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ABSTRACT: 
Farmers and agricultural workers would manually inspect crops for signs of pests or use traps to monitor 
pest populations. The advent of deep learning algorithms such as vision transformers and FastAIResNet 
has brought about a significant transformation in pest detection practices. These advanced algorithms 
leverage the capabilities of artificial intelligence to process vast amounts of data and learn intricate 
patterns associated with different pest species and their impact on crops. Unlike manual methods, deep 
learning algorithms can analyze large datasets quickly and accurately, leading to more efficient and 
effective pest detection. Vision transformers and FastAIResNet stand out for their ability to continuously 
learn and adapt to new data, including changes in pest populations over time. This adaptability is crucial 
in agriculture, where pest dynamics can vary due to factors like climate conditions, environmental 
changes, and pest control interventions. FastAI ResNet-50 and Vision Transformers have demonstrated 
remarkable accuracy in classifying various disease classes, indicating their reliability and precision in 
detecting different pests and diseases affecting crops. Their high accuracies, ranging from 0.95 to 1.00, 
underscore their effectiveness in agricultural pest detection tasks. However, the study highlights 
challenges that arise when dealing with more classes in a classification task. Factors such as increased 
complexity, imbalanced data distributions, and higher-dimensional feature spaces can impact model 
accuracy. To address these challenges, the study recommends various strategies, including data 
augmentation, class balancing, robust model architectures, regularization techniques, and transfer 
learning. Implementing these strategies can help maintain or improve accuracy levels, ensuring that deep 
learning models remain effective and reliable for agricultural pest detection and disease management 
applications. 
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1. INTRODUCTION 
 
Crop production faces various challenges hindering plant growth and yield, including biotic and abiotic stresses caused by 
living organisms and external environmental variables (Anami et al.,2020). These factors, exacerbated by climate change, 
can significantly reduce agricultural productivity, posing economic risks to farmers and threatening global food security. 
Managing these stressors effectively has become increasingly urgent, as a global loss in food production due to pest and 
disease outbreaks can have profound implications. Plant diseases and pests cause significant crop yield losses (FAO, 
2021), making early-stage pest control essential for sustainable agriculture. Research should focus on biological control, 
early detection technologies, and developing disease-resistant crops. These strategies are key to reducing environmental 
impact and maintaining food security. 
 
AI and machine learning, using techniques like LBP, GLCM, and SGLDM, enable accurate pest and disease classification 
from images. Approaches like Support Vector Machine (SVM) classification, as seen in potato plant disease diagnosis 
(Islam et al., 2017), have shown high accuracy. These technologies automate pest identification, improving large-scale 
crop management. An Ensemble of Support Vector Machines and Artificial Neural Network Classifiers for grape leaf 
disease recognition attained higher accuracy (Padol and Sawant, 2016) compared to single classifier systems. Various 
other Machine Learning Classifiers such as KNN (k-Nearest Neighbour), DT (Decision Trees), RF (Random Forest), ANN 
(Artificial Neural Network), etc., have been widely used in various pest identification studies (Qin et al., 2016; Krithika and 
Selvarani, 2017; Sabrol and Satish, 2016). 



 

 

Researchers have explored various Machine Learning (ML) approaches such as Support Vector Machines (SVM) (Hou et 
al.,2021 and Hamdani et al., 2021), Artificial Neural Networks (ANNs) (Ramesh and Vydeki, 2020), Naive Bayes (Abdu et 
al., 2020), k-means clustering (Johannes et al., 2017), and simple linear iterative clustering (Sun et al., 2019). However, 
recent years have seen a shift towards Deep Learning (DL) due to increased data availability, computing power, and 
efficient training methods. Convolutional Neural Network (CNN) architectures, particularly those with attention 
mechanisms, have shown remarkable performance in plant disease detection, alongside standard models like AlexNet, 
GoogleNet, VGG16, and ResNet used with transfer learning (Mohanty et al., 2016). Customized CNN architectures have 
also been developed for specific plant disease detection tasks (Yadav et al., 2021), reflecting the ongoing evolution of DL 
methods in this domain. Deep learning techniques, particularly Convolutional Neural Networks (CNNs), have shown 
remarkable success in image-based pest detection (Panchal et al., 2021; Ozguven and Adem, 2019). The authors 
identified 13 different types of rice pests and illnesses using a pre-trained CaffeNet model, which had an accuracy rate of 
87% (Alfarisy et al., 2018). GoogLeNet and AlexNet identified 26 diseases in 14 crop species (Mohanty et al., 2016), while 
fine-tuning pretrained CNNs like VGG16 achieved 90.4% accuracy (Wang et al., 2017). These models improve disease 
detection in crops, especially with small datasets. 

