PREVALENCE OF OVERWEIGHT/OBESITY, COMORBIDITIES, AND RISK FACTORS AMONG PERSONS LIVING WITH HIV/AIDS ON ART IN TWO TREATMENT CENTERS IN THE FAKO DIVISION, CAMEROON

ABSTRACT

Background: The double burden of human immunodeficiency virus (HIV) with noncommunicable disease is a public health problem in sub-Saharan Africa. A study was conducted among persons living with HIV/AIDS (PLWHA) on antiretroviral therapy (ART) to assess the prevalence of overweight/obesity, hypertension, and diabetes and their risk factors in two HIV treatment centers in the Fako division.

Methods: A hospital-based cross-sectional study was carried out at the Regional Hospitals of Buea and Limbe, in the Fako Division of the South West Region of Cameroon between June 1st, 2024 to August 31st, 2024. We included 464 persons living with HIV. Sociodemographic and clinical data were collected using a questionnaire. A 24-hour dietary diversity was assessed using a questionnaire. Blood glucose level, blood pressure, and anthropometric data were recorded to determine the prevalence of diabetes, hypertension and overweight/obesity. Data was analyzed using SPSS version 25.0.

Results: The prevalence of overweight/obesity, hypertension, and diabetes among the participants were 62.5%, 25%, and 14% respectively. Factors significantly associated with overweight/obesity were females (aOR: 2.36; CI: (1.48-3.78); p=0.001), persons lacking HIV-related symptoms (aOR:3.36; CI:(1.49-7.56); p=0.003), alcohol consumption and those who do not smoke. Hypertension was significantly associated withthe age and location of the participants while diabetes was significantly associated withthe duration of ART and marital status.

Conclusion: There is a high burden of overweight/obesity, hypertension, and diabetes in PLWHA in two treatment centers in Fako Division. The expansion of HIV treatment programs which involves the initiation and strengthening of interventions will require special attention to minimize preventable comorbidity and non-communicable disease (NCD) risks.

*Keywords:*Diabetes, HIV/AIDS, hypertension, overweight/obesity, persons living with HIV/AIDS

Need to explained the function of statistical analysis that used in this study

1. INTRODUCTION

HIV infection is a globally recognized health issue, characterized by the invasion of the Human Immunodeficiency Virus, leading to the development of AIDS[1]. HIV has claimed about 42.3 million lives to date with an estimate of 39.9 million people living with HIV at the end of 2023, 65% of whom are in the WHO African Region[2]. The advent of antiretroviral therapy (ART) has drastically reduced the number of deaths and AIDS-defining events among HIV-infected people, including wasting syndrome. However, there has been a gradual transition to overweight/obesity, a medical condition in which excess body fat has accumulated to the extent that it may adversely affect health[3]. In 2022, 43% of adults aged 18 years and over were overweight and 16% were living with obesity[4]. This has significant consequences in terms of both health and economic burden [5].

The use of potent antiretrovirals has led to increased survival for people living with HIV/AIDS (PLWHA) [6]. Nevertheless, as a chronic disease that is incurable with ART, HIV is associated with a substantial burden, including the requirement for lifelong treatment and the risk of treatment resistance[7], as there are concerns regarding the metabolic side effects and cardiovascular disorders that have surfaced because of the treatment. Metabolic side effects include insulin sensitivity (insulin resistance), dyslipidemia, hypertension, and abnormalities [8].

Studies have reported an increased risk of Non-communicable Diseases (NCD) such as diabetes mellitus (DM), hypertension, and cardiovascular diseases among PLWHIV [9]. The coexistence of DM and hypertension in HIV-infected individuals may complicate the management of HIV infection, increasing the risk of morbidity and mortality of these individuals[9]. People living with HIV infection have 3 sources of risk of developing NCDs: from HIV infection itself; effects of the ART; and, from the risk associated with increasing age[10].

Hypertension, poses a significant public health concern in both developing and developed countries. It is an NCD that is a strong predictor of cardiovascular disease (CVD), premature death, kidney failure, coronary heart attack, stroke, and other health problems [11]. Hypertension, commonly known as high blood pressure, refers to the persistent elevation of arterial blood pressure within the body. Hypertension causes approximately 7.5 million deaths annually, leading to a total of 57 million disability-adjusted life years (DALYs) worldwide. It represents approximately 12.8% of the total of all deaths [12].

Being overweight is a risk factor for cardiovascular and other diseases. Few studies have been conducted to determine the magnitude of obesity/overweight, hypertension and diabetes and their associated factors among persons living with HIV/AIDS on ART in the Fako division. This study was therefore carried out to assess the prevalence of overweight/obesity, hypertension and diabetes and their associated factors among adult HIV/AIDS persons on ART in two treatment centers in the Fako Division to generate evidence-based data which will inform a public health intervention to improve the health status of PLWHA.

