝐸1,2

+  ∑ 𝜌(𝑥) + 𝜌(𝑦)

𝑥𝑦 ∈𝐸1,3

+ ∑ 𝜌(𝑥) + 𝜌(𝑦)

𝑥𝑦 ∈𝐸2,2

+  ∑ 𝜌(𝑥) + 𝜌(𝑦)

𝑥𝑦 ∈𝐸2,3

+ ∑ 𝜌(𝑥) + 𝜌(𝑦)

𝑥𝑦 ∈𝐸2,4

 

                   =  ∑ 3

𝑥𝑦 ∈𝐸1,2

+  ∑ 4

𝑥𝑦 ∈𝐸1,3

+  ∑ 4

𝑥𝑦 ∈𝐸2,2

+  ∑ 5

𝑥𝑦 ∈𝐸2,3

+  ∑ 6

𝑥𝑦 ∈𝐸3,3

 

                   = |𝐸1,2| × 3 + |𝐸1,3| × 4 + |𝐸2,2| × 4 + |𝐸2,3| × 5 + |𝐸3,3| × 6 

                   = (1 × 3) + (4 × 4) + (12 × 4) + (10 × 5) + (6 × 6) 

                   = 3 + 16 + 48 + 50 + 36 

                   = 153 
(ii) Consider,      

         𝑇2(𝐺) = ∑ 𝜌(𝑥). 𝜌(𝑦)𝑥𝑦 𝜖 𝐸(𝐺)  

                    =  ∑ 𝜌(𝑥). 𝜌(𝑦)

𝑥𝑦 ∈𝐸1,2

+ ∑ 𝜌(𝑥). 𝜌(𝑦)

𝑥𝑦 ∈𝐸1,3

+  ∑ 𝜌(𝑥). 𝜌(𝑦)

𝑥𝑦 ∈𝐸2,2

+  ∑ 𝜌(𝑥). 𝜌(𝑦)

𝑥𝑦 ∈𝐸2,3

+  ∑ 𝜌(𝑥). 𝜌(𝑦)

𝑥𝑦 ∈𝐸2,4

 

                   =  ∑ 2

𝑥𝑦 ∈𝐸1,2

+  ∑ 3

𝑥𝑦 ∈𝐸1,3

+  ∑ 4

𝑥𝑦 ∈𝐸2,2

+  ∑ 6

𝑥𝑦 ∈𝐸2,3

+  ∑ 9

𝑥𝑦 ∈𝐸3,3 

 

                   = |𝐸1,2| × 2 + |𝐸1,3| × 3 + |𝐸2,2| × 4 + |𝐸2,3| × 6 + |𝐸3,3 | × 9 

                   = (1 × 2) + (4 × 3) + (12 × 4) + (10 × 6) + (6 × 8)  

               = 176 



 

 

(iii) Consider,       

       𝑇3(𝐺) = ∑
1

𝜌(𝑥) + 𝜌(𝑦)
𝑥𝑦 𝜖 𝐸(𝐺)

 

                    =  ∑
1

𝜌(𝑥) + 𝜌(𝑦)
𝑥𝑦 ∈𝐸1,2

+  ∑
1

𝜌(𝑥) + 𝜌(𝑦)
𝑥𝑦 ∈𝐸1,3

+ ∑
1

𝜌(𝑥) + 𝜌(𝑦)
𝑥𝑦 ∈𝐸3,3

+  ∑
1

𝜌(𝑥) + 𝜌(𝑦)
𝑥𝑦 ∈𝐸2,3

+ ∑
1

𝜌(𝑥) + 𝜌(𝑦)
𝑥𝑦 ∈𝐸2,4

 

                   =  ∑
1

2
𝑥𝑦 ∈𝐸1,2

+  ∑
1

3
𝑥𝑦 ∈𝐸1,3

+  ∑
1

4
𝑥𝑦 ∈𝐸2,2

+  ∑
1

6
𝑥𝑦 ∈𝐸2,3

+  ∑
1

6
𝑥𝑦 ∈𝐸3,3

 

                   = |𝐸1,2| ×
1

2
+ |𝐸1,3| ×

1

3
+ |𝐸2,2| ×

1

4
+ |𝐸2,3| ×

1

6
+ |𝐸3,3| ×

1

6
 

                   = 7.33   
(iv) Consider,       

      𝑇4(𝐺) = ∑ (𝜌(𝑥) + 𝜌(𝑦))
2

𝑥𝑦 𝜖 𝐸(𝐺)

 

 

                    =  ∑ (𝜌(𝑥) + 𝜌(𝑦))
2

𝑥𝑦 ∈𝐸1,2

+  ∑ (𝜌(𝑥) + 𝜌(𝑦))
2

𝑥𝑦 ∈𝐸1,3

+  ∑ (𝜌(𝑥) + 𝜌(𝑦))
2

𝑥𝑦 ∈𝐸2,2

+  ∑ (𝜌(𝑥) + 𝜌(𝑦))
2

𝑥𝑦 ∈𝐸2,3

+  ∑ (𝜌(𝑥) + 𝜌(𝑦))
2

𝑥𝑦 ∈𝐸3,3

 

                   =  ∑ 32

𝑥𝑦 ∈𝐸1,2

+ ∑ 42

𝑥𝑦 ∈𝐸1,3

+ ∑ 42

𝑥𝑦 ∈𝐸2,2

+ ∑ 52

𝑥𝑦 ∈𝐸2,3

+  ∑ 62

𝑥𝑦 ∈𝐸3,3

 

                   = |𝐸1,2| × 9 + |𝐸1,3| × 16 + |𝐸2,2| × 16 + |𝐸2,3| × 25 + |𝐸3,3| × 36 

                   =731 
(v) Consider,       

      𝑇5(𝐺) = ∑ 𝜌(𝑥)2 + 𝜌(𝑦)2

𝑥𝑦 𝜖 𝐸(𝐺)

 

                    =  ∑ 𝜌(𝑥)2 + 𝜌(𝑦)2

𝑥𝑦 ∈𝐸1,2

+ ∑ 𝜌(𝑥)2 + 𝜌(𝑦)2

𝑥𝑦 ∈𝐸1,3

+ ∑ 𝜌(𝑥)2 + 𝜌(𝑦)2

𝑥𝑦 ∈𝐸2,2

+  ∑ 𝜌(𝑥)2 + 𝜌(𝑦)2

𝑥𝑦 ∈𝐸2,3

+ ∑ 𝜌(𝑥)2 + 𝜌(𝑦)2

𝑥𝑦 ∈𝐸3,3

 

                   =  ∑ 5

𝑥𝑦 ∈𝐸1,2

+  ∑ 10

𝑥𝑦 ∈𝐸1,3

+  ∑ 8

𝑥𝑦 ∈𝐸2,2

+  ∑ 13

𝑥𝑦 ∈𝐸2,3

+ ∑ 20

𝑥𝑦 ∈𝐸3,3

 

                   = |𝐸1,2| × 5 + |𝐸1,3| × 10 + |𝐸2,2| × 8 + |𝐸2,3| × 13 + |𝐸3,3| × 20 

                   = 379 
 
(vi) Consider,       

      𝑇6(𝐺) = ∑ √
𝜌(𝑥) + 𝜌(𝑦) − 2

𝜌(𝑥). 𝜌(𝑦)
𝑥𝑦 𝜖 𝐸(𝐺)

 

                    =  ∑ √
𝜌(𝑥) + 𝜌(𝑦) − 2

𝜌(𝑥). 𝜌(𝑦)
𝑥𝑦 ∈𝐸1,2

+  ∑ √
𝜌(𝑥) + 𝜌(𝑦) − 2

𝜌(𝑥). 𝜌(𝑦)
𝑥𝑦 ∈𝐸1,3

+  ∑ √
𝜌(𝑥) + 𝜌(𝑦) − 2

𝜌(𝑥). 𝜌(𝑦)
𝑥𝑦 ∈𝐸2,2

+  ∑ √
𝜌(𝑥) + 𝜌(𝑦) − 2

𝜌(𝑥). 𝜌(𝑦)
𝑥𝑦 ∈𝐸2,3

+ ∑ √
𝜌(𝑥) + 𝜌(𝑦) − 2

𝜌(𝑥). 𝜌(𝑦)
𝑥𝑦 ∈𝐸3,3

 



 

 

                   =  23.52 
(vii) Consider,       

      𝑇7(𝐺) = ∑ √
1

𝜌(𝑥). 𝜌(𝑦)
𝑥𝑦 𝜖 𝐸(𝐺)

 

                    =  ∑ √
1

𝜌(𝑥). 𝜌(𝑦)
𝑥𝑦 ∈𝐸1,2

+ ∑ √
1

𝜌(𝑥). 𝜌(𝑦)
𝑥𝑦 ∈𝐸1,3

+ ∑ √
1

𝜌(𝑥). 𝜌(𝑦)
𝑥𝑦 ∈𝐸2,2

+  ∑ √
1

𝜌(𝑥). 𝜌(𝑦)
𝑥𝑦 ∈𝐸2,3

+ ∑ √
1

𝜌(𝑥). 𝜌(𝑦)
𝑥𝑦 ∈𝐸3,3

 

                   =  70.79 
(viii) Consider,       

      𝑇8(𝐺) = ∑ √
1

𝜌(𝑥) + 𝜌(𝑦)
𝑥𝑦 𝜖 𝐸(𝐺)

 

                    =  ∑ √
1

𝜌(𝑥) + 𝜌(𝑦)
𝑥𝑦 ∈𝐸1,2

+ ∑ √
1

𝜌(𝑥) + 𝜌(𝑦)
𝑥𝑦 ∈𝐸1,3

+  ∑ √
1

𝜌(𝑥) + 𝜌(𝑦)
𝑥𝑦 ∈𝐸2,2

+  ∑ √
1

𝜌(𝑥) + 𝜌(𝑦)
𝑥𝑦 ∈𝐸2,3

+  ∑ √
1

𝜌(𝑥) + 𝜌(𝑦)
𝑥𝑦 ∈𝐸3,3

 

                   =  15.50 
(ix) Consider,       

      𝑇9(𝐺) = ∑ √𝜌(𝑥)2 + 𝜌(𝑦)2

𝑥𝑦 𝜖 𝐸(𝐺)

 

                =  ∑ √𝜌(𝑥)2 + 𝜌(𝑦)2

𝑥𝑦 ∈𝐸1,2

+ ∑ √𝜌(𝑥)2 + 𝜌(𝑦)2

𝑥𝑦 ∈𝐸1,3

+ ∑ √𝜌(𝑥)2 + 𝜌(𝑦)2

𝑥𝑦 ∈𝐸2,2

+ ∑ √𝜌(𝑥)2 + 𝜌(𝑦)2

𝑥𝑦 ∈𝐸2,3

+ ∑ √𝜌(𝑥)2 + 𝜌(𝑦)2

𝑥𝑦 ∈𝐸3,3

 

                 =  ∑ √5

𝑥𝑦 ∈𝐸1,2

+  ∑ √10

𝑥𝑦 ∈𝐸1,3

+  ∑ √8

𝑥𝑦 ∈𝐸2,2

+ ∑ √13

𝑥𝑦 ∈𝐸2,3

+ ∑ √20

𝑥𝑦 ∈𝐸3,3

 

                 = 110.34 
 
(x) Consider,       

      𝑇10(𝐺) = ∑ √(𝜌(𝑥) − 1)2 + (𝜌(𝑦) − 1)2

𝑥𝑦 𝜖 𝐸(𝐺)

 

                =  ∑ √(𝜌(𝑥) − 1)2 + (𝜌(𝑦) − 1)2

𝑥𝑦 ∈𝐸1,2

+ ∑ √(𝜌(𝑥) − 1)2 + (𝜌(𝑦) − 1)2

𝑥𝑦 ∈𝐸1,3

+  ∑ √(𝜌(𝑥) − 1)2 + (𝜌(𝑦) − 1)2

𝑥𝑦 ∈𝐸2,2

+  ∑ √(𝜌(𝑥) − 1)2 + (𝜌(𝑦) − 1)2

𝑥𝑦 ∈𝐸2,3

+  ∑ √(𝜌(𝑥) − 1)2 + (𝜌(𝑦) − 1)2

𝑥𝑦 ∈𝐸3,3

 

                 =  ∑ 1

𝑥𝑦 ∈𝐸1,2

+ ∑ 2

𝑥𝑦 ∈𝐸1,3

+ ∑ √2

𝑥𝑦 ∈𝐸2,2

+  ∑ √5

𝑥𝑦 ∈𝐸2,3

+  ∑ √4

𝑥𝑦 ∈𝐸3,3

 

                 = 65.30 
 
Similarly, the topological indices of the other Drugs are calculated and listed below: 



 

 

Table 2: Computed topological indices of drugs 
 Name of the drug 𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟒 𝑻𝟓 𝑻𝟔 𝑻𝟕 𝑻𝟖 𝑻𝟗 𝑻𝟏𝟎 

Avapro 174 210 7.71 870 450 25.30 78.81 16.59 125.06 75.45 

Benazepril 153 176 7.33 731 379 23.52 70.79 15.50 110.34 65.30 

Enalapril 130 148 6.22 622 326 20.14 60.10 13.14 94.34 56.58 

Losontron 163 188 7.75 781 405 24.87 75.25 16.40 117.54 69.83 

Tritace 151 176 7 735 383 22.89 69.24 14.91 109.26 65.89 

The computed topological indices and the theoretical properties are undergone a 
diagrammatical illustration below. The heat map is plotted in Figures 2 and 3. The Box plot is 
plotted in Figures 4 and 5. The line graphs are plotted in Figures 6 and 7. The scatterplot of 
the data are plotted in Figures 8 and 9. The different plotting of the data helps us to visualize 
the variations and similarities in the data and also helps us to understand the behavior of the 
chemical structures and their properties.   

 
Figure 2: The heat map of topological indices 



 

 

 
Figure 3: The heat map of chemical properties 

 
 

Figure 4: The Line graph of topological indices 
 



 

 

 
Figure 5: The Line graph of chemical properties 

 

 
Figure 6: The Box graph of topological indices 

 



 

 

 
Figure 7: The Box graph of chemical properties 

 
 
 

 
Figure 8: Scatter plot of topological indices of drugs 



 

 

 
Figure 9: Scatter plot of chemical properties 

 
5. STATISTICAL ANALYSIS 
The mean, median and standard deviation of the computed topological indices are found 
and listed in Table 3 and Table 4: 

 
Table 3: Mean, Median and Standard deviation of the chemical properties 

Mean: 
Avapro: 173.79 
Benazepril: 182.51 
Enalapril: 158.16 
Losontron: 178.04 
Tritace:  169.01 

Median: 
Avapro: 91.3 
Benazepril: 101.2 
Enalapril: 93.8 
Losontron: 99.05 
Tritace: 96.05 

Standard Deviation: 
Avapro: 195.95 
Benazepril: 208.63 
Enalapril: 176.64 
Losontron: 99.05 
Tritace: 96.05 

 
Table 4: Mean, Median and Standard deviation of the topological indices 

Mean: 
Avapro: 203.292 
Benazepril: 173.178  
Enalapril: 147.652 
Losontron: 184.864 
Tritace: 173.419 
 

Median: 
Avapro: 101.935 
Benazepril: 90.565 
Enalapril: 77.22 
Losontron: 96.395 
Tritace: 89.25 
 

Standard Deviation: 
Avapro: 254.7583 
Benazepril: 213.255 
Enalapril: 181.737 
Losontron: 96.395 
Tritace: 89.25 
 

 
The computed topological indices are undergone regression analysis and the results are 
listed below:  
Regression equation of Avapro: 
 y = -0.17x + 233.36 
 y = -0.15x + 199.15 



 

 

 y = -0.12x + 169.28 
 y = -0.16x + 212.53 
 y = -0.15x + 198.93 
Regression equation of Benazepril: 
  y = -0.14x + 228.99 
  y = -0.12x + 195.47 
  y = -0.10x + 166.15 
  y = -0.13x + 208.60 
  y = -0.12x + 195.24 
 Regression equation of Enalapril: 
   y = -0.19x + 232.88 
   y = -0.16x + 198.73 
   y = -0.13x + 168.92 
   y = -0.17x + 212.08 
   y = -0.16x + 198.51 
 Regression equation of Losontron: 
   y = -0.14x + 228.15 
   y = -0.12x + 194.77 
   y = -0.10x + 165.56 
   y = -0.13x + 207.86 
   y = -0.12x + 194.54 
 Regression equation of Tritace: 
  y = -0.18x + 233.77 
   y = -0.16x + 199.49 
   y = -0.13x + 169.57 
   y = -0.17x + 212.90 
   y = -0.15x + 199.27 

5. CONCLUSION 
In this article, the QSPR study of the drugs used in the treatment of diabetic nephropathy are 
studied. The topological indices of these drugs are calculated and compared with the 
theoretical properties of the drugs. The diagrammatic visualization of the data are plotted in 
Box graph, Line graph and in scatter diagram. The theoretical values are compared with 
these topological indices and the regression equations are found. The relations between the 
properties of chemicals in terms of topological indices are given as regression equations. 
These equations contain vital information about the structural relationship and the numerical 
invariants and the properties in terms of numerical values and may be used for drug design.   
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