Pre-designed architectures like ResNet and ViT are widely used in agricultural applications for computer vision tasks 
(Reedha et al., 2022). These models, requiring large datasets for optimal parameter tuning, leverage novel attention 
structures like Transformers (Wang et al., 2022) to analyze visual patterns with high accuracy. Integrating deep learning 
into mobile apps for pest and disease detection could revolutionize crop management, improving yields, reducing 
environmental impact, and enhancing global food security. 
 
2. MATERIAL AND METHODS  
 
Images of infected rice crops were taken to capture the images. These images are processed using image processing 
methods to perform automated classification and recognition tasks based on the patterns seen in the images. The step 
wise procedures adopted are briefed below: 

1. Data Collection: Gather images of healthy and diseased plants, covering various pests and diseases. 
2. Data Pre-processing: Resize images (224x224 or 299x299), normalize pixel values, and prepare them 

for model input. 
3. Data Augmentation: Apply techniques like rotation, scaling, and flipping to increase dataset diversity. 
4. Data Split: Divide the data into training (70-80%), validation (10-15%), and test (10-15%) sets. 
5. Deep Learning Framework: Choose a framework like FastAI or PyTorch for implementation. 
6. Model Selection: Choose models like ResNet, Inception, or MobileNet for image classification. 
7. Training & Tuning: Train the model, adjust hyperparameters, and optimize for accuracy. 
8. Evaluation & Testing: Assess performance on the validation and test sets for accuracy and 

generalization. 
9. Deployment: Integrate the trained model into a mobile app for real-time pest and disease detection. 

This process enables efficient and automated crop pest management using deep learning. 

o ResNet-34, ResNet-50: Good balance between accuracy and computational complexity. 
o MobileNetv3: Efficient for mobile and edge devices. 
o InceptionV3: Known for handling complex patterns in images. 
o SqueezeNet1_0: Lightweight model suitable for resource-constrained environments. 
o DenseNet121: Dense connectivity structure beneficial for feature reuse. 
o Vision Transformers (ViT): Effective for capturing long-range dependencies in images. 
o  

7. Model Training - Initialize the selected model(s) with pre-trained weights on large datasets to leverage learned features. 
Fine-tune the model(s) using the training set. Adjust hyperparameters such as learning rate, batch size, and optimizer 
choice to optimize model performance. Use techniques like learning rate scheduling and early stopping to prevent 
overfitting and improve convergence speed. 



 

 

 

Figure 1. Methodology for Data Collection and Processing 

8. Model Evaluation - Evaluate the trained model(s) on the validation set to monitor performance metrics such as 
accuracy, precision, recall, and F1 score (Pedregosa et al., 2011). Use tools like confusion matrices and ROC curves for 
detailed analysis. Perform model tuning based on validation results, such as adjusting regularization techniques or model 
architecture modifications. 

Accuracy =
TN + TP

TP + TN + FP + FN
 (1) 

Precision =
TP

TP + FP
 (2) 

Recall =
TP

TP + FN
 (3) 

F1 =
2 × Recall × Precision

Precision + Recall
 (4) 

 Where TP represents True Positive samples, TN represents True Negative samples, FP represents False 
Positive samples, and FN represents False Negative samples. These metrics are commonly used to gauge the 
performance of classification models. 

9. Model Deployment - Once satisfied with the model's performance on the validation set, evaluate it on the test set to 
assess its generalization ability. Deploy the trained model in a production environment, integrating it into an application or 
system for real-time pest and disease identification. Implement monitoring and feedback mechanisms to continuously 
improve the model's performance based on user feedback and new data. Regularly update the model with new data to 
adapt to evolving pest and disease patterns. Explore advanced techniques like ensemble learning (combining multiple 
models for improved accuracy) and model distillation (compressing large models for deployment on resource-constrained 
devices) for further enhancement. 

 
3. RESULTS  
 

This study applied advanced deep learning algorithms, such as ResNet, Vision Transformer (ViT), and others, for pest 
detection, moving beyond traditional machine learning models. Rice plant diseases like Rice Blast, Dead Heart, and 
Bacterial Leaf Blight, as well as nutritional disorders (e.g., Boron Deficiency, Sheath Blight, Zinc Deficiency), were 



 

 

identified using models including ResNet-34, MobileNetv3, InceptionV3, SqueezeNet1_0, DenseNet121, FastAI, and ViT.

 
Fig. 2. Pest and Disease 

 
The performance of the algorithms viz., ResNet-34, ResNet-50, and MobileNetV3 was measured for three 
disease class identification. The results showed that ResNet-34, ResNet-50, and MobileNetV3 (Table 1) 
achieved an accuracy range of 0.96-0.99, 0.38-0.64, and 0.94-0.98, respectively. For four disease class 
identification (Table 2), ResNet-34, MobileNetV3, InceptionV3, squeezenet1_0, and densenet121 performed 
with an accuracy ranging from 0.94 to 0.98, 0.74 to 0.99, 0.96 to 0.98, 0.59 to 0.90 and 0.55 to 0.97, 
respectively.  
 
Table 1. Accuracy assessment for identifying three disease classes 
 

Model ResNet-34 MobileNetV3 ResNet-50 
Blast 0.96 0.64 0.97 
Dead Heart 0.99 0.78 0.98 
Bacterial Leaf Blight 0.98 0.38 0.94 

 
Table 2. Accuracy assessment for identifying four disease classes 

Model ResNet-
34 MobileNetV3 InceptionV3 Squeezenet1_0 Densenet121 

Blast 0.98 0.94 0.98 0.89 0.96 
Dead Heart 0.98 0.95 0.97 0.59 0.55 
Bacterial 
Leaf Blight 0.94 0.74 0.96 0.9 0.97 

Others 0.98 0.99 0.98 - - 
 
FastAI ResNet-50 and Vision Transformers (ViT) performed well in classifying eleven disease classes, with an 
accuracy ranging from 0.95 to 1.00 (Figure 3). Both models had a proven architecture with pre-trained weights 
for efficient training and deployment. They excel in complex pattern recognition and scalability but may require 
additional resources for training and deployment. The model testing accuracy ranged from 97 to 100 per cent 
and 85 to 98 per cent for 6 and 11 disease class identification (Table 3).  
 



 

 

 
 

Figure 3.Accuracy assessment for identifying eleven disease classes 
 
Table 3. Model testing accuracy for 6 and 11 disease classes 

 6 and 11 Classification Model Testing Accuracy 
Blast 98%  Bacterial Leaf Blight 85% 
Brown Spot 98%  Blast 87% 
Dead Heart 100%  Boron Deficiency 86% 
False Smut 98%  Brown Spot 95% 
Leaf Folder 97%  Dead Heart 94% 
White Ear 98%  False Smut 98% 
   Leaf Folder 89% 
   Sheath Blight 93% 
   Sheath Rot 90% 
   White Ear 90% 
   Zinc Deficiency 96% 

 
 
 
4. DISCUSSION 
 
For medium-sized datasets with 3 or 4 classes, ResNet-34 outperforms other models due to its efficiency on mobile and 
edge devices. As the number of classes increases, challenges like imbalanced data and high-dimensional feature spaces 
can reduce accuracy, but techniques like data augmentation, class balancing, and transfer learning can help. Advanced 
architectures like ResNet-50 and Vision Transformers (ViT) excel in image classification tasks, with ResNet-50 offering 
strong feature representation and ViT capturing global context effectively, making their selection dependent on task 
requirements and dataset characteristics. 

Ramalingam et al. (2020) deployed an IoT-based system to detect pests using a faster RCNN ResNet50 model. They 
tested the model with 150 images per class from the IP102 dataset, achieving an average accuracy of around 94% for the 
eight insect classes. The Vision Transformer (ViT) (Dosovitskiy et al., 2020) is a novel neural network architecture for 
image processing. It outperforms ResNet152 (He et al., 2016) on datasets like ImageNet and CIFAR-100 and also 
surpasses Noisy Students (EfficientNet-L2). Li et al. (2023) proposed a computationally efficient deep learning 
architecture for real-time plant disease identification. The architecture is based on Mobile Vision Transformer (MobileViT) 
and is called the PMVT network. The results showed that PMVT network outperformed VGG-19, GoogLeNet, and 
ResNet-50, which are state-of-the-art CNN architectures, on both PlantVillage and Maize disease datasets. Boukabouya 
et al. (2022) reported that vision transformer-based models achieved top classification accuracies on various plant 
disease datasets. Specifically, the accuracies were 96.7%, 98.52%, 99.1% and 99.7%.  Borhani et al. (2022) compared 
the performance of classical CNN methods, vision transformers, and their combination for plant disease classification. The 
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results showed that while attention blocks in ViT increased accuracy, they also slowed down the prediction speed. 
However, combining CNN and ViT blocks could address this speed issue. 

 
 
5. CONCLUSION 
 
FastAI ResNet-50 and Vision Transformers achieved exceptional accuracy (97-100%) for classifying six disease classes 
and 85-98% for eleven classes, demonstrating their robustness in agricultural pest detection. By replacing labor-intensive 
methods with advanced deep learning algorithms, these models continuously learn and adapt to evolving pests, providing 
highly accurate and efficient pest identification. Their ability to analyze images and videos with labeled data positions 
them as transformative tools in agriculture, enhancing accuracy and streamlining pest and disease management for more 
sustainable practices. 
 
DEFINITIONS, ACRONYMS, ABBREVIATIONS 
 
ANN : Artificial Neural Network 
CNN : Convolutional Neural Network 
DL : Deep Learning 
DT : Decision Trees 
GLCM : Grey Level Co-occurrence Matrix 
KNN : k-Nearest Neighbour 
LBP : Local Binary Patterns 
NLP : Natural Language Processing 
RF : Random Forest 
SGLDM : Spatial Grey Level Dependence Matrix 
ViT : Vision Transformers 
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