2. MATERIAL AND METHODS

2.1 Study design and settings

A hospital-based cross-sectional study was conducted at the HIV care and treatment centers in Buea and Limbe Regional Hospitals in Fako Division from June 1 to August 31, 2024. These centers have the highest number of PLWHA in the region.

2.3 Study population and sampling

Participants were HIV-positive adults (male and female) aged 18 years and above attending health centers for routine health education and drug refills. Exclusion criteria included PLWHA with kyphoscoliosis, critically ill individuals unable to communicate, pregnant women, and those diagnosed with schizophrenia or mental retardation. A total of 464 participants were recruited consecutively as they consented during follow-ups.

2.4 Data collection

Demographic, clinical, dietary, and anthropometric data were collected via structured questionnaires from June to August 2024. Clinical data were obtained from treatment registers, while dietary diversity was assessed using a 24-hour dietary diversity questionnaire.

2.4.1 Anthropometric measurements

Body weight and height were measured using calibrated equipment. Height was measured barefoot to the nearest 0.1 cm with a portable stadiometer (HR-200, Tanita), and weight to 0.01 kg with a manual weighing scale (Mettler Toledo, India). BMI was calculated as weight (kg) divided by height squared (m²). Participants were categorized by WHO BMI classifications: normal weight (18.5–24.9), overweight (25.0–29.9), and obese (\geq 30.0) [13].

2.4.2 Blood pressure

Blood pressure was measured following standard guidelines after a 10-minute rest. Three readings were taken using an electronic monitor (Arm style, China). The cuff was positioned at heart level, and participants were seated with their back supported and forearm on a table. Hypertension was defined as systolic blood pressure(SBP) \geq 140 mmHg and/or diastolic blood pressure (DBP) \geq 90 mmHg [14].

2.4.3 Blood glucose level

Diabetes mellitus (DM) was diagnosed using a plasma glucose meter (No code easy use, China). A fasting blood glucose test required at least eight hours of fasting, while random blood sugar tests identified diabetes at \geq 200 mg/dL [15,16].

2.4.4 Dietary diversity

Minimum dietary diversity was assessed using FAO guidelines as an indicator of nutrient adequacy using a 24-hour dietary diversity questionnaire [17].

2.5 Data analysis

Data entered into Kobo Collect were analyzed with SPSS version 25. Descriptive statistics summarized demographics and outcomes. Binary logistic regression (univariate and multivariate) was used to identify factors associated with overweight/obesity, hypertension, and diabetes. Multiple logistic regression with backward elimination determined associations, with crude and adjusted odds ratios at p < 0.05 [18].

3. RESULTS

3.1 Demographic characteristics of the study participants

Participants ranged in age from 18 to 78, with a mean age of 48.80 ± 11.67 years. Most participants, 202 (43.5%), were aged 34–49 years. Females accounted for 369 (79.5%), and 215 (46.3%) had a primary education level (Table 1).

Table 1: Demographic characteristics of study participants

Variable	Categories	Frequency (n)	Percentage (%)
	18-33	44	9.5
	34-49	202	43.5
Age group(years)	50-65	185	39.9
	>65	33	7.1
	Total	464	100
	Female	369	79.5
Gender	Male	95	20.5
	Total	464	100
	Divorced	12	2.6
	Married	197	42.5
Marital status	Single	158	34.1
	Widow(er)	97	20.9
	Total	464	100
	Christian	458	98.7
Religion	Muslim	6	1.3
	Total	464	100
	No formal education	13	2.8
Level of education	Primary	215	46.3
	Secondary	182	39.2
	Tertiary	54	11.6
	Total	464	100
	No income	41	8.8
	<25,000	157	33.8
Manthly in some (Esta)	25,000-50,000	160	34.5
Monthly income (Fcfa)	50,001-75,000	49	10.6
	>75,000	57	12.3
	Total	464	100
	RHB	217	46.8
Location	RHL	247	53.2
	Total	464	100

3.2 Clinical and lifestyle characteristics of persons living with HIV/AIDS on ART in two treatment centers of the Fako Division

Majority of the participants, 428(92.2%) had been on ART for 3 years and above. About half of the participants, 243(52.4%) were in clinical stage 1 and most had undetectable viral load 398(87.1%). Majority of them did not have HIV-related symptoms, 435(93.8%), and were on first-line regimen 403(86.9%). More than half of the participants consume alcohol, 294(63.4%) as seen in table 2.

