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Original Research Article 

 

Targeting PD-1: A Computational Approach to Discover Small 

Molecule Inhibitors for Cancer Treatment 

Abstract 

Globally, cancer is a major burden of disease threatening human health. To date, immune checkpoint 

inhibitors, which are monoclonal antibodies used as monotherapy or in combination, have revealed 

remarkable clinical success in a wide range of solid tumors and hematologic malignancies. Given the 

limitations of antibody therapies, orally bioavailable small-molecule inhibitors present a viable 

alternative. 

The discovery of new therapeutic drugs is complex, costly, and time-consuming.  Leveraging a 

combination of computational methods can significantly accelerate the drug discovery process, enabling 

the identification of promising drug candidates from the large compound libraries. In the Silico 

Computational study, 30 hit compounds were initially retrieved by pharmacophore-based virtual 

screening. Thereafter, 5 compounds with lowest Gibb's free energy (ΔG) values, namely ZINC85867378, 

ZINC16267039, ZINC64219346, ZINC68604154 and ZINC20576138, have been chosen for further 

evaluation. This study establishes the workflow combining pharmacophore virtual screening, molecular 

docking, and absorption, distribution, metabolism, excretion - toxicity (ADMET) prediction to identify 

possible small molecules that can interact with PD-1. The identified compounds might serve as starting 

points to design potential safe and efficacious molecules in cancer Immunotherapy. Further evaluation is 

necessary to optimize drug properties.  
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1. Introduction  

Cancer is a major burden of disease threatening human health based on its high rates of morbidity and 

mortality [1]. Globally, the number of new cases and deaths due to cancer were estimated to be 19.3 

million and almost 10 million, respectively, in 2020 [2]. There are an estimated 2.3 million new cases of 

breast cancer (12.7%), followed by lung (12.4%), colorectal (10.0%), prostate (7.3%), and stomach 

(5.6%) [2].  

 

Cancer occurs when normal cells undergo a multistage transformation into tumor cells. It has been 

considered that altered metabolism in tumor cells is to facilitate their rapid duplication and growth [3]. 

Sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative 

immortality, and activating invasion and metastasis are essential hallmarks of cancer, among which, 

immune escape is a particularly critical phase of carcinogenesis [4]. The malignant cells escaping from 

immune surveillance can gradually break the balance between the transformed cells and immunity by 

sculpting the tumor immune microenvironment (TIME) [5]. Consequently, the immune system loses the 

potential to recognize and eradicate these kinds of malignant cells and let them form clinically visible 

cancers.   

 

In previous decades, the most common types of cancer treatments were surgery, radiotherapy, and 

chemotherapy[6]. Recent advances in immunotherapy, a type of cancer treatment harnessing the immune 

system to fight cancer, established itself as one of the pillars of cancer treatment improving the prognosis 

of patients with different hematological and solid malignancies. Immune checkpoints, which are a 

plethora of inhibitory mechanisms hardwired into the immune system, are important for modulating the 

duration and amplitude of physiological immune responses in tissues in order to limit collateral tissue 

damage [7]. To date, immune checkpoint inhibitors (ICIs) are monoclonal antibodies that block immune 

checkpoints to augment T-cell–mediated tumor destruction [8]. ICIs in current clinical settings target 

programmed death-1 (PD-1), programmed death-ligand 1 (PD-L1), or cytotoxic T lymphocyte antigen 4 

(CTLA-4) are regarded as breakthroughs in cancer immunotherapy [9-11].  

 

PD-1/PD-L1 pathway regulates the induction and maintenance of immune tolerance in the tumor 

microenvironment. Crystal Structure of the PD-1/PD-L1 Complex is displayed in Fig. 1 [12]. PD-1 (or 

CD279), a 50–55 kilodalton Type 1 transmembrane glycoprotein, is a member of the CD28 family of T-

cell co-stimulatory receptors that include immunoglobulin super family members CD28, CTLA-4, 

inducible co-stimulator (ICOS), and B and T lymphocyte attenuator (BTLA) [13]. This factor was named 

programmed cell death protein 1, because its expression was shown to be enhanced by apoptotic stimuli 
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in two different cell lines (LyD9, a murine hematopoietic progenitor cell line and 2B4.11, a murine T-cell 

hybridoma), and it participates in apoptosis [14]. PD-1 is mainly expressed on activated T cells, B cells, 

monocytes, dendritic cells (DCs), regulatory T cells (Tregs), and natural killer T cells (NKT) [15]. 

 

Fig.1 Crystal Structure of the PD-1/PD-L1 Complex (PDB ID: 3BIK) [12] 

 

Two ligands specific for PD-1 have been identified: PD-L1 (B7-H1 or CD274) and PD-L2 (B7-DC or 

CD273). In tumor cells, both in solid tumors and hemangiomas, PD-L1 is generally upregulated. PD-L1 is 

also expressed on T cells, B cells, macrophages, dendritic cells (DCs), bone marrow-derived mast cells 

and some non-immune cells, hence can thus be regarded as the major PD-1 ligand [16, 17]. The 

expression of PD-L2 is greatly limited to professional antigen presenting cells (APCs) like macrophages 

and DCs. In both murine and human systems, PD-L1 and PD-L2 have been shown to down-regulate T-

cell activation upon binding to PD-1 [18-20]. The absence or inhibition of PD-1 has resulted in the 

development of various autoimmune phenotypes and autoimmune diseases. [21] The interaction of PD-1 

with its ligands PD-L1 and/or PD-L2 are responsible for T cell activation, proliferation, and cytotoxic 

secretion in cancer to degenerating anti-tumor immune responses [22]. (Fig.2) Accumulating evidence 

indicates that the inhibition of PD-1 binding to its ligands promotes an effective immune response against 

cancer cells. 
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Fig. 2. Concept of therapeutic interruption of the PD1-PD-L1 axis to disrupt the tumor cell induced 

downregulation of the T cell mediated cytotoxic immune response [23].  

Currently, more than 3000 clinical trials (phase I–III) of anti-PD-1/anti-PD-L1 antibodies are ongoing. 

Either alone or in combination with chemotherapy and/or immunotherapy for patients with hematologic 

malignancies and solid tumor including NSCLC, esophageal cancer, ovarian cancer, renal cell carcinoma, 

and mantle cell lymphoma etc [24]. The U.S. Food and Drug Administration (FDA) and the European 

Medicines Agency (EMA) have approved several anti–PD-1 (nivolumab, pembrolizumab, and 

cemiplimab)/PD-L1 (atezolizumab, avelumab, and durvalumab) immune checkpoint inhibitors covering 

various cancer indications as monotherapy or in combination with other drugs, have revealed remarkable 

clinical success in in a wide range of solid tumors and hematologic malignancies [25]. In addition, 

toripalimab and camrelizumab were approved by National Medical Products Administration (NMPA) for 

marketing.  

 

There are some limitations associated with the antibody-based therapies, such as immunogenicity, 

immune-related adverse events (irAEs), limited modes of administration (intravenous and subcutaneous), 

low penetration into tissues and high cost. Alternatively, small molecule inhibitors may have advantages 

such as favorable tumor penetration, fewer side effects, easier self-administered, less expensive than 

mAbs etc. Therefore, developing orally bioavailable small molecular inhibitors (usually below 0.5 kDa) 

to block the PD-1/PD-L1 pathway (and other immune checkpoints) has emerged as an important area of 

drug discovery research [26, 27].  

 

During the past several years, many companies, such as Aurigene and Curis, Bristol Myers Squibb 

(BMS), MaxiNovel Pharmaceuticals and Incyte Corporation etc, have discovered a series of peptides and 

small molecules for the inhibition of the PD-1/PD-L1 axis. Currently, most small molecule inhibitors 

targeting PD-1/PD-L1 signaling pathway are still in the early development stage [24]. To our knowledge, 

CA-170 (discovered by Aurigene and Curis) is the first orally peptidomimetic PD-L1 inhibitor entering 

into clinical trials. CA-170 was screened from B7 immunoglobulin superfamily members in a checkpoint 

protein interaction surface simulant library, which could selectively target PD-L1 and VISTA (V-domain 

Ig suppressor of T cell activation) pathways. VISTA (approximately 50kDa) is part of the B7 family of 

immune checkpoint proteins, and shares 22% of the sequence with PD-L1[28]. In multiple preclinical 

models, CA-170 has shown anti-tumor activity[29]. However, some evidences suggest CA-170 does not 

bind to PD-L1 and cannot disrupt PD-1/PD-L1 complex[30]. In the phase II study, CA-170 showed 

antitumor responses in two patients with Hodgkin's lymphoma, and the clinical benefit rate is 68.18%. 

CA-170 was permanently discontinued without any sequalae, suggesting that shorter half-life (6-8 hours) 



 

5 
 

of CA-170 may provide an advantage over longer lasting antibodies, from safety perspective [31]. The 

first non-peptide inhibitor targeting PD-1/PD-L1 interaction was discovered by BMS and was based on 

(2-methyl-3-biphenylyl) methanol scaffold [32]. Using 
15

N-labeled PD-L1 and PD-1 and NMR-based 

antagonist induced dissociation assay (AIDA) assay, Tad A. Holak’s group showed that BMS’s 

compounds bind to PD-L1 and dissociate the human PD-1/PD-L1 complex [33]. MaxiNovel 

Pharmaceuticals discovered a series of PD-1/PD-L1 inhibition molecules based on BMS’s methyl 

biphenyl scaffold with the replacement of benzyl ether moiety using ethenyl or ethynyl linkage [34]. 

Incyte Corporation has also reported several patents based on BMS’s biaryl moiety and launched a 

phase I clinical study using INCB86550 for treatment of solid tumors[34].  

 

The discovery of new therapeutic drugs is complex, costly, and time-consuming.   Nowadays, computer 

aided drug design (CADD) approaches become the most effective methods to discover and develop drugs. 

In CADD workflows, pharmacophore models can identify active molecules against specific 

targets.  Binding affinity of a large-scale compounds can also be evaluated easily by molecular docking 

process [35, 36]. To find new anticancer agents, structure-based pharmacophore models based on 

promising cancer therapy targets (such as glycogen synthase kinase-3, protein kinase B-beta, matrix 

metalloproteinase-2, and histone deacetylase-6) have been used [37, 38]. Pharmacokinetic properties 

(absorption, distribution, metabolism, excretion) and toxicity, referred to as ADME-tox, are also of vital 

importance if a compound is to be clinically useful. ADME-tox profile of drug-like compounds can be 

predict by using CADD process as well [39]. 

 

The aim of this project is to mainly focus on CADD process to predict the possible small molecules that 

can interact with PD-1, and further serve as starting points to design potential safe and efficacious 

compounds in cancer treatment. 

 

2 Materials and Methods   

2.1 Research workflow  

In the current study, a computational approach was used to identify several small molecules interact with 

the crystal structure of PD-1. No statements of approval or informed consent were required for our study 

as we obtained data from an open access database. A research workflow is presented in Fig. 3.  
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Fig. 3:  Research Workflow of predicting small molecules interact with the crystal structure of 

PD-1 as potential therapeutics for cancer immunotherapy 

 

2.2 Protein preparation  

Crystal structures of human PD-1 (PDB ID: 3RRQ) and the PD-1/PD-L1 Complex (3BIK) were obtained 

in PDB format from the RCSB (Research Collaboratory for Structural Bioinformatics) protein data bank 

(www.rcsb.org) [40]. The stereochemistry of the protein structure was analyzed by the PROCHECK tool 

(http://services.mbi.ucla.edu/PROCHECK/) for assessing the quality on the basis of Ramachandran Plot 

[41]. 

 

2.3 Ligand binding site identification 

DoGSiteScorer (freely available on the ProteinsPlus server, https://proteins.plus/), FTsite 

(https://ftsite.bu.edu/) and PrankWeb (https://prankweb.cz/) servers have been used for the identification 

of ligand binding sites on the protein structure.  

 

2.3.1 DoGSiteScorer 

DoGSiteScorer[42] is a grid-based approach which uses a difference of gaussian filter to detect potential 

binding pockets. A druggability score between 0 and 1 is reported. A higher score indicates that a pocket 

https​:/proteins.plus/
https://ftsite.bu.edu/
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is more likely to be druggable. PDB code has been entered into the search box on the ProteinsPlus server 

and then press the “Go” button. Next, choose DoGSiteScorer and press the “Calculate” button for running 

DoGSiteScorer with default settings for the results.  

 

2.3.2 FTSite 

FTSite is an energy-based approach[43] by using a solvent mapping algorithm which places each of 

different small molecular probes on a dense grid around the protein and finds favorable positions using 

empirical free energy function. The individual probes are clustered, and the clusters are ranked based on 

the average free energy. PDB code has been entered into the search box on the FTsite server. Then input 

the job name and email address to receive notification upon the job is finished. Next, press the “Find My 

Binding Site” button for running FTsite with default settings for the results. 

 

2.3.3 PrankWeb 

PrankWeb is a recently developed online web server that provides an interface for the P2Rank 

method[44]. P2Rank is a template-free machine-learning algorithm that does not rely on the structural 

information available for other protein-ligand complexes and thus enables the discovery of truly novel 

binding pockets[45]. PDB code has been entered into the search box on the PrankWeb server and then 

press the “Submit” button for running PrankWeb with default settings for the results.  

 

2.4 Pharmacophore query construction  

The pharmacophore query for the PD-1/PD-L1 complex (PDB ID: 3BIK) interfaces was built using the 

PocketQuery feature generation protein-protein interaction (PPI) target-based capability. PocketQuery 

(http://pocketquery.csb.pitt.edu/) is an online platform to identify hotspot amino acids and drug binding 

sites[40]. PocketQuery predicts the druggability of a residue, maximum cluster distance (Dist), the change 

of solvent accessible surface (SASA) area upon complexation (ΔSASA), percentage of the total possible 

SASA(ΔSASA%), estimation of the change of free energy of an alanine mutation (Rosetta Energy (ΔΔG), 

the change of free energy of a residue upon complexation (FastContact Energy (ΔG)), a sequence 

conservation score, and an evolutionary rate of the residue[46].  PDB code has been entered into the 

search box on the PocketQuery server and then press the “Search” button for running PocketQuery with 

default settings for the results.  

 

http://pocketquery.csb.pitt.edu/
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2.5 Pharmacophore-based virtual screening  

The 6 highest ranked clusters obtained from PocketQuery were used as a query for pharmacophore-based 

virtual screening through ZincPharmer, which is an online platform (http://zincpharmer.csb.pitt.edu) for 

screening the commercially available compounds in the ZINC database. It utilizes the searching algorithm 

of Pharmer.[40] ZINCPharmer offers several options for designing and modifying pharmacophore 

hypotheses straight from molecular organization of the ligand and protein.  

 

2.6 Docking-based virtual screening 

Molecular docking was carried out in the study to evaluate the binding ability of the hit compounds to the 

target PD-1 protein. Selected hit compounds obtained by pharmacophore screening were subject to 

molecular docking, which was performed using SwissDock under the accurate mode 

(http://www.swissdock.ch).  SwissDock is a web server dedicated to the docking of small molecules on 

target proteins, based on the based on the dihedral space sampling (DSS) in EADock[47]. Docking 

interactions were revealed by full fitness and Gibbs free energy prediction. 

 

Crystal structure of PD-1 (PID ID: 3RRQ) obtaining from the protein data bank website has been upload 

to SwissDock as “target selection”. Zinc ID identified by PocketQuery has been entered as “ligand 

selection”. If zinc ID has not been found by SwissDock, then chemical structures of the ligand 

compounds were obtained from cheminfo.org web-based platform by converting smiles format to mol2 

standard file. Next, upload the converted mol2 file to SwissDock as “ligand selection”. Input the job name 

and email address to receive notification upon the job is finished. Then press the “Start Docking” button 

to perform molecular docking for the results. Furthermore, docking interactions of the selected molecules 

with CTLA-4 (PDBID: 3OSK) were also explored. 

 

2.7 Drug likeness property and ADME-tox prediction  

The SWISSADME server was used to analyze the Drug-like properties of the selected molecules 

(http://www.swissadme.ch/)[48]. After that, the ADME-tox evaluation for each of the molecules was 

conducted by the online based server, ADMETlab (https://admetmesh.scbdd.com/). It predicted various 

pharmacokinetic and toxicity profiles[49]. For the convenience interpolation, the numeric and categorical 

values of the results generated by the ADMETlab server were converted into qualitative values according 

to the documentation described online. Smiles format of each selected molecule has been entered as input 

to SWISSADME or ADMETlab. Then press the “submit” button to perform analysis with default settings 

http://www.swissdock.ch/
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for the results. Water-soluble, satisfy Lipinski rule, relatively good bioavailability and safety profiles (i.e., 

risk for liver toxicity) were considered as molecules selection criteria. 

 

2.8 Protein-protein interaction map 

Protein-protein interaction map for PD-1 and CTLA-4 was constructed using search tool for the retrieval 

of interacting genes/proteins (STRING v11)[50]. Active interaction sources were restricted to 

“Textmining”, “Experiments” and “Databases”. Only interactions with confidence score over 0.9 were 

mapped to the network. The nodes in the PPI network represented the proteins, and the edges between the 

nodes represented the interactions between them. The node with a high degree was deemed with an 

essential biological function. 

 

3 Results 

3.1 Structural assessment 

The protein structures of PD-1 and PD-1/PD-L1 complex were validated using PROCHECK tool. The 

Ramachandran plot interprets those residues under most favored regions are 92.3% and 90.0% for PD-1 

and PD-1/PD-L1 complex, respectively (Fig. 4). 

 

Fig. 4 Ramachandran plot of PD-1 (a) and PD-1/PD-L1 complex (b) 

 

3.1 Ligand binding site identification  

Identifying protein–ligand binding sites, or more broadly, any favorable regions for interaction with small 

molecules, play a vital role to provide biological insights for protein function.  
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3.1.1 DoGSiteScorer 

The investigation results on the ProteinsPlus DoGSiteScorer server show that there are four prospective 

binding sites (Table 1 and Fig. 5). Pockets with a higher druggability score are considered more likely 

druggable. Target druggability encompasses not only the ability of protein binding sites to be 

complementary with small molecules in terms of physicochemical properties (like size, shape, 

electrostatics and hydrophobicity) – in order to successfully bind them with high affinity – but also the 

ability to bind small molecules holding certain physicochemical properties that place them in the so-called 

“drug-like” property space, implying that a binding site is suitable for interactions with molecules that 

may be optimized into a therapeutic drug candidate. A druggable pocket generally is characterized by 

large pocket volume, high depth as well a high apolar amino acid ratio, meaning that this pocket is 

considered druggable. The largest pocket (P_0), represented in orange, has a depth value of 13.75 Å and a 

ratio of apolar amino acids of 0.47. The pocket (P_1) represented in orange, has a depth value of 116.23 

Å and a ratio of apolar amino acids of 0.47. The pocket (P_2) represented in green, has a depth value of 

9.38 Å and a ratio of apolar amino acids of 0.64. The pocket (P_3) represented in red, has a depth value of 

9.45 Å and a ratio of apolar amino acids of 0.45. 

 

Table 1. The four binding pockets for PD-1 (PDB ID: 3RRQ) predicted by DoGSiteScorer. 

Pocket Volume (Å³) Surface (Å²) Drug Score 

P_0 (a) 238.78 593.75 0.55 

P_1 (b) 209.79 319.8 0.62 

P_2 (c) 153.92 326.88 0.33 

P_3 (d) 127.74 329.38 0.29 

 

 

 

 

 

Fig. 5 Predicted binding pockets with highlighted in orange, purple, green and red. 

 

3.1.2 FTSite 
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The investigation results on the FTSite server show that there are three prospective binding sites on the 

PD-1 protein (PDB_ID: 3RRQ). The detected sites have the following residues: site a (pink)— Ile134, 

Glu136, Leu122, Met70, Tyr68, Lys78; site b (green) — Asp 77, Thr76, Gln75, Arg69; site c (purple)— 

Leu79, Phe95, Cys93, Ala80, Arg96, Ala81, Val97, Thr98, Glu84, Phe82, Pro83, Gln99 (Fig. 6). 

 

Fig. 6. Predicted three binding sites with highlighted in red, green and purple using FTSite for PD-1 (PDB 

ID: 3RRQ). 

 

3.1.3 PrankWeb 

The investigation results on the PrankWeb server show that there is one prospective binding site (Fig. 7).  

The binding site has pocket score 1.24. The detected site has the following residues: site (blue) — Arg69, 

Gln75, Asp77, Leu79, Phe95, Asn116, Asp117. 

 

Fig. 7: Predicted binding sites with highlighted in blue using Prank Web for PD-1 (PDB ID: 3RRQ).  
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3.2 Pharmacophore query construction  

Top rank 6 clusters selected based on the “druggability” score were presented in Table 2. Clusters are 

ranked according to a ‘druggability’ score where high scoring clusters likely delineate potential binding 

sites on the PD-1/PD-L1 complex surface. Cluster 1 (TYR123, ARG125) has a highest score of 0.81099. 

The PocketQuery pharmacophore search results for targeting the PD-1/PD-L1 complex were visually 

evaluated as well (Fig. 8). 

 

Table 2. Summary of top rank 6 clusters obtained from PocketQuery for targeting the PD-1/PD-L1 

complex.  

Cluster Ch Residues Dist ∆G
FC

 ∆∆G
R
 ∆SASA ∆SASA% Score 

1 A TYR123; ARG125 6.9848 -5,765 1.1088 111.72 59.45 0.81099 

2 A MET115; TYR123; ARG125 11.866 -4.5333 1.03887 91.5967 50.5667 0.773548 

3 A MET115; ARG125 11.866 -6.09 0.7063 78.935 42.9 0.76033 

4 A MET115; AYR123; LYS124; 

ARG125 

11.866 -3.64 0.838675 84.435 47.55 0.744317 

5 A ARG113; MET115; TYR123; 

ARG125 

11.866 -4.97 0.84275 74.985 41.05 0.740154 

6 A ARG113; MET115; TYR123; 

LYS124; ARG125                          

11.866 -4.168 0.72182 72.578 40.54 0.722176 

 

 

Fig. 8. Molecular viewer of top rank 6 clusters and their properties obtained from PocketQuery for 

targeting the PD-1/PD-L1 complex 
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3.3 Pharmacophore-based virtual screening 

Results of various hit compounds identified by virtual screening from ZINCPharmer with pharmacophore 

queries have been presented at Table 3 and Fig. 9. A total 30 compounds were retrieved for molecular 

docking after removing duplicate compounds. If duplicate compounds were displayed, hit molecules 

having lower Root Mean Square Deviation (RMSD) values from the binding sites of pharmacophore were 

chosen. In addition, if more than 100 hits revealed, 10 unique hit molecules having lowest RMSD values 

were considered.  

 

Table 3. Results of pharmacophore screenings from ZINCPharmer 

Cluster Pharmacophore 

class 

x y z radius Compound RMSD Mass Rbnds 

1 Hydrogen Acceptor 11.85 -8.41 -26.35 0.50 ZINC16267039,      0.409,           461,            13 

ZINC71788370,      0.425,           619,            15 

ZINC71788370,      0.426,           619,            15 

ZINC35326858,      0.447,           497,            14 

ZINC85867378,      0.475,           587,            15 

ZINC85867378,      0.506,           587,            15 

ZINC15074281,      0.519,           377,            7 

ZINC58157707,      0.524,           429,            10 

ZINC09805413,      0.544,           434,             7 

ZINC55211811,      0.548,           432,            15 

ZINC73804990,      0.567,           364,            11 

ZINC68604154,      0.567,           373,            8 

ZINC14041891,      0.595,           495,            10 

ZINC24885055,      0.601,           470,            11 

ZINC92061782,      0.604,           371,            8 

ZINC19741916,      0.606,           424,            11 

Hydrogen Acceptor 16.21 -9.73 -32.11 0.75 

Positivelon 15.11 -2.11 -30.40 1.00 

Hydrophobic 9.68 -5.24 -26.78 1.00 

2 Hydrogen Acceptor 16.21 -9.73 -32.11 0.50 ZINC09354187,      0.493,           516,           15 

ZINC36026070,      0.523,           416,           11 

ZINC09354187,      0.567,           516,           15 

 

Positivelon 15.11 -2.11 -30.40 0.75 

Hydrophobic 9.68 -5.24 -26.78 1.00 

Hydrophobic 2.87 -9.76 -27.13 1.00 

3 Hydrogen Acceptor 14.16 -8.63 -30.64 0.50 ZINC01081956,      0.502,           475,          10  

ZINC39518974,      0.510,           435,          12 

ZINC09350963,      0.537,           531,          15 

ZINC64219346,      0.539,           519,          15 

ZINC39518974,      0.555,           435,          12 

 

Hydrogen Acceptor 16.21 -9.73 -32.11 0.50 

Positivelon 15.11 -2.11 -30.40 0.75 

Hydrophobic 2.87 -9.76 -27.13 1.00 

4 Hydrogen Acceptor 16.21 -9.73 -32.11 0.50 ZINC09354187,      0.493,           516,         15 

ZINC36026070,      0.523,           416,         11 

ZINC09354187,      0.567,           516,         15 

 

Positivelon 15.11 -2.11 -30.40 0.75 

Hydrophobic 9.68 -5.24 -26.78 1.00 

Hydrophobic 2.87 -9.76 -27.13 1.00 

5 Positivelon 11.70 -2.97 

 

-33.30 

 

0.75 ZINC02101516,        0.183,         469,         10 

ZINC02101503,        0.184,         455,          9 

ZINC02101516,        0.185,         469,         10 

ZINC02101649,        0.188,         455,          9 

ZINC02101649,        0.194,         455,          9 

ZINC12495898,        0.302,         390,          8 

ZINC12495881,        0.311,         388,          7 

ZINC12495895,        0.335,         417,        10 

Positivelon 15.11 -2.11 -30.40 0.75 

Hydrophobic 9.68 -5.24 -26.78 1.00 

Hydrophobic 2.87 -9.76 -27.13 1.00 
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ZINC04323062,        0.352,         400,        12 

ZINC20576111,        0.377,         481,          8 

ZINC20576138,        0.377,         502,          7 

ZINC20576116,        0.378,         481,          8 

6 Positive ion 11.70 -2.97 

 

-33.30 

 

0.75 ZINC02101516,        0.183,         469,        10 

ZINC02101503,        0.184,         455,         9 

ZINC02101516,        0.185,         469,       10 

ZINC02101649,        0.188,         455,         9 

ZINC02101649,        0.194,         455,         9 

ZINC12495898,        0.302,         390,         8 

ZINC12495881,        0.311,         388,         7 

ZINC12495895,        0.335,         417,        10 

ZINC04323062,        0.352,         400,        12 

ZINC20576111,        0.377,         481,         8 

ZINC20576138,        0.377,         502,         7 

ZINC20576116,        0.378,         481,         8 

 Positivelon 15.11 -2.11 -30.40 0.75 

 Hydrophobic 9.68 -5.24 -26.78 1.00 

 Hydrophobic 2.87 -9.76 -27.13 1.00 

 

ZINC19741916 ZINC73804990 ZINC85867378 ZINC58157707ZINC71788370

ZINC14041891 ZINC24885055 ZINC35326858 ZINC09805413 ZINC55211811

ZINC15074281 ZINC92061782 ZINC16267039 ZINC68604154 ZINC36026070
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Fig. 9 Results of pharmacophore screenings from ZINCPharmer. Molecules selected for screening based 

on the pharmacophore features represented as blue sticks, superimposed with the query ligand, showed as 

grey sticks. Pharmacophore features are shown in spheres.  The color classification of the features is 

hydrogen acceptor (orange), hydrophobic (green) and positive ion (blue). 

3.4 Molecular docking 

3.4.1 Docking result of selected hit compounds with PD-1 (PID ID: 3RRQ) 

The results of Swiss Dock showed full fitness and Gibbs free energy values in kcal/mol are presented in 

Table 4 & Fig.10. More negative the ΔG value of the binding reaction was considered to have higher the 

binding affinity. Among the total 30 unique compounds retrieved for molecular docking, ZINC85867378, 

ZINC16267039, ZINC64219346, ZINC68604154 and ZINC20576138 are the top rank 5 compounds with 

lowest ΔG values (<-9 kcal/mol), exhibiting possible stronger bindings with PD-1.  In addition, no direct 

correlation has been established between ΔG values from molecular docking and RMSD values from 

pharmacophore screening (R
2 
0.049).  

 

Table 4. SwissDock interaction result of selected hit compounds with PD-1 (PID ID: 3RRQ) 

Compound Full fitness (kcal/mol) Gibbs free energy ∆(kcal/mol) 

ZINC85867378 -829.97 -12.09 

ZINC16267039 -790.13 -9.65 

ZINC64219346 -861.03 -9.32 

ZINC68604154 -814.96 -9.07 

ZINC09354187 ZINC09350963 ZINC39518974 ZINC64219346

ZINC02101516 ZINC02101503 ZINC12495898

ZINC12495881 ZINC12495895

ZINC04323062

ZINC20576111 ZINC20576138ZINC20576116

ZINC1081956

ZINC02101649
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ZINC20576138 -686.02 -9.03 

ZINC20576116 -684.26 -8.92 

ZINC20576111 -681.79 -8.83 

ZINC92061782 -699.61 -8.53 

ZINC39518974 -636.16 -8.47 

ZINC73804990 -791.81 -8.4 

ZINC71788370 -838.83 -8.4 

ZINC09354187 -682.66 -8.35 

ZINC12495881 -695.87 -8.21 

ZINC35326858 -699.82 -8.11 

ZINC09350963 -641.97 -8.07 

ZINC09805413 -678.42 -8.05 

ZINC01081956 -602.92 -8.05 

ZINC14041891 -643.34 -7.99 

ZINC55211811 -618.89 -7.95 

ZINC19741916 -667.96 -7.93 

ZINC12495898 -700.5 -7.86 

ZINC12495895 -708.69 -7.79 

ZINC58157707 -694.08 -7.63 

ZINC24885055 -772.31 -7.6 

ZINC36026070 -712.08 -7.51 

ZINC02101503 -659.87 -7.32 

ZINC02101516 -661.95 -7.1 

ZINC04323062 -647.72 -7.08 

ZINC02101649 -656.41 -7.02 

ZINC15074281 -615.25 -6.97 
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Fig. 10 SwissDock interaction result of selected hit compounds with PD-1 (PDBID:3RRQ) 

 

3.4.2 Docking result of selected hit compounds with CTLA-4 (PDBID: 3OSK) 

Five selected molecules (ZINC85867378, ZINC16267039, ZINC64219346, ZINC68604154 and 

ZINC20576138), which have possible stronger bindings with PD-1 (Gibbs free energy < - 9 kcal/mol), 

have been chosen for further docking with CTLA-4 protein. (Fig. 11) Among them, ZINC85867378, 

ZINC19741916 ZINC73804990 ZINC71788370 ZINC85867378 ZINC58157707

ZINC14041891 ZINC24885055 ZINC35326858 ZINC09805413 ZINC55211811

ZINC15074281 ZINC92061782 ZINC16267039 ZINC68604154 ZINC36026070

ZINC09354187 ZINC1081956 ZINC09350963 ZINC39518974 ZINC64219346

ZINC02101516 ZINC02101503 ZINC02101649ZINC04323062 ZINC12495898

ZINC12495881 ZINC12495895 ZINC20576116 ZINC20576111 ZINC20576138
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ZINC16267039, ZINC64219346, ZINC68604154 and ZINC20576138 have binding affinity −7.760 

kcal/mol, − 6.38 kcal/mol, − 7.59 kcal/mol, − 7.44 kcal/mol and -7.62, respectively (Table 5). 

 

Table 5. SwissDock interaction result of selected hit compounds with CTLA-4 (PDBID: 3OSK) 

Compound Full fitness (kcal/mol) Gibbs free energy ∆ (kcal/mol) 

ZINC85867378 -1083.84 -7.76 

ZINC16267039 -1048.60 -6.38 

ZINC64219346 -1124.13 -7.59 

ZINC68604154 1079.47 -7.44 

ZINC20576138 -952.71 -7.62 
 

 
 

Fig. 11 SwissDock interaction result of selected hit compounds with CTLA-4 (PDBID: 3OSK) 

 

3.5 Drug likeness property and ADME-tox prediction 

The druglikeness property assessment was conducted for the 5 selected molecules (ZINC85867378, 

ZINC16267039, ZINC64219346, ZINC68604154 and ZINC20576138) with Gibbs free energy < - 9 

kcal/mol. (Table 6) ZINC16267039 and ZINC68604154 were predicted to follow the Lipinski’s rule of 

five. Moreover, ZINC68604154 appeared to have better solubility compare to ZINC16267039. 

 

Table 6 The druglikeness properties of five selected molecules from SwissADME 

 

 

        Name 

                                       

                                    Lipinski’s Rule of Five 

 

  Drug-

Likeness 

 

Water Solubility Class 

LogS (ESOL)/ 

LogS (Ali)/ 

LogS (SILICOS-IT) 

Molecular 

Weight 

(g/mol) 

Lipophilicity 

(MLog P) 

Hydrogen 

Bond 

Donors 

Hydrogen 

Bond 

Acceptors 

No. of Rule 

Violations 

 

Lipinski’

s Rule 

Follows Lee than 

500 

Less than 

4.15 

Less 

than 5 

Less than 

10 

Less than 2 

Violations 

ZINC85867378 586.61 -9.55 15 12    3 violations No Highly soluble/ Highly 

soluble/ Soluble 

ZINC16267039 460.54 -3.09 1 6 0 violation Yes Soluble/ Soluble/ 

Moderately soluble 
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ZINC64219346 518.61 0.42 5 6 2 violations No Soluble/ Soluble/ 

Moderately soluble 

ZINC68604154 372.50 -7.34 2 6 0 violation Yes Highly soluble/ Highly 

soluble/ Soluble 

ZINC20576138 501.88 1.79 9 6 2 violations No Moderately soluble/ 

Poorly soluble// 

Moderately soluble 

The results of the ADMET test for the 5 selected molecules (ZINC85867378, ZINC16267039, 

ZINC64219346, ZINC68604154 and ZINC20576138) with Gibbs free energy < - 9 kcal/mol are 

summarized in Table 7. In the absorption section, ZINC16267039 and ZINC20576138 predicted to be 

optimal Caco-2 permeable. ZINC64219346, ZINC68604154 and ZINC20576138 have better human oral 

bioavailability than ZINC85867378 and ZINC16267039. Whereas all of them were P-gp (P-glycoprotein) 

non-inhibitors. ZINC85867378, ZINC16267039 and ZINC64219346 were P-gp substrates. In the 

distribution section, ZINC20576138 showed high protein binding and low fraction unbound in plasma. 

ZINC16267039 and ZINC64219346 showed relatively poor performance with no capacity to be blood-

brain barrier (BBB) permeable. In the metabolism section, ZINC85867378 and ZINC64219346 were 

found to be low cytochrome P450 (CYP) mediated drug-drug interaction. ZINC16267039 was predicted 

to be CYP2C19 substrate and CYP3A4 substrate. ZINC68604154 was CYP2C19 substrate and CYP2D6 

substrate. ZINC20576138 was CYP2C19 inhibitor, CYP2C9 inhibitor, CYP2C9 substrate and CYP3A4 

inhibitor. In the excretion section, all the compounds were found to have low to medium clearance. In the 

toxicity section, ZINC16267039 was Ames positive. ZINC64219346 was found to be drug induced liver 

toxicity (DILI) positive and human hepatotoxicity positive. ZINC20576138 was predicted to be DILI 

positive, human hepatotoxicity positive, Ames positive and carcinogenicity positive.  

 

Table 7 The ADMET and toxicity properties of five selected molecules from ADMETlab 

Class Properties ZINC85867378 ZINC16267039 ZINC64219346 ZINC68604154 ZINC20576138 

Absorption Caco-2 

permeability 

Poor 

(-6.269 log  

cm/s) 

Proper 

(-4.902 log  

cm/s) 

Poor 

(-6.019 log 

cm/s) 

Poor 

(-5.871  

log cm/s) 

Proper 

(-4.654 log 

cm/s) 

Human oral 

bioavailability 20% 

(F20%) 

High likelihood 

F20%<20% 

High likelihood 

F20%<20% 

Low likelihood 

F20%<20% 

Low likelihood 

F20%<20% 

Low likelihood 

F20%<20% 

Pgp-inhibitor Low likelihood Low likelihood Low likelihood Low likelihood Low likelihood 

Pgp-substrate High likelihood High likelihood High likelihood Low likelihood Low likelihood 

Distribution Plasma Protein 

Binding (PPB) 

11.119% 73.087 33.933% 

 

32.438% 

 

High protein 

bound 

(99.946%) 

Volume 

Distribution (VD) 

0.250 L/kg 1.951 L/kg 0.300 L/kg 1.481 L/kg 1.039 L/kg 

Blood-Brain 

Barrier (BBB) 

Medium Poor Proper Medium Medium 

Fraction unbound 

in plasms (Fu) 

77.197% 35.291% 59.274% 82.464% Low 

(1.779%) 

Metabolism CYP1A2 inhibitor Low likelihood Low likelihood Low likelihood Low likelihood High likelihood 

CYP 1A2 substrate Low likelihood High likelihood Low likelihood Low likelihood Low likelihood 

CYP2C19 inhibitor Low likelihood Low likelihood Low likelihood Low likelihood High likelihood 
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CYP2C19 substrate Low likelihood High likelihood Low likelihood High likelihood Low likelihood 

CYP2C9 inhibitor Low likelihood Low likelihood Low likelihood Low likelihood High likelihood 

CYP2C9 substrate Low likelihood Low likelihood Low likelihood Low likelihood High likelihood 

CYP2D6 inhibitor Low likelihood Low likelihood Low likelihood Low likelihood Low likelihood 

CYP2D6 substrate Low likelihood High likelihood Low likelihood High likelihood Low likelihood 

CYP3A4 inhibitor Low likelihood Low probability Low likelihood Low likelihood High likelihood 

CYP3A4 substrate Low likelihood Low likelihood Low likelihood Low likelihood Low likelihood 

Excretion Clearance (CL) Low 

0.787 

mL/min/kg 

Low 

3.359 

mL/min/kg 

Moderate 

 5.239 

mL/min/kg 

Low 

4.481 

mL/min/kg 

Low  

0.73  

mL/min/kg 

Toxicity hERG Blockers Low risk Low risk Low risk Low risk Low risk 

Human 

hepatotoxicity 

Low risk Low risk High risk Low risk High risk 

DILI Low risk Low risk High risk Low risk High risk 

AMES Toxicity Low risk High risk Low risk Low risk High risk 

Carcinogencity Low risk Low risk Low risk Low risk High risk 

 

3.6 Network analysis highlights non-random interconnectivity between PD-1 and CTLA-4    

Interactions between PD-1 and CTLA-4 with other proteins using STRING database provides the 

description of various interacting partner. PD-1 and CTLA-4 were input as the “seed” proteins to 

construct the PPI network (Fig. 12). To identify the most significant interactions and achieve a 

meaningful size for network analysis, ten additional interactors were allowed in the network. The network 

enrichment p-value was < 1.01e-06, meaning that this connected network has significantly more 

interactions than expected at random. Such enrichment also indicates that PD-1 and CTLA-4 are, at least 

partially, biologically connected.  

 
 

Fig.12: Interaction network resulting between PD-1 and CTLA-4 

 

 

4. Discussion  

The anti-PD-1/PD-L1 check point antibody inhibitors function as tumor suppressors by modulating 

immune cell-tumor cell interactions and produce notable antitumor effects in cancer immunotherapy. 



 

21 
 

However, there are some limitations associated with the antibody-based therapies, such as 

immunogenicity, immune-related adverse events (irAEs), limited modes of administration (intravenous 

and subcutaneous), low penetration into tissues and high cost. Some of the limitations are difficult to 

overcome, therefore, it is reasonable to consider discovering orally bioavailable small molecule inhibitors 

that interrupt the interaction of PD-1 and PD-L1 as alternative [26, 27].  

 

The discovery of new therapeutic drugs is complex, costly, and time-consuming.  Leveraging a 

combination of computational methods can significantly accelerate the drug discovery process, enabling 

the identification of promising drug candidates from the large compound libraries [35, 36]. Structure-

based virtual screening methods offer means to directly identify novel compounds that complement the 

target protein surface [37, 38]. In order to discover the possible small molecules interacting with the 

crystal structure of PD-1, we established the workflow combining pharmacophore virtual screening, 

docking, and ADMET prediction.  

 

In the study, possible ligand binding sites on the PD-1 protein were initially predicted by DoGSiteScorer, 

FTsite and PrankWeb servers. All the three servers have different algorithms, and their combined results 

increase probability of where the binding pockets are located in the protein structure. The 6 highest-

ranked clusters based on the “druggability” score from PocketQuery were selected as queries for 

pharmacophore-based virtual screening using ZincPharmer. A total 30 hit compounds identified from 

ZINCPharmer were retrieved for molecular docking. Among the total 30 compounds, ZINC85867378, 

ZINC16267039, ZINC64219346, ZINC68604154 and ZINC20576138 are top rank 5 compounds with 

lowest ΔG values (<-9 kcal/mol), exhibiting possible stronger bindings with PD-1 protein.  

 

The therapeutic success depends on many factors such as physical chemical, pharmacokinetic properties, 

selectivity, potency, and safety. Various mathematical predictive drug-like properties and 

pharmacokinetic profiles such as blood-brain-barrier penetration, human intestinal absorption, solubility, 

cytochrome P450 mediated drug-drug interactions, plasma protein binding was calculated quantitatively 

for the selected 5 compounds. Thereafter, the selected molecules were subjected to various toxicity 

screening models such as hepatoxicity cardiac toxicity, AMEs, and carcinogenicity. The meaning of drug-

like is dependent on route of administration. The original Lipinski's rule of five deals with orally active 

compounds and defines four physicochemical parameter ranges: molecular weight (MW) ≤ 500; logP ≤ 5; 

H-bond donors ≤ 5 and H-bond acceptors ≤ 10[51]. ZINC85867378 presented lowest ΔG values among 

the selected hit compounds but did not follow the Lipinski’s rule of five. Hence, optimization need to 

further improve the drug-like properties for ZINC85867378. ZINC68604154 appears to have reasonable 
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oral bioavailability, low DDI potential, and low tox risk. As non P-gp substrate and moderate penetration 

to brain, ZINC68604154 might also provide some benefit for patients with primary brain tumors or brain 

metastasis from pharmacokinetics perspective. Moreover, permeability of ZINC68604154 could be 

further increased by permeation enhancement techniques such as incorporating permeation enhancers into 

formulations. 

 

Researchers found that combination therapy with the CTLA-4 inhibitor and the PD-1 inhibitor was more 

effective and resulted in significantly longer progression-free survival compared with monotherapy[52]. 

As expected, our PPI analysis highlighted non-random interconnectivity between PD-1 and CTLA-4. 

Interestingly, ZINC85867378, ZINC16267039, ZINC64219346, ZINC68604154 and ZINC20576138 also 

showed considerable binding affinity with CTLA-4 protein, and potentially dual blockade of PD-1 and 

CTLA-4.  

 

Despite the abundance of successful cases of drug design relying on computer aided drug design 

approaches, as with any method, it is not failsafe. Virtual screening and docking can produce potential 

false positive results, so researchers should be cautious about the limitations of this technique. While the 

current study was based on in silico predictions, in vitro and in vivo experiments are needed to evaluate 

whether the identified compounds exhibit strong binding in biological systems. These experiments will 

further help optimize the drug properties. 

 

5. Conclusion  

Cancer is a major burden of disease threatening human health based on its high rates of morbidity and 

mortality. This study establishes the workflow combining pharmacophore virtual screening, docking, and 

ADMET prediction to identify the possible small molecules interact with the crystal structure of PD-1. 

ZINC85867378 presented lowest ΔG value among the selected hit compounds but did not follow the 

Lipinski’s rule of five. ZINC68604154 showed ΔG of -9.07 kcal/mol and appeared to have reasonable 

oral bioavailability, low DDI potential, and low toxicity risk. The identified compounds might serve as 

starting points to design potential safe and efficacious molecules in cancer immunotherapy. Further 

evaluation is necessary to optimize drug properties. 
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