
 

 

Original Research Article 
 
Modeling and Optimization of Photocatalytic Degradation of Methylene Blue 
via TiO2-CuO/HApCatalyst: The Use of Response Surface Methodology and 

Artificial Neural Network 
 
 
Abstract 
This study is focused on the evaluation of the photocatalytic activity of TiO2-CuO/HApcatalyst as 
prepared by sol-gel method and characterizedusing FT-IR, XRD, SEM-EDX for the degradation of 
Methylene Blue (MB) from its aqueous solution under sunlight. The effects of MB concentration,contact 
time, and catalyst dosage on the degradation of MB were studied using the central composite design 
(CCD) method.The Response Surface Methodology (RSM) and Artificial Neural Network (ANN) modeling 
techniques were also applied to model the process and examine their corresponding predictive and 
performance capabilities of the response (degradation efficiency). 
The RSM optimized conditionsshow that TiO2-CuO/HAp achieved 99.62% MB degradation in the 
designed photocatalytic system that was set under sunlight at 20 mg/L methylene blue concentration, 0.15 
g TiO2-CuO/HAp dosage and2.5hours (150mins) irradiation time. On the other hand, optimization with 
ANN study revealed that the predicated model was perfectly fitted with the experimental data.The process 
was also modeled using the adsorption isotherms and kinetic models.The degradation of MB was best 
described well by the Pseudo-Second-Order model with (R2=0.995) and the equilibrium data for the 
photodegradation process fits well with the Langmuir isotherm model (R2=0.996). The results of our 
study will help communicate the most effective and economical options for the removal of dyes in 
wastewater 
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1.    Introduction 

“Dye effluents, especially synthetic dyes discharged from many dye-utilizing industries are harmful to the 
environment and living things at large”[1]. “It has been estimated that of about 100,000 commercially 
available dyes, 700, 000 tonnes of these coloring compounds are manufactured annually” [2-3]. “The 
continuous release of these untreated effluents from industries such as the textile, paper, leather, plastics, 
as well as pharmaceutical industries into environmental water bodies,is becominga growing concern to 
environmentalists and the ecosystem at large”[4].“A quite good number of these water-soluble organic 
substances, dyes,heavy metals, pharmaceutical products, pesticides e.t.c contaminate the water bodies or 
the environment they are being discharged, and the report reveals that the dye effluents released from 
many of these dye-utilizing industries are quite large and usually result into a significant environmental 
issue” [3,4]. “In particular, the textile industry among other dye-utilizing industries is said toutilize the 
highest number of dyes at approximately 10,000 tonnesper year globally”[3,5].“Methylene blue is a 
typical cationic dyewith a complex aromatic structure that has been in use for many years by several 
industries, though not regarded as acutely toxic but can have various harmful effects on human beings and 
as well as aquatic animals, especially on inhalation, it can give rise to short time difficulty in breathing 
while ingestion through the mouth can cause a burning sensation, nausea or vomiting” [2]. Thus, “the 
removal of dyes from aqueous effluents is necessary and itconstitutes one of the most significant efforts 
by the environmentalist. In addition, the wastewater treatment uses several methods for dyes elimination 
including physical (e.g adsorption, membrane separation, coagulation-flocculation, ion exchange e.t.c), 
Chemical (e.g ozonation, advanced oxidation process, Fenton reagent e.t.c) biological (e.g aerobic and 



 

 

anaerobic degradation processes, bacterial and fungal biosorption, algae e.t.c) and electrochemical 
methods” [6-8]. “However, despite the current efforts with these methods, they are still unable to 
completely remove methylene blue compounds and some other dissolved organic contaminants in 
wastewater because some low biodegradable compounds remain resistant to these conventional 
elimination techniques” [9].Hence, it is important to develop affordable alternatives and more cost-
effective methods.  
“Currently, the photocatalytic degradation of pollutants in aqueous solutions using a light source is a 
more potentialtechnique owing to its high efficiency, economical, non-toxicity, and eco-friendly process” 
[9-11].“In the last few decades, heterogeneousphotocatalysis with different semiconductor (SC) oxides 
(e.g., TiO2, ZnO, Fe2O3, SrO2, WO3, CeO2, ZrO2,etc.) has been an object of interest in the field of 
industrialwastewater treatment [12]. The principle is based on the formationof reactive species which are 
the photo holes (h+) and/or hydroxyl radicals (OH) upon the irradiation of the semiconductor oxide with a 
photon source (hv) higher than the band gap energy of SC oxide.The generated reactive species can 
undergo complete mineralization of the organic pollutants (e.g. dyes) into CO2and H2O” [13]. Therefore, 
the anatase form of TiO2 was found to be one of the most used photoactive SC oxides owing to its low 
cost, safety, photochemical activity, and stability” [12,14].  
“Nevertheless, due to its bandgap, the photocatalytic activity of TiO2 could be further enhanced by doping 
it with heteroatoms such as (N, C, S), transition metals (Fe, Co, V, Cr, Ni) and recently by the formation 
of heterojunctions between anatase TiO2 and a semiconductor oxide with smaller band gap energy such as 
(CuO, WO3e.t.c) which can act as a sensitizer”[12].Thus,“TiO2 anatase is an n-type semiconductor with a 
larger band gap energy of 3.2 eV while CuO is a p-type semiconductor having a narrow band gap energy 
of 1.2 eV. A mixture of such semiconductor oxides exhibits good photocatalytic activity due to p–n 
heterojunctions that limit the recombination of charge carriers” [12,15]. Hence, this present study reports 
the preparation ofCuO–TiO2-supportedhydroxylapatite composites developed as catalyst by sol–gel 
method for the degradation of methylene blue. 
“In past studies, the artificial neural network (ANN) has been used in various designs in the science and 
engineering fields and has given promising results as regards the prediction of output variables due to the 
use of approximation function to map complex nonlinear data”[9]. “ANN has also been used to remediate 
many environmental issues which include the degradation of pollutants”[16]. 
In this present study, two different modelling and optimization systems which are RSM and ANN 
methods were used to optimize the methylene blue degradation process parameters and to establish a 
predictive model comprising three independent variables. The optimized parameters are methylene blue 
concentration, catalyst dosage, and irradiation time. These parameters will further be used for kinetic, 
equilibrium, and thermodynamic analysis studies. Different kinetic and isotherm models were applied to 
fitthe experimental data while thermodynamic analysis was also used to predict the nature of the 
photodegradation process of methylene blue. 
 
2. Materials and methods 
2.1. Chemicals and Reagents 
Methylene blue (Sigma Aldrich) with the chemical formula C16H18ClN3S.3H2O and its molecular weight 
of 319.86 gmol-1 (the analysis done at wavelength 664 nm; Fig.1shows the chemical structure)Titanium 
dioxide (TiO2) nanoparticles (purity ≥ 99.5%),CuSO4.5H2O(purity≥99%),NaOH(purity=98%), 
Na2CO3(purity=98%) and HCl (purity = 95%), Acetone(purity ≥ 95%)were used for the degradation 
studies. All chemicals are analytical grade and were used in the pure form as received with no further 
purification. 
 



 

 

 
Fig. 1. Chemical structure of methylene blue 
 
 
 
2.2. Catalyst Preparation 
 
2.2.1 Synthesis of Hydroxylapatite powder 
Firstly, the bovine bones were boiled in water for 1 hour to ensure deproteinization and easier removal of 
macroscopic adhering impurities. Afterward, the bones were washed and cleaned well with water to 
remove all the attached meat, bone marrows, tendons, and other soft tissues. The bones were then 
immersed in acetone for one hour and thereafter washed with water several times and dried to evaporate 
the absorbed water. 
Furthermore, the dried bovine bones were carbonized at 4000C for 1 hour and then crushed into small 
pieces using a mortar pestle and thereafter milled into smallerparticle sizes using the rotary mill. The 
bovine bones were sieved using 100µm mesh size to ensure uniform particle size.Finally, the sieved 
bovine was calcined at 9000C for 2 hoursto obtain a white color powder ofnatural Hydroxyapatite. 
 
2.2.2 Synthesis of TiO2–CuO/HAp Composites 
 
The preparation of TiO2–CuOsupported Hydroxyapatite was done by a modified sol–gel method; 2.5g of 
Titanium dioxide (TiO2) and 2.0g of Copper Sulphate Pentahydrate (CuSO4.5H2O) was dissolved 
separately each with 25ml of deionized water and later stirred together for 30 minutes. Thereafter, 1g 
ofhydroxyapatite (HAp) was added and stirred continuously with a magnetic stirrer at 300rpm, 800C for 
1hr. A measured amount of 0.25M of Sodium Carbonate solution was also added dropwise to adjust the 
pH of the solution to 10. The dark grey precipitate was filtered, washed with deionized water, and dried at 
800C for 4 hours. Finally, the dried catalyst sample was calcined at 4000C for 3 hrs. 

2.3. Photocatalytic degradation studies 
 
The photocatalytic activity of the as-synthesized samples was investigated through the photocatalytic 
degradation of methylene blue(MB)under solar light irradiation between the hours of 10:00 am and 3:00 
pm. For each batch photodegradation experiment, the degradation of methylene blue was carried out 
considering degradation factors such asinitial dye concentrations(5 to 35mg/L),catalyst dosage(0.05g to 
0.25g), and Irradiation time(1 to 4 hours)using50 ml of the MB solution. Meanwhile, the pH of the 
prepared solutions was adjusted and maintained at 8 by using aqueous solutions of 0.1M NaOH and 0.1M 
HCl at room temperature[17].The desired parameter quantities were set, and the solution was 
continuously stirred for 60 min under dark conditions to attainan adsorption-desorption state before 
beingunder sunlight with continuous stirring usinga magnetic stirrer as shown in Figure 2.After the 
degradation experiment, 5ml of the degraded MB solution was withdrawn at different time intervals and 
centrifuged to remove the catalyst whilethe residual MB concentrations were analyzed using UV–Vis 
Spectrophotometer at λmax =664 nm.The MB degradationwas estimated through the following Eq. (1): 
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Furthermore,the amount of MB adsorbed on TiO2-CuO/HAp catalyst, qe was obtained using Eq. 2 as 
follows. 
 
݁ݍ = (ି)

ெ
 (2)   

 
 
Where Co and Cfrefer to initial and final concentrations of methylene blue at the time (t), Ce is the 
equilibrium concentration of MB (mg/L), V is the volume of the solution (L) and M is the amount of 
catalyst used (g). 
 

 
 
Fig. 2: The synthesis and Photocatalytic process of TiO2–CuO/HAp Catalyst 
 
2.4. Experimental design by RSM method 
 
Response Surface Methodology (RSM) involves the use of statistical and mathematical approachesto 
analyze the importance of different process variables. DesignExpert Software (DES) (v12.0) was used to 
analyze the response of different independent parameters. 
To optimize the operating conditions for maximum methylene blue degradation performance. Three 
independent factors including (i) MB concentration (ii) Catalyst dosage and (iii) Irradiation timewere 
fixed. The design is composed of three levels: low level or minimum (referred to as -1), centralreferred to 
as 0, and high level or maximum (referred to as +1) for all experimental variables.Table 1shows the 
operating levels andindependent variables evaluated in the study while Table 2shows the 20 experimental 
runs generated using CCD of RSM.These 3independent factors were represented as A, B,and C for MB 
concentration, Catalyst dosage, and Irradiation timerespectively. 
The response, which is the degradation efficiency from the influence of each process variable,was 
determined accordingly. A quadratic modelcorrelating all the processvariablesconsidered with the 



 

 

responsewas developed to fit the experimental results. The full quadratic model is given below in 
Equation 3: 
 
ܻ =b0+ b1A + b2B + b3C +  b12AB +  b13AC +  b23BC +  b11A2 +  b22B2 +  b33C2   (3) 
 
Where Y is the predicted output response (degradation efficiency); A is the initial MB concentration 
(mg/L); B is the catalystdose (g/L), and Cis the Irradiation time(hours). Meanwhile, (b0,b1, b2, and b3), 
(b11, b22,andb33), and (b12, b13, and b23) are the constant regression coefficientsfor the linear, 
interaction,and quadratic effects, respectively. 
The analysis of variance (ANOVA) was used for the evaluation of the adequacy of the model developed 
and the statistical significance of the regression coefficients likewise Fisher’s F-value was also used to 
examine the significance of theregression coefficients. Also, the coefficient of correlation (R2) value was 
compared to the adjusted(R2) value to check the adequacy of the model. A three-dimensional (3D) surface 
contour plot of the independent variables with the interactive effects on the corresponding responses was 
made using the Design expert (V12.0) to find the optimum values of the independent variables. Finally, 
the optimumvalues of the independent variables were determined using the same software. 
 
 
 
 
 
Table 1:  
Ranges of process parameters for the selected degradation factors  
 

Variables (Unit) Factors      Levels 
-1 +1 

Dye Conc. (mg/l) A 5 35 
Catalyst Dosage 
(g) 

B 0.05 0.25 

Time (hrs) C 1 4 
 
 
2.5. Artificial Neural Network Modelling 
 
ANN has been of much interest in the modeling field and as a reliable computing method due to its ability 
to imitate the learning skills of biological cells or the human brain and its ability to learn more complex 
processes [18]. 
The Artificial NeuralNetwork (ANN) was also used to predict the output responses using MATLAB 
2021b software to compare the responses generated by the CCD with the actual experimental 
values.TheNeural Fitting app (nftool) was used to select data, create, and train a network in the MATLAB 
software. “The model parameters aredescribed as such; The feed-forward neural network witha back 
propagation method was used for the model development, and the training of the network was also done 
usingthe Levenberg-Marquardt Algorithm (LMA). The input layer will comprise three (03) neurons 
which are concentration (mg/L), dose (grams), time (hours), and different hidden layers of (1-30) neurons 
was tested for optima number of neurons while the output layer comprises one (01) neuroni.e. MB 
degradation Percentage (%).Finally, the mean square error (MSE)and the prediction performance 
wereevaluated using regression analysis coefficient (R2), RMSE, and AARE”[9, 21]. 
 
 
3. Results and discussions 



 

 

 
3.1 Characterization of the Synthesized TiO2-CuO/HAp catalyst 
3.1.1X-Ray Diffraction (XRD) Analysis 
 
The structural analysis of thehydroxylapatite (HAp), CuO, TiO2 and the synthesized TiO2-CuO/HAp 
composite determined by X-ray diffraction are presented in Fig. 3. From Fig. 3(a) Prominent peaks 
observed at 2θ=26.50,32-350 are attributed to the presence of the hydroxylapatite group [20] while Fig. 
3(b) shows high peaks at 2θ=35.20-380indexing to CuO [42]. Similarly, Fig. 3(c) reveals the sharp peaks 
of Titanium. Finally, in Fig. 3(d) the XRD of the composite withdiffraction peaks at 2θ values of 
25.30,37.80,47.60,550,62.40and 69.10 [19]can be indexed to anatase phase of TiO2while other prominent 
diffraction peaks at 2θ=35.50,370,48.370 can be attributed to the CuOstructure and the discernible peaks at 
the 2θ=26.30,32-350 and 46.20 – 560 are assigned to hexagonal phase of HAp [20]. This proves the presence 
of TiO2, CuO, and HAp in the synthesized catalyst. 
 

 
 

Fig. 3:  The XRD patterns of (a) HAp (b) CuO (c) TiO2 (d) TiO2-CuO/HAp 
 

3.1.2Scanning Electron Microscope (SEM) Analysis 
 
Fig. 4 shows the morphology of the TiO2-CuO/HAp asanalyzedvia scanning electron microscope (SEM). 
The SEM image shows a porous particle witha spherical shape, a relatively smooth flower-like 
surfacethat ishighly agglomerated into larger sizes[44]. 
 
Fig. 5 demonstrates the elemental composition as revealed by the EDS to be Cu, P, O, and Ti exist 
in TiO2-CuO/HAp composite, and the Ca/P ratio as determined from the quantitative analysis of the 
atomic concentration was 1.67 [20]. 
 
 



 

 

  

 

 
Fig. 4: SEM micrographs of TiO2-CuO/HAp Catalyst 
 

 
 

 
Fig. 5:The EDS Spectrum of the Synthesized TiO2-CuO/HAp Catalyst. 
 
3.1.3 Fourier Transform Infrared Spectroscopy (FTIR) Analysis 
 
The Fourier Transform Infrared Spectroscopy (FTIR) Analysis was used to identify the surface functional 
groups present in TiO2-CuO/HAp particles. Fig. 6 shows the FTIR spectra of the samples of HAp and 
TiO2-CuO/HAp particles before and after the photodegradation experiment. 
 Fig. 6(a) reveals a sharp band at 1025 cm-1 which is associated with the phosphate group while the spread 
band of (C-O) at wave number 1350-1480 cm-1   is associated with the carbonate groups likewise the 
stretch band at 3250-3570 cm-1 signifies the presence of the hydroxyl group which confirms 
Hydroxyapatite (HAp). 
Fig. 6(b) shows the presence of the phosphate group (ܲ ସܱ

ଷି) at 1025-1090 cm-1 band and the O-H broad 
band observed at around 3200-3500 cm-1 proves the presence of hydroxide group in the composite. 
Similarly,after the photodegradation of MB (Fig. 6c), the intensities of the bands wereshifted from 1025 



 

 

cm-1, 1350.65 cm-1, and 3375.20 cm-1to 1024.10 cm-1, 1350.32 cm-1, and 3374.89 cm-1for phosphate, 
carbonate,and hydroxyl group respectively.This shift in the peaks shows the binding of dye ions on the 
catalyst. 

 

Fig. 6: (a) FTIR of pure HAp(b) FTIR of TiO2-CuO/HAp sample before photodegradation experiment 
(c)FTIR of TiO2-CuO/HAp sample after photodegradation experiment  

3.2 RSM Modelling 
 
3.2.1. Statistical analysis and model development 

A study using RSM was performed to optimize the methylene blue degradation over the design level of 3 
different variables and a total number of 20experimental runs.The photocatalytic experiments were 
performed according to Table 2. The generated data wereanalyzed using three levels of CCD of the 
Design Expert version 12.0 software and then interpreted while repeated runs were also used to confirm 
the experimental errors.The response is the percentage of methylene blue degradation.For a specific 
experimental run, the actualresponse values obtained were close to the predicted values (Table 2).The 
experimental investigations were described by a quadratic model with a design expert thatprovided the 
below regression as shown in Eq. 4 in both actualfactors for methylene blue degradation (%). 

MB Degradation Percentage(Y) = 75.0505 + 0.914199*A + 22.70501*B + 12.07893*C + 1.113333* 
A*B - 0.08944*A*C - 3.26667* B*C - 0.02543*A2 - 165.82* B2- 1.77745* C2(4) 

Where A= Dye concentration, B= Catalyst Dosage, and C= Irradiation Time. 

Eq. 4 predicted the experimental results of MB degradation (%)as described also in Table 2. The accuracy 
and significance of the suggestedmodel were analyzed by ANOVA. The results show an excellent 
agreement between the experimental and predicted values. 
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Table 2. Experimental design matrix for MB degradation on TiO2-CuO/HAp catalyst and response 
 

 
3.2.2 Model fitting and ANOVA analysis 
 
Table 3shows the ANOVA results for the developed response surface quadratic model. It indicates the 
relationship and statistical suitability of the quadratic model developedfrom the RSMwhich is for the 
representation of the process of MB photodegradation on TiO2-CuO/HAp catalyst during the study.The 

Runs A:Dye 
Concentration 
(mg/l) 

B:Catalyst    
Dosage (g) 

C:Irradiation 
Time (hour) 

                                         Response  

                                       Degradation (%) 

Experimental     RSM 
Predicted 

    ANN 
Predicted 

1 35 0.05 1 86.42 85.57 86.25 

2 35 0.05 4 86.16 85.26 86.12 

3 20 0.318179 2.5 92.29 92.13 91.89 

4 5 0.25 1 85.55 84.72 85.47 

5 45.22689 0.15 2.5 79.53 79.35 79.56 

6 5 0.05 4 97.91 97.42 97.18 

7 20 0.15 2.5 99.89 99.57 99.23 

8 20 0.018179 2.5 98.76 98.38 98.85 

9 5 0.25 4 89.58 90.51 90.36 

10 5 0.05 1 89.03 89.67 89.38 

11 20 0.15 5.022689 91.04 90.56 91.13 

12 35 0.25 1 86.73 87.30 86.96 

13 5.22689 0.15 2.5 96.5 96.37 96.76 

14 20 0.15 2.5 99.92 99.56 99.87 

15 20 0.15 0.022689 86.02 86.40 86.56 

16 20 0.15 2.5 98.97 99.57 99.89 

17 20 0.15 2.5 99.98 99.58 99.86 

18 20 0.15 2.5 99.98 99.56 99.82 

19 20 0.15 2.5 98.5 99.57 99.89 

20 35 0.25 4 85.60 85.04 85.57 



 

 

suggested response model's efficiency degreewas determined by P-value, R2, F-value, and adjusted R2. 
The model Fisher’s F-value of 129.01implies that the model is significant. Moreover, the P-values less 
than 0.050 indicate thatthe model terms are significant. Hence, A, B, C, AB, AC, A2, B2,and C2 are the 
significantmodel terms while lack of fit withan F-value of 2.52 implies that the Lack of Fit is not 
significant. The F value of 83.52 shows that MB concentration has the most influence as an individual 
parameter on MB degradation. Furthermore, the proposed model fits the experimental results which can 
be confirmed by the correlation coefficient (R2) value which is near 1. In this study, the R2 value (0.9915) 
which is close enough to the adjusted R2 value (R2

adj=0.9838) has a reasonable agreement. Lastly,the 
experimental work reliability and accuracy could be explainedby a coefficient of variance (CV) of 
0.9225% (< 10%) [22].Fig. 7 (a) reveals a good agreement ofactual values with predicted values for MB 
degradation, the actual values were relatively distributed closely to the straight line which could be a 
show of the adequacy of the regression model.Furthermore, Fig.7(b)shows the normal probability plotting 
of the studentized residuals. It can bededuced from the graph that many data points were closely 
associated along the straight-line region with no much deviation from the line. Hence, thenormality 
assumption was satisfied from the residual plotwith no individual residuals passing the residual 
variance[17,23].Moreover, Fig. 7 (c) and Fig. 7 (d) showsthe residuals vs. run were a useful diagram for 
understanding variables that may influence the response during experimentation while the plotof residuals 
vs. predicted values was used to test for the acceptance of constant variance. 

Table 3: ANOVA result for the response surface quadratic model 

Source Sum of 
Squares 

Df Mean Square F-Value P-Value  

Model 842.35 9 93.59 129.01 < 0.0001 Significant 

A-Dye Concentration 60.59 1 60.59 83.52 < 0.0001  

B-Catalyst Dosage 20.25 1 20.25 27.92 0.0004  

C-Irradiation Time 25.41 1 25.41 35.02 0.0001  

AB 22.31 1 22.31 30.75 0.0002  

AC 32.40 1 32.40 44.66 < 0.0001  

BC 1.92 1 1.92 2.65 0.1348  

A² 292.91 1 292.91 403.74 < 0.0001  

B² 29.23 1 29.23 40.28 < 0.0001  

C² 227.08 1 227.08 313.01 < 0.0001  

Residual 7.25 10 0.7255    

Lack of Fit 5.19 5 1.04 2.52 0.1666 not significant 

Pure Error 2.06 5 0.4121    

Cor Total 849.60 19 

 

    

R²= 0.9915 
Predicted R² = 
0.9225Adjusted R² = 0.9838 
Adequate precision 

      



 

 

 

 

 

 
Fig. 7: (a) predicated vs actual, (b) Normal plot of residual, (c) residual vs run, and (d) residual vs 
predicated for percentage methylene blue degradation. 
 

3.2.3Response surface plots 
 
Three-D response surface plots can be explained as a graphical depiction of theregression model equation 
used to explain the optimum conditions offactors and are mostly applied to establish the type of 
interactions between variables used and for enhanced understanding for maximum efficiency. 
Fig.8(a–b) represents the effect of the three independent factorswhich are the concentration MB, 
Irradiation time, dose and the responseapplied. In each 3D response surface plot, onefactor was fixed at 
the corresponding zero level whilethe remaining two factors were changed within the experimental 
ranges.Fig 8 (a) represents the influence of catalyst dosage and concentration on methylene blue 
degradation. From the result, an increase in catalyst dosagefrom (0.05 to 0.15) and concentration 
increases the efficiency smoothly to (97.5%) and then decreases with increasing the dosage and 
concentrationfrom (0.15 to 0.25) which may be attributed to the surface of the active sites getting 
saturated more with the catalyst particles thereby decreasing the reaction rate and mass transfer 
[9].Similarly,Fig. 8(b) represents the influence of time and dosage on MB degradation. The irradiation 
time has a significant effect on the degradation rate, as shown in the plot, an increase in the irradiation 
time up to 2.5 hoursincreases the degradation efficiency while a further increase in the time to 4 
hoursleads to a decrease in the efficiency.The increase in MB degradationefficiency with TiO2-
CuO/HApcatalyst dose and dosage initially is due to the availability of more active sites for the trapping 
of the dye and the presence of enough time for the adsorption in darkness and photodegradation process 
thereafter in the light [45]. 

=33.5585 
C.V. (%) = 0.9225 



 

 

 
 

 
 
Fig. 8: The response surface plot of methylene blue degradation as the function of (a) Dosage and 
concentration (mg/L) (b) Time (Hours) and dose (g/L) 
 
 
3.3    ANN Modelling 
 
The Artificial Neural Network (ANN) was successfully applied to predict the system’s behavior and 
thedegradation (%) of methylene blue.The multilayer perceptron (MLP) network was developed in 
MATLAB (The Works Inc. 2018b) using theback propagation algorithm to train the feed-forward neural 
network. The Levenberge–Marquardt Algorithm (LMA) was also used because it has the least MSE. The 
Neural Fitting app (nftool) was used to select data, train the network, data validation, and test.  
The input data for training were obtained from theexperiments via the CCD with three input neurons 
which are theindependent variables (initial MBconcentration (mg/L), Irradiation time (hours), TiO2-
CuO/HAp dose (grams), Different number of neurons in the range of 1-30 was tested in the hidden layer, 
the network with 20 neurons in hidden layer had the best results of minimal error (RMSE=0.56) and 
higher R2 value (R=0.9984) for the training and (R=0.9939) for testing data. Therefore, in this study, a 
three-layeredfeed-forward-back propagation neural network (3:20:1) was used for the modeling of the 
degradation process and the network was trained after some iterations. The data set from the total runs 
was divided into 70% which was used fortraining the network while the remainingdata was divided into 
15% for the validation and 15% for the testingof the network. The regression analysis coefficient (R2), 
root mean square error (RMSE), and absolute average relative error (AARE) were also usedin evaluating 
itsprediction performance. 
 
The mathematical expression of all these parameters is defined inEqs. (5–7). Furthermore, Table 4 shows 
the predicted responses from the ANN modeling technique. Finally, Fig. 9 shows the linear fit model 
obtained by the plot of the ANN training, testing, and validation outputs, Y versus the targets T, the 
values of R2 for each of the outputs are shown on the plots. An overall regression coefficient of 
R2=0.9976 was obtained which is close to unity indicating a better relationship of the data. 
The linear fit model obtained from the plot of the ANN validation and Targets, T which was used to 
predict the ANN model output responses was also given by the respective output equations on the plots 
(Fig.9). 
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Where PRiis the predicted values for either ANN or RSM, OBiisthe experimental/observed values, n is 
thenumber of samples, Pm is the average values, Pi is the predicted values obtained either from ANN or 
RSM and Oi isthe experimental/observed values. 
 

 
Fig. 9.     The MATLAB interphase for ANN training, testing, and validation 
 
 

3.4 Evaluation of RSM and ANN models and Validation 
The comparison of ANN and RSM for the modeling of methylene blue degradation was made based on 
some parameters such as R2, RMSE, and AARE. The ANN model has a higher value of R2 and close to 1 
than the RSM while the RMSE and AARE values are also lower. The results of the comparison of these 
parameters (R2, RMSE, and AARE) for ANN and RSM models as calculated by equations (5-7) can be 
seen in Table 4. 



 

 

 

 

Table 4: Performance parameters as obtained for ANN and RSM models 
 
Parameters        ANN        RSM 
        R2       0.9973       0.9915 
      RMSE 0.4980       0.6100 
AARE 0.0013 0.0245 
 
For a well-fitted model, the values of R2 must be close to 1, thevalues of RMSE must be close to zero 
while values of AARE must also be small as possible. It should be noted that larger values of these 
AARE and RMSE mean larger chances of errors in the respective predictions. 
The predicted ANN model was well-fitted to the experimental data more than the RSM model-based 
prediction becausethe ANNmodel was able to capture the nonlinearities of theexperimental data better 
than the RSM model. Hence, the prediction efficiency and performance of ANN viathe neural network 
has a better accuracy for the modeling of photocatalytic degradation of methylene blue as compared to 
RSM which can be associated with its universal capability. 
For model validation, the optimal conditions of the three process variables which aremethylene blue 
concentration, time,and dosefor degradation wereinvestigated basedon the desirability function through 
the RSM technique. According to the optimization result, the optimalconditions for maximum methylene 
blue degradation efficiency (99.62%) wereestablished to be, the irradiation time of 2.5hours (150 mins), 
TiO2-CuO/HAp dose of 0.15 g, and initial methylene blue concentration of 20 mg/L with the desirability 
of 1.00 aspresented in Table 5. The good agreement between the predicted andexperimental results 
confirms model validation tosimulate the methylene blue degradation. 
 
Table 5: The Optimum value of process parameters and their experimental conditions 
 
 Methylene blue      

degradation (%) 
 

Variables Optimum 
Values 

Predictive Experimental Desirability 

 
Time 

 
2.5hrs 

 
99.50 

 
99.62 

 
1.00 

Dose 0.15g    
Concentration 20mg/L    
 
 
3.5     Reaction kinetics study 
The reaction kinetics of photocatalytic degradation showsthe rate of pollutants uptake onto the 
photocatalyst. It describes the adsorption kinetics of solutes on a solid surface and as well controls 
theequilibrium time for reaction [24].The various kinetic models engaged in this study which are 
thepseudo-first-order, and pseudo-second-order models [25] as well as the intraparticle diffusion kinetic 
model for the diffusion mechanism [26] are presented below.  
 
3.5.1 Pseudo-first order kinetic model 
 
The Lagergren equation is the earliest known model describing the adsorption rate in solute-adsorbent 
systems and is widely used for the pseudo-first-order(PFO) kinetics.Fig. 10(a) describes the Lagergren 



 

 

PFO model of the photocatalytic degradation kinetics of methylene blue usingTiO2-CuO/HAp. The 
Lagergren (Pseudo-first order)equation is defined in Eq. (8)  

log(ݍ − (௧ݍ = ݍ݈݃ −	
భ௧
ଶ.ଷଷ

(8) 

Where qe and qt (milligrams per gram) are the amounts of MB adsorbed or adsorption capacity at 
equilibrium and at any time t (min) respectively.The k1 values which is the rate constant of pseudo-first-
order adsorption are obtained from the slopes of linear plots of log (qe-qt) versus the time t[27,28]. 
The plots were found linear with good correlation coefficients (R2= 0.9145) for the pseudo-first-order 
kinetic model and the results from the linear curve of the plot were analyzedand other parameters are 
presented in Table 6. 
 
3.5.2. Pseudo-Second order kinetic model 
 
The pseudo-second-order (PSO) kinetic model was also used to describe the adsorption kinetics of MBon 
TiO2-CuO/HAp catalyst as shown in Fig. 10(b). The pseudo-second-order kinetic equation is expressed 
as; 
 
௧


= ଵ
మమ

+ 	 ௧


  (9) 

 
WhereK2 is the pseudo-second-order adsorption rate coefficient (g/mg min), qe and qtremain the 
adsorption capacity at equilibrium (mg/g) and at time t (mins) respectively. Fig. 10(b) shows a linear plot 
of qt vs t which gave a correlation coefficient R2 with other values of constants (Table 6) as obtained from 
the slope and intercept of the plot [27-29].Finally, from the results of the reaction kinetic plots, the 
pseudo-second-order fitted the experimental data well, moreover,the correlation coefficient, R2 values for 
the pseudo-second-order model (Table 6 and Fig. 10b)shows excellent linearity and close to unity(R2= 
0.9950)than that of the pseudo-first-order model (R2= 0.9145). This suggests to us that the degradation of 
MB using TiO2-CuO/HApfollowed the pseudo-second-order rate expression well andis chemisorption in 
nature [35,17]. 

3.5.3. Intraparticle diffusion kinetic 

The intraparticle diffusion model as proposed by Weber and Morris was also used in the analysis of the 
adsorption kinetic i.e. the diffusion mechanism of the adsorbate through the solution[30]. Investigation of 
rate controlling step is considered as an important factor in a photocatalytic degradation process.Hence, 
the photo-degradationprocess of pollutant molecules over the surface of the photocatalyst is known to 
involve three steps: (1) mass transfer of pollutant/dye across theexternal boundary layer (film or external 
diffusion) (2) the intraparticle diffusion along the photocatalyst pores (pore diffusion) and(3) 
photocatalytic degradation at the sites on the surface of the photocatalyst (surface diffusion). 
Usually,either the intraparticle diffusion or film, surface,or the association of more than one of 
thesemechanisms controls the overallphotocatalytic degradation rate [30-32]. The intraparticle diffusion 
rate was described using equation 10; 

qt=Kidݐଵ/ଶ+ C              (10) 



 

 

Where qt is the amount in (mg/g) of MB adsorbed at sorption time t (min), Kid is the intraparticle 
diffusion rate constant (mg/gmin1/2) and the constant C which is related to the thickness of the boundary 
layer can be obtained from the slope and intercept of the plot qt versus t1/2. The kinetic data were 
processedto determine whether the intraparticle diffusion was the rate-limiting step. If the Weber–Morris 
[33] plot of qt versus t1/2 gives a straight line, thenthe sorption process is controlled by intra-particle 
diffusiononly. However, if it exhibits multi-linear plots, thentwo or more steps control or influence the 
sorption process. From the results obtained the values of constant C, the correlation coefficient R2,and 
intraparticle diffusion rate constant Kid are presented in Table 6. Fig. 10(C) shows the linearized form of 
the intraparticle diffusion model, the linear curve of the plot shows the diffusion of the dye through the 
solution to the surface of the catalyst where intraparticle diffusion of the dye on the surface of the catalyst 
takes place alone and hence, the external or film diffusion is assumed negligible in the process [34].  
 
 

 
Fig. 10 (a) Pseudo-first-order (b) Pseudo-second-order and (c) Intraparticle diffusionkinectic models for 
photocatalytic degradation of methylene blue using TiO2-CuO/HApcatalyst

 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
Table 6:  
Kinetic study of methylene blue degradation using TiO2-CuO/HAp Catalyst 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.6     Adsorption Isotherms Study 
 
The adsorption isotherm plays a significant role in any adsorption process by providing information on 
the adsorbent and adsorbate affinity and understanding the degradation or removal mechanisms 
depending on the purpose, especially for a large-scale application. The isotherms help to design suitable 
experimental systems and to also find out any deviation between experimental data and the isotherm 
models. 
In this work, the equilibrium data from the adsorption isotherm experiments were analyzed with 
Langmuir, Freundlich, Temkin, and Redlich-Peterson models. 
 

3.6.1   Langmuir Adsorption Isotherm 
 
The Langmuir adsorption isotherm was used to analyze the experimental data according to the non-linear 
equation represented eq. 11. 
 
ݍ = 

ଵା    
  (11) 

Where Ce= dye concentration at equilibrium (mgL-1); qe = equilibrium adsorption capacity (mg g-1); KL = 
Langmuir adsorption constant (L mg-1); qm = maximum adsorption capacity (mgg-1). Furthermore, a 
dimensionless separation factor called equilibrium parameter RL is also an essential characteristic of the 
Langmuir isotherm which can be expressed as; 

ܴ = 	 ଵ
ଵା	ಽ

 (12)                                   

Model Model Equation Plots Kinetic Parameters 

Lagergren 
Firstorder 

In(qe-qt) = Inqe - K1t 
 

In(qe-qt) Vs t 
 

k1 (min-1) = 0.0371 
qe (mg/g) =30.289 
R2=0.9145 

Pseudo 
Second order 

t/qt=1/k2qe2 + t/qe 
 

 
t/qt Vs t 
 

k2 (gmg-1min-1) = 0.0013 
qe (mg/g) =17.15 
R2=0.9950 

Intraparticle 
Diffusion 

 qt = Kid t1/2 

 

 

 
t1/2 Vs qt 

Kid(mgg-1min-1(1/2)) = 
1.035 
C(mg/g) =1.663 
R2=0.9908 



 

 

 
Where KL remains the Langmuir adsorption constant (Lmg-1) and Ce is the dye concentration at 
equilibrium (mgL-1); the parameter RL signifies the shape or type of isotherm as follows with value of 
RL>1 Unfavorable, RL=1 Linear, 0<RL<1 Favorable, RL=0 Irreversible respectively.  
Fig. 11(a) shows the plot of Ce/qe vs Ce which fitted well with the experimental data to give a linear plot 
with a correlation coefficient of R2=0.9964. The slope and intercept of the plot were used to calculate 
other Langmuir isotherm parameters which include qm=0.9524mg/g, KL=6.195L/mg, and RL=0.01065 
(Table 7). 
 
3.6.2    Freundlich Adsorption Isotherm 

The Freundlich adsorption isotherm model was also used to analyze the experimental data. The model 
equation is given as equation 13; 

ݍ = ܥܭ 
భ
    (13) 

Where qe = equilibrium adsorption capacity (mgg-1), Ce = dye concentration at equilibrium (mgL-1); Kf= 
Freundlich constant (mg/g)*(L/mg)^1/n; n= heterogeneity factor of adsorption sites (dimensionless); A 
straight line graph from the plot of ln (qe) vs ln (Ce) will give a slope equal 1/n and intercept ln (Kf). The 
reciprocal 1/n can have values between 0 and 1, thus when n>1, it is favorable adsorption[43],andwhen 
1<n<10, it is a beneficial adsorption condition[46,47].  

Fig.11 (b) shows a linear plot of ln (qe) vs ln(Ce)witha correlation coefficient of R2= 0.9873. The 
Freundlich parameters were also calculated from the slope and intercept of the curve; thus, 
KF=1.4063mg/g and n=2.50 as shown in Table 7. 

The plot results from the above two models show that the Langmuir isotherm with a higher correlation 
coefficient close to unity fits well with the experimental data than the Freundlich isotherm model. Hence, 
the highercorrelation coefficient value of 0.9964 suggests that the Langmuir isotherm mightbe a more 
suitable isotherm model. It was thus concluded that the adsorptionprocess of methylene blue onto the 
TiO2-CuO/HAp catalyst exhibited a monolayer adsorption process. 

3.6.3         Temkin Adsorption Isotherm 
 
The Temkin isotherm model as represented by Eq. 14was used to fit the experimental data likewise. 

ݍ = ோ்


ln(ܥ்ܣ)   (14) 

Where AT (Lg−1) is the Temkin isotherm constant, b (J mol−1) is a constant related to the heat of sorption 
and R= (8.314 J mol−1 K−1) is the gas constant, T= Temperature (Kelvin). Thus, Fig.11(c) shows the plot 
of qe vs Ln Ce with a correlation coefficient of R2= 0.9719 from which other Temkin parameters were 
calculated from the slope and intercept of the curve. 

3.6.4    Redlich - Peterson Adsorption Isotherm 
 
Redlich-Peterson Isotherm model is an empirical isotherm incorporating three parameters. It combines 
elements from both Langmuir and Freundlich equations; therefore, it is a mix-mechanism of adsorption 
and does not necessarily follow the ideal monolayer adsorption [37]. The model is described by Eq. 15. 
 



 

 

ݍ = ೃು
(ଵାఈೃುେഁ)

   (15) 
 
Where ݁ܥ is equilibrium liquid-phase concentration of the adsorbent (mgl−1) and ݁ݍ is equilibrium 
adsorption (mg g−1),  ܭோis Redlich-Peterson isotherm constant (Lg−1),ߙோ is constant (Lmg−1), ߚ is 
Redlich - Peterson exponent that lies between 0 and 1. It should be noted that at high liquid-phase 
concentrations of the adsorbate, Eq. 15 reduces to the Freundlich equation [38] and when 1=ߚ, it reduces 
to Langmuir equation [39]. 
 
 

ݍ = ೃభషഁ

ఈೃ
   (16) 

 
Fig. 11(d) described the linear plot of ݈݊ܥ /qe Vs ݈݊ܥ  for Redlich – Peterson model, whereby in the 
determination of Redlich-Peterson constants, ߚ is slope and ܭோ is intercept [40,41]. The correlation 
coefficient is (R2=0.9901) and while other parameters from the plot were evaluated and presented in 
Table 7. 

 

Fig. 11 (a)TheLangmuir, (b) Freundlich, (c) Temkin and (d) Redlich Peterson isotherm models for 
photocatalytic degradation of methylene blue using TiO2-CuO/HAp Catalyst 

 
 
 
 
 



 

 

 
 
 
 
 
 
Table7 
Adsorption Isotherms for Methylene Blue Degradation on TiO2-CuO/HAp Catalyst at temperature 298K

4.0      Conclusions 
The photodegradation of methylene Blue (MB) using TiO2-CuO/HApcatalyst was studied. The TiO2-
CuO/HAp was successfully synthesized and characterized with FTIR, XRD, SEM and EDX.The effects 
of different process variables such as Irradiationtime, catalyst dose and initial MB concentration 
maintained at pH=8for the degradation of MB using TiO2-CuO/HAp catalyst were investigated using the 
central composite design (CCD) method. Thecapabilities of the Response Surface Methodology (RSM) 
and Artificial Neural Network (ANN)modeling methods in predicting the output response (MB 
degradation efficiency) were examined and the ANN was found capable of having ahigher prediction 
ability for MB degradation at various operating parameters as compared to the RSM model.Theeffects of 
the process variables and their optimum conditions were determined. Theadsorption data were fitted into 
different isotherms and kinetics models. The ANN model was found to bemore acceptable since it has a 
higher R2 value and lower RMSE and AARE compared to the RSM values even though both can 
beapplied for the prediction of the output (MB degradation efficiency). Optimum MB degradation 
efficiency of 99.62% was
obtained at contact time of 2.5hours (150 min), TiO2-CuO/HAp dose of 0.15g, and MBconcentration of 
20mg/L. The experimental data fitted well with the pseudo-second-order kinetic model and Langmuir 
isotherm than the other models and Isotherms respectively.Hence, from this present study, it can be 
concluded that the prepared TiO2-CuO/HAp can be used for the degradation of MB and the process can 
alsobe optimized. 
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Langmuir qୣ =
q୫KLCୣ

1 + KLCୣ			
 

	Cୣ
qୣ

= 	
1

q୫K
+

Cୣ
q୫

 
Ce/qe vs Ce qm=0.9524mg/g 

KL=6.195L/mg, 
RL=0.01065 
R2=0.9964 

Freundlich 
qୣ = 	KCୣ

భ
 Lnqୣ = LnK +

1
n LnCୣ 

ln qe vs ln Ce KF=1.406mg/g  
n=2.500 
R2= 0.9873 

Temkin qୣ =
RT
b

ln(ACୣ) qୣ = 	
RT
b

LnA + 	
RT
bT LnCୣ 

qe vs ln Ce AT=2.344 L/g  
bT=6.189 kJ/mol 
R2= 0.9719 

Redlich – 
Peterson qୣ =

KୖCୣ
(1 + αୖCeஒ) ܥ

ݍ
= 	

1
ோܭ

+ 	
ோߙ
ோܭ

ܥ
ఉ 

 
ln(Kୖ

େୣ
୯

 -1) Vs lnCୣ 
 
 

β= 0.9890  
 ோ= 1.0069 L/gܭ
 ோ=0.0069 Lmg-1ߙ
R2=0.9901 



 

 

 
 
5.0Abbreviations 

 

 

 

ANN  Artificial neural network PSO Pseudo Second Order    
AOPs Advance Oxidation Process pHPZC pH at point of zero charge 

 
AARE  Absolute Average Relative Error Qe Amount of phenol adsorbed per unit mass of 

adsorbent (mg/g) 
 

AT Temkin isotherm constant (L/g) 
 

Qt Amount of methylene blue adsorbed at any 
sorption time (t) (mg/g) 

b Temkin constant related to the heat 
of sorption (J mol−1) 

qm Langmuir maximum degradation capacity (mg/g) 

C Constant associated with Boundary 
layer thickness 

R Universal gas constant (J/mol K) 

CCD  
Central composite design 
 

R2 Correlation coefficient 

Ce Equilibrium concentration of 
methylene blue (mg/L) 

RMSE Root Mean Square Error 

Ct Instantaneous methylene blue 
concentration, (mg/L) 

RL Separation factor called equilibrium parameter 

Co  Initial concentration of methylene 
blue Concentration  

RSM Response surface methodology 

Cf Final concentration of methylene 
blue Concentration 

T Absolute solution temperature (K) 

DES Design of Experiment Software ܭோ Redlich-Peterson isotherm constant (Lg−1) 

K1  
Adsorption rate constant of Psuedo 
first order kinetic model (g/mg 
min) 

 ோ Constant relating to Redlich-Peterson isothermߙ
equation (Lmg−1) 

K2  
Adsorption rate constant of the 
Psuedo second order kinetic 
models (L/min) 

 Redlich - Peterson exponential ߚ

Kid Intraparticle diffusion rate constant 
(mg/gmin1/2) 
 

PFO Pseudo First Order 

KD The distribution coefficient KF Freundlich isotherm constant related to 
degradation 

KL Langmuir constant related to 
energy required for degradation 
(L/mg) 

N Freundlich exponential coefficient factor 
representing heterogeneity factor of adsorption 
sites 
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