Variable	Categories	Frequency (n)	Percentage (%)
	3 years and above	428	92.2
Duration on ART	6 months to 3 years	36	7.8
	Total	464	100
	Stage I	243	52.4
	Stage II	84	18.1
Clinical stage of HIV/AIDS	Stage III	109	23.5
	Stage IV	28	6
	Total	464	100
Recently diagnosed	No	441	95
with HIV advance	Yes	23	5
disease	Total	464	100
	> 40 copies/ml ≤1000copies/ml	52	11.4
Recent viral load	≥ 1000copies/ml(unsuppressed)	7	1.5
(copies/ml)	Undetectable	398	87.1
	Total	457	100
	No	435	93.8
Have HIV/AIDS-	Yes	29	6.3
related symptoms	Total	464	100
	1st line	403	86.9
Treatment Regimen	2nd line	61	13.1
	Total	464	100
	No	427	92
Depressed	Yes	37	8
	Total	464	100
	No	44	9.5
Disclosed HIV/AIDS status	Yes	420	90.5
Sidius	Total	464	100
Attended HIV-	No	18	3.9
related counselling	Yes	446	96.1
session	Total	464	100
	No	170	36.6
Consume alcohol	Yes	294	63.4
	Total	464	100
	No	452	97.4
Smoke	Yes	12	2.6
	Total	463	100

Table 2:Clinical and lifestyle characteristics of persons living with HIV/AIDS on ART in two treatment centers of the Fako Division

3.3 Prevalence of overweight/obesity, diabetes, and hypertensionamong persons living with HIV/AIDS on ART in two treatment centers of the Fako Division

3.3.1 Prevalence of overweight/obesity based on BMI (body mass index) among PLWHA

More than half of the participants were overweight or obese, with an overall prevalence of 290(62.5%). Only 11 (2.4%) of the participants were underweight (Figure 1).

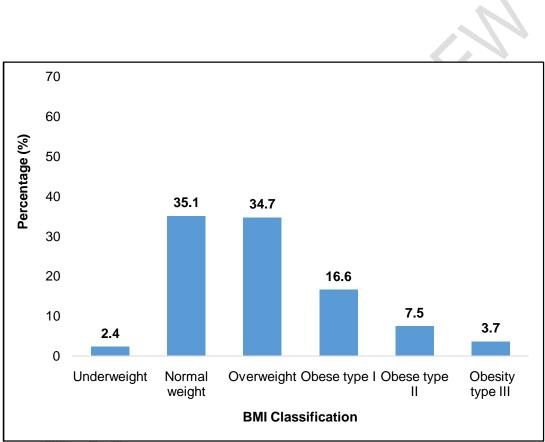


Figure 1:BMI classification of PLWHA in Fako Division

3.3.2 Prevalence of hypertension and diabetes among study participants

About one-quarter of the participants were hypertensive, 114(24.6%) and 65(14%) were diabetic in both treatment centres in Buea and Limbe Regional Hospitals, Fako Division (figure 2).

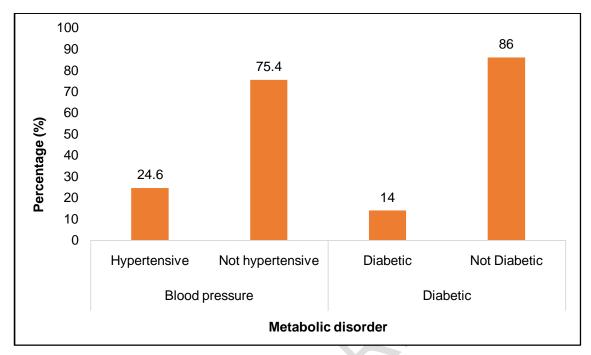


Figure 2: Prevalence of hypertension and diabetes among PLWHA in Fako Division

3.4 Factors associated with overweight/obesity

The factor associated with overweight/obesity was the gender (χ 2= 11.67, p=0.001) of the participants, with females 245(52.80%) being more overweight than males 45(9.7%) as seen in table 3.

Variable	Catagorias	~		Obesity/	Overwei	ght	Chi-	P-	
variable	Categories	n	Yes	%	No	%	square	value	
	18-33	44	22	4.74	22	4.74			
	34-49	202	131	28.23	71	15.30			
Age group(years)	50-65	185	121	26.08	64	13.79	6.76	0.079	
group(years)	>65	33	16	3.45	17	3.66			
	Total	464	290	62.50	174	37.50			
	Female	369	245	52.80	124	26.72			
Gender	Male	95	45	9.70	50	10.78	11.67	0.001	
	Total	464	290	62.50	174	37.50			
	None	13	8	1.73	5	1.08			
	Primary	215	129	27.86	86	18.57		0.575	
Level of education	Secondary	181	120	25.92	61	13.17	2.0		
education	Tertiary	54	32	6.91	22	4.75			
	Total	463	289	62.42	174	37.58			
	No income	41	26	5.60	15	3.23			
	<25,000	157	91	19.61	66	14.22			
Average income(Fcfa)	25,000-50,000	160	99	21.34	61	13.15	4.00	0 404	
	50,000-75,000	49	33	7.11	16	3.45	4.02	0.404	
	>75,000	57	41	8.84	16	3.45			
	Total	464	290	62.50	174	37.50			
	RHB	217	82	17.67	135	29.09		0.904	
Location	RHL	247	92	19.83	155	33.41	0.01		
	Total	464	174	37.50	290	62.50			
	No formal education	13	5	1.08	8	1.72			
Level of	Primary	215	86	18.53	129	27.80			
education	Secondary	182	61	13.15	121	26.08	2.07	0.547	
	Tertiary	54	22	4.74	32	6.90			
	Total	464	174	37.50	290	62.50			
	Christian	458	171	36.85	287	61.85			
Religion	Muslim	6	3	0.65	3	0.65	0.41	0.524	
	Total	464	174	37.50	290	62.50			
	Divorced	12	4	0.86	8	1.72			
	Married	197	68	14.66	129	27.80			
Marital status	Single	158	71	15.30	87	18.75	5.74	0.121	
	Widow(er)	97	31	6.68	66	14.22			
	Total	464	174	37.50	290	62.50			

Table 3: Association between obesity/overweight and demographic characteristics

The odds of those in the age group of 50 to 56 being overweight/obese were 2 times higher (aOR: 2.41; CI: (1.13-5.17); p=0.024) compared to those within the age group of 65 years and above. Also, the odds of a female being overweight/obese were 2.36 times higher compared to the male (aOR: 2.36; CI: (1.48-3.78); p=0.001) as seen in table 4.

		Overweight/	Not		95%		
Variable	Categories	Obese n (%)	Overweight/ Obese n (%)	AOR	Lower	Upper	P- value
	18-33	22(4.74)	22(4.74)	1.17	0.47	2.92	0.735
Age	34-49	131(28.23)	71(15.30)	2.109	0.20	4.46	0.051
group (years)	50-65	121(26.08)	64(13.79)	2.41	1.13	5.17	0.024
(years)	>65	16(3.45)	17(3.66)	1			
Condor	Female	245(52.08)	124(26.72)	2.36	1.48	3.78	0.001
Gender	Male	45(9.70)	50(10.78)	1	\sim		

Table 4: Demographic factors independently associated with the prevalence of
overweight/obesity

There was no significant association between overweight/obesity and comorbidity.

Table 5 shows the association between overweight/obesity and clinical characteristics. One main clinical factor associated with overweight and obesity was the lack of HIV clinical symptoms (χ 2=10.36, p=0.001). Persons living with HIV without any clinical symptoms were more likely to be obese/overweight.

Variable	Categories		0	verweigh	t/Obe	sity	Chi-	P-
Vallable	Calegories	n	Yes	%	No	%	square	value
Duration	3 years and above	428	158	34.05	270	58.19		
Duration on ART	6 months to 3 years	36	16	3.45	20	4.31	0.80	0.370
	Total	464	174	37.50	290	62.50		
	Stage I	243	85	18.32	158	34.05		
Clinical	Stage II	84	29	6.25	55	11.85		
stage of	Stage III	109	50	10.78	59	12.72	4.27	0.233
HIV/AIDS	Stage IV	28	10	2.16	18	3.88		
	Total	464	174	37.50	290	62.50		
Diagnosed	No	441	161	34.70	280	60.34		
with HIV advance	Yes	23	13	2.80	10	2.16	3.74	0.053
disease	Total	464	174	37.50	290	62.50		
Recent	> 40 copies/ml≤1000copies/ml	52	22	4.74	30	6.47		
viral load	≥ 1000copies/ml	7	3	0.65	4	0.86	1.00	0.661
(copies/ml)	Undetectable	398	144	31.03	254	54.74		
	Total	457	169	36.42	288	62.07		
HIV/AIDS	No	435	155	33.41	280	60.34	10.36	0.001

Table 5: Association between overweight/obesity and clinical characteristics

related	Yes	29	19	4.09	10	2.16		
symptoms	Total	464	174	37.50	290	62.50		
	1st line	403	150	32.33	253	54.53		-
Treatment Regimen	2nd line	61	24	5.17	37	7.97	0.10 0.750	
Regimen	Total	464	174	37.50	290	62.50		
Depressed	No	427	162	34.91	265	57.11		-
	Yes	37	12	2.59	25	5.39	0.44 0.507	
	Total	464	174	37.50	290	62.50		_
Disclosed	No	44	18	3.88	26	5.60		_
HIV/AIDS	Yes	420	156	33.62	264	56.90	0.24 0.623	
status	Total	464	174	37.50	290	62.50		_
Attended	No	18	5	1.08	13	2.80		_
HIV related counselling	Yes	446	169	36.42	277	59.70	0.76 0.385	
session	Total	464	174	37.50	290	62.50		
	Diabetes	51	22	4.74	29	6.25		
	Diabetes/Hypertension	14	5	1.08	9	1.94		
Comorbidity	Hypertension	100	28	6.03	72	15.52	5.34	0.14
	None	299	119	25.65	180	38.79		
	Total	464	174	37.50	290	62.50		

A multivariate analysis identified three clinical factors independently associated with overweight/obesity. These were persons without HIV/AIDS related symptoms, those who consume alcohol and those who do not smoke. Those with no HIV/AIDS related symptoms[aOR:3.36; CI:(1.49-7.56); p=0.003)]were 3 times more likely to be overweight/obese compared to those with HIV/AIDS related symptoms. Those who did not consume alcohol were 0.53 times less likely to be overweight (aOR:0.53; CI:(0.36-0.79); p=0.002) compared to those who consume alcohol. Study participants who were nonsmokers were 11 times more likely to be overweight (aOR:11.94; CI:(2.54-56.04); p=0.002) compared to those who smoke (Table 6).

Table 6: Clinical factors independently associated with prevalence of overweight/obesity

Variable	Category	Overweig	Overweight/obese			95% CI	
Vallable	Calegory	Yes n(%)	No n(%)	AOR	Lower	Upper	value
Recently diagnosed of HIV	No	30(6.47)	280(60.34)	2.17	0.91	5.19	0.083
advance disease	Yes	10(2.16)	13(2.80)	1			
HIV/AIDS related symptoms	No	280(60.34)	155(33.41)	3.36	1.49	7.56	0.003
The Albs Telated Symptoms	Yes	10(2.16)	19(4.09)	1			
Consume alcohol	No	92(19.83)	78(16.81)	0.53	0.36	0.79	0.002
	Yes	198(42.67)	96(20.69)	1			
Smoke	No	288(62.07)	164(35.34)	11.94	2.54	56.04	0.002
	Yes	2(0.43)	10(2.16)	1			

3.5 Factors associated to hypertension among PLWHA in Buea and Limbe Regional Hospitals

Participants within the ages of 34 to 49 years (aOR:0.19; CI:(.08-.043); p<0.001) were 0.19 times less likely to be hypertensive compared to those in the age group of 65 years old and above while those in the age group of 18 to 33 years (aOR:0.034; CI:(0.01-0.17); p<0.001) were 0.03 times less likely to be hypertensive compared to those in the age group of 65 years old and above. Participants on treatment at the RHB were 2 times more likely to be hypertensive (aOR:2.571; CI:(1.62-4.09); p<0.001)compared to those on treatment at RHL (Table 7).

		Hypertensive	Not		95%	% CI		
Variable	Categories	n (%)	hypertensive n (%)	AOR	Lower	Upper	P-value	
	18-33	2(0.43)	42(9.05)	0.034	0.01	0.17	<0.001	
Age	34-49	32(6.90)	170(36.64)	0.19	0.08	0.43	<0.001	
group (years)	50-65	65(14.01)	120(25.86)	0.562	0.26	1.23	0.148	
(years)	>65	15(3.23)	18(3.88)	1				
Gender	Female	84(18.10)	285(61.42)	0.589	0.34	1.01	0.055	
Gender	Male	30(6.47)	65(14.01)	1				
Location	RHB	66(14.22)	151(32.54)	2.571	1.62	4.09	<0.001	
LUCATION	RHL	48(10.34)	199(42.89)	1				
*RHB= Regional Hospital Buea RHL= Regional Hospital Limbe								

Table 7: Demographic factors independently associated with the prevalence of hypertension

There was no association between hypertension and clinical/lifestyle characteristics.

3.6Factors associated to diabetesin among persons living with HIV/AIDS on ART in two treatment centers of the Fako Division

Table 8 shows the association between diabetes and demographic characteristics. Following a bivariate analysis, marital status was found to be the only sociodemographic characteristic that was significantly associated to diabetes (χ 2= 7.96, p=0.040).

Table 8: Association between diabetes and demographic characteristics

				Dial	oetic		Chi-	P-
Variable	Categories	n	Diabetic	%	Not Diabetic	%	square	value
	18-33	44	4	0.86	40	8.62		
	34-49	202	31	6.68	171	36.85		0.211
Age group (years)	50-65	185	22	4.74	163	35.13	4.50	
(years)	>65	33	8	1.72	25	5.39		
	Total	464	65	14.01	399	85.99		
	Female	369	48	10.34	321	69.18		
Gender	Male	95	17	3.66	78	16.81	1.50	0.221
	Total	464	65	14.01	399	85.99		
	No income	41	5	1.08	36	7.76		
	<25,000	157	21	4.53	136	29.31		0.843
Monthly	25,000-50,000	160	26	5.60	134	28.88		
income (Fcfa)	50,001-75,000	49	7	1.51	42	9.05	1.41	
	>75,000	57	6	1.29	51	10.99		
	Total	464	65	14.01	399	85.99		
	Buea Regional Hospital	217	27	5.82	190	40.95		0.362
Location	Limbe Regional Hospital	247	38	8.19	209	45.04	0.83	
	Total	464	65	14.01	399	85.99		
	No formal education	13	3	0.65	10	2.16		
Level of	Primary	215	30	6.47	185	39.87	4.07	0 = 4 0
education	Secondary	182	24	5.17	158	34.05	1.37	0.716
	Tertiary	54	8	1.72	46	9.91		
	Total	464	65	14.01	399	85.99		
	Christian	458	64	13.79	394	84.91		
Religion	Muslim	6	1	0.22	5	1.08	0.04	0.850
	Total	464	65	14.01	399	85.99		
	Divorced	12	4	0.86	8	1.72		
	Married	197	28	6.03	169	36.42		
Marital status	Single	158	15	3.23	143	30.82	7.96	0.040
	Widow(er)	97	18	3.88	79	17.03		
	Total	464	65	14.01	399	85.99		

Table 9 shows the association between diabetes and clinical/lifestyle characteristics. Of all clinical the factors, the only factor found to have a statistically significant association with diabetes was the duration on ART (χ 2= 3.914, p=0.048). Participants who had been on ART for more than 3 years were more likely to be diabetic compared to those who had on ART for less than 3 years.

				Diat	petic		Chi-	P-
Variable	Categories	n	Diabetic	%	Not Diabetic	%	square	value
	3 years and above	428	56	12.07	372	80.17		
Duration on ART	6 months to 3 years	36	9	1.94	27	5.82	3.914	0.048
	Total	464	65	14.01	399	85.99		
	Stage I	243	30	6.47	213	45.91		
Clinical	Stage II	84	13	2.80	71	15.30		
stage of	Stage III	109	20	4.31	89	19.18	3.508	0.341
HIV/AIDS	Stage IV	28	2	0.43	26	5.60		
	Total	464	65	14.01	399	85.99		
Diagnosed	No	441	62	13.36	379	81.68		
of HIV advance	Yes	23	3	0.65	20	4.31	0.019	0.891
disease	Total	464	65	14.01	399	85.99		
Recent	> 40 copies/ml ≤1000copies/ml	52	9	1.94	43	9.27		
viral load (copies/ml)	≥ 1000copies/ml	7	2	0.43	5	1.08	1.861	0.263
	Undetectable	398	53	11.42	345	74.35		
	Total No	457 435	<u>64</u> 61	<u>13.79</u> 13.15	<u>393</u> 374	84.70 80.60		
HIV/AIDS related	Yes	29	4	0.86	25	5.39	0.001	0.972
symptoms	Total	464	- 65	14.01	399	85.99	0.001	0.372
	1st line	403	56	12.07	347	74.78		
Treatment	2nd line	61	9	1.94	52	11.21	0.032	0.857
Regimen	Total	464	65	14.01	399	85.99	0.002	0.007
	No	427	60	12.93	367	79.09		
Depressed	Yes	37	5	1.08	32	6.90	0.008	0.928
or anxious	Total	464	65	14.01	399	85.99	0.000	0.520
	No	44	7	1.51	37	7.97		
Disclosed HIV/AIDS	Yes	420	, 58	12.50	362	78.02	0.146	0.703
status	Total	464	65	14.01	399	85.99	0.140	0.700
Attended	No	18	3	0.65	15	3.23		
HIV related	Yes	446	62	13.36	384	82.76	0.11	0.740
counselling session	Total	464	65	14.01	399	85.99	0.11	0.140
35331011	No	170	27	5.82	143	30.82		
Consume	Yes	294	38	8.19	256	55.17	0.782	0.377
alcohol	Total	294 464	65	14.04	399	86.18	0.102	0.011
Smoke	No	404	64	13.79	388	83.62	0 320	0 566
Smoke		752	07	10.19	000	00.02	0.329	0.566

Table 9:Association between diabetes and clinical/lifestyle characteristics amongPLWHA in Buea and Limbe Regional Hospitals

Yes	12	1	0.22	11	2.37
Total	464	65	14.01	399	85.99

3.7 Magnitude of dietary diversity among PLWHA in Buea and Limbe Regional Hospitals

Figure 3presents the minimum dietary diversity of the study participants. 68 (15%) of participants had achieved a good minimum dietary diversity while 396 (85%) did not. The mean minimum dietary diversity score was 3.42 ± 1.07 .

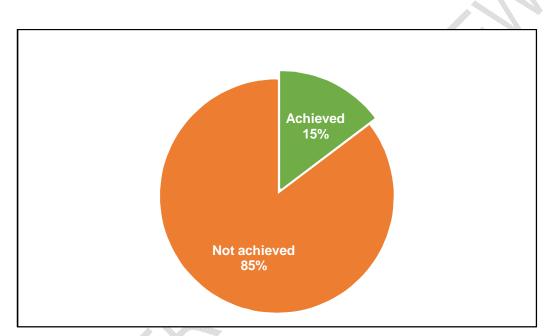


Figure 3: Minimum dietary diversity of PLWHA in Buea and Limbe Regional Hospitals, Fako Division

The most consumed food group was grains, white roots and tubers and plantains 458(98.9%)], followed by meat, poultry and fish 46(9.9%)]. The least consumed food group was other vitamin A-rich fruits and vegetables 33(7.1%) (table 10).

Variable	Categories	Frequency (n)	Percentage (%)
Food groups	Grains, white roots and tubers, and plantains	458	98.9
	Other fruits	78	16.8
	Other vegetables	109	23.5
	Other vitamin A-rich fruits and vegetables	33	7.1
	Dark green leafy Vegetables	191	41.3
	Eggs	46	9.9
	Meat, poultry and fish	401	86.6
	Pulses (beans, peas and lentils)	95	20.5
	Milk and milk products	52	11.2
	Nuts and seeds	126	27.2
	Total	1589	343.2

Table 10: Distribution of food groups consumed by study participants

In the result should be focus in essential risk factor that have high odd ratio and significant associated with obesity and diabetes such as marital status, and etc

4. DISCUSSION

This study found a 62.5% prevalence of overweight/obesity among participants, with only 2.4% underweight. This prevalence is comparable to findings by Crum-Cianflone et al. (2008) in the US, where 63% of PLWHA were overweight/obese [19]. Similar patterns have been observed in other studies highlighting rising obesity rates in PLWHA [20,21]. Contributing factors include ARV metabolic effects, increased social support, insulin resistance, and chronic inflammation [22,23]. However, this prevalence was higher than the 13.5% reported in Ethiopia [24] and 46% in Uganda [25], potentially due to lifestyle changes, poor diets, and sedentary behavior [26]. Additionally, stigma related to AIDS wasting syndrome may drive PLWHA to adopt high-calorie diets to gain weight and avoid discrimination [25].

Overweight/obesity was more common in females (52.8%) and participants aged 50–65 (26.08%). Females were 2.36 times more likely to be overweight/obese, consistent with findings in Ethiopia [27]. Contributing factors include decreased metabolism with age and higher global obesity rates in women [28]. In sub-Saharan Africa, men often seek care later, leading to more significant weight loss [29]. Participants aged 50–56 were twice as likely to be overweight/obese compared to those over 65, consistent with findings from Tanzania showing obesity peaks in the mid-50s before declining [30,31].

Clinical factors associated with overweight/obesity included absence of HIV symptoms, alcohol consumption, and non-smoking. Asymptomatic participants were three times more likely to be overweight/obese, aligning with literature linking weight loss to HIV symptoms

such as nausea, vomiting, and oral infections [32]. Alcohol consumers were more likely to be overweight due to its high energy content [33]. Non-smokers were 11 times more likely to be overweight compared to smokers, contrasting findings in other studies linking smoking cessation to weight gain [34,35].

Hypertension prevalence was 25%, consistent with estimates for Cameroon (23.8–25.4%) [36,37] but higher than the 21.9% in sub-Saharan Africa [38] and lower than 38% in Bamenda [39]. Hypertension is linked to rising obesity rates and contributes to non-communicable disease burdens. Older participants had higher hypertension prevalence, consistent with findings in Nigeria [40,41].

Diabetes prevalence was 14%, aligning with studies in PLWHA (14.9%) [15] and LMIC estimates (6.8%–26%) [42] but higher than the 5.8% general population prevalence in Cameroon [43]. Factors included longer ART duration and marital status. ART use beyond three years increased diabetes risk, as seen in Yaoundé studies [44]. Long-term ART exposure may lead to insulin resistance and type 2 diabetes [45]. Married participants had higher diabetes risk, differing from studies suggesting marriage reduces diabetes risk [46,47].

The discussion section should be explained detail the variable which have high AOR and significant associated several risk factors with obesity and diabetes.

5. CONCLUSION

The prevalence of overweight/obesity among PLWHA was high and influenced by gender, age, absence of HIV symptoms, alcohol use, and smoking status. Hypertension and diabetes were common, linked to age, location, ART duration, and marital status. These findings emphasize the need for interventions addressing non-communicable diseases in PLWHA.

CONSENT

All authors declare that 'written informed consent was obtained from the participants.

ETHICAL APPROVAL

This study was approved by the Institutional Review Board of the Faculty of Health Sciences, University of Buea (Ref. No. 2024/2459-03/UB/SG/IRB/FHS). Administrative clearance was obtained from the Regional Delegation of Public Health for the South West region, (Ref. No. P42/MINSANTE/SWR/RDPH/CB.PT/680/512) and written informed consent was obtained from the patients recruited into this study.

REFERENCES

[1] E. Y. Setyaningrum, Y. Charisma, and N. Nurdin, "Concept Analysis of Self-Acceptance for People With HIV/AIDS (PLWHA)," presented at the 2nd LawangSewu International Symposium on Health Sciences: Nursing (LSISHS-N 2023), Atlantis Press, Jul. 2024, pp. 74–87. doi: 10.2991/978-94-6463-467-9_7.

[2] WHO, "HIV and AIDS." Accessed: Oct. 15, 2024. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/hiv-aids

[3] G. Y. Yitbarek, M. T. Engidaw, B. A. Ayele, S. A. Tiruneh, and M. T. Alamir, "Magnitude of Obesity/Overweight and Its Associated Factors Among HIV/AIDS Patients on Antiretroviral Therapy in Jimma Zone Hospitals, South West Ethiopia: Hospital-Based Cross-Sectional Study," Diabetes Metab. Syndr. Obes., Apr. 2020, Accessed: Sep. 30, 2024. [Online]. Available: https://www.tandfonline.com/doi/abs/10.2147/DMSO.S247221

[4] WHO, "Obesity and overweight." Accessed: Oct. 05, 2024. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight

[5] OECD, The Heavy Burden of Obesity: The Economics of Prevention. in OECD Health Policy Studies. OECD, 2019. doi: 10.1787/67450d67-en.

[6] L. C. Martins, M. P. Oliveira e Silva, A. C. O. dos Santos, V. M. da Silveira, and P. S. R. de Araújo, "Prevalence and associated factors related to sarcopenia in people living with HIV/AIDS," BMC Infect. Dis., vol. 24, no. 1, p. 933, Sep. 2024, doi: 10.1186/s12879-024-09845-5.

[7] B. O. Taiwo, H. Romdhani, M.-H. Lafeuille, R. Bhojwani, K. Milbers, and P. Donga, "Treatment and comorbidity burden among people living with HIV: a review of systematic literature reviews," J. Drug Assess., vol. 12, no. 1, pp. 1–11, Dec. 2023, doi: 10.1080/21556660.2022.2149963.

[8] E. J. Eteneneng and N. F. Akum, "Evaluation of risk factors/prevalence of insulin resistance, diabetes mellitus, hypertension and central-obesity in people living with HIV/AIDS at the Bamenda Regional Hospital," Recent Adv. Nat. Sci., pp. 101–101, Jul. 2024, doi: 10.61298/rans.2024.2.2.101.

[9] Z. Ataro, W. Ashenafi, J. Fayera, and T. Abdosh, "Magnitude and associated factors of diabetes mellitus and hypertension among adult HIV-positive individuals receiving highly active antiretroviral therapy at Jugal Hospital, Harar, Ethiopia," HIVAIDS - Res. Palliat. Care, vol. 10, pp. 181–192, Oct. 2018, doi: 10.2147/HIV.S176877.

[10] T. Nigatu, "Integration of HIV and Noncommunicable Diseases in Health Care Delivery in Low- and Middle-Income Countries," Prev. Chronic. Dis., vol. 9, p. E93, May 2012, doi: 10.5888/pcd9.110331.

[11] S. Das, "Association of hypertension with overweight and obesity among adults in Rangpur region of Bangladesh: A cross-sectional study," Hum. Nutr. Metab., vol. 37, p. 200273, Sep. 2024, doi: 10.1016/j.hnm.2024.200273.

[12] WHO, "Blood pressure/hypertension." Accessed: Sep. 30, 2024. [Online]. Available: https://www.who.int/data/gho/indicator-metadata-registry/imr-details/3155

[13] WHO, "A healthy lifestyle - WHO recommendations." Accessed: Sep. 30, 2024. [Online]. Available: https://www.who.int/europe/news-room/fact-sheets/item/a-healthylifestyle---who-recommendations

[14] H. Kanegae, T. Oikawa, Y. Okawara, S. Hoshide, and K. Kario, "Which blood pressure measurement, systolic or diastolic, better predicts future hypertension in normotensive young adults?," J. Clin. Hypertens., vol. 19, no. 6, pp. 603–610, Apr. 2017, doi: 10.1111/jch.13015.

[15] R. Chireshe, T. Manyangadze, and K. Naidoo, "Diabetes mellitus and associated factors among HIV-positive patients at primary health care facilities in Harare, Zimbabwe: a descriptive cross-sectional study," BMC Prim. Care, vol. 25, no. 1, p. 28, Jan. 2024, doi: 10.1186/s12875-024-02261-3.

[16] CDC, "Testing for Diabetes," Diabetes. Accessed: Oct. 16, 2024. [Online]. Available: https://www.cdc.gov/diabetes/diabetes-testing/index.html

[17] G. Kennedy, T. Ballard, M. C. Dop, and European Union, Guidelines for measuring household and individual dietary diversity. Rome: Food and Agriculture Organization of the United Nations, 2011.

[18] S. S. Msollo, G. L. Shausi, and A. W. Mwanri, "Prevalence, knowledge and practices on prevention and management of overweight and obesity among adults in Dodoma City, Tanzania," PLOS ONE, vol. 19, no. 1, p. e0297665, Jan. 2024, doi: 10.1371/journal.pone.0297665.

[19] N. Crum-Cianflone, R. Tejidor, S. Medina, I. Barahona, and A. Ganesan, "Obesity among Patients with HIV: The Latest Epidemic," AIDS Patient Care STDs, vol. 22, no. 12, pp. 925–930, Dec. 2008, doi: 10.1089/apc.2008.0082.

[20] S. S. Bailin, C. L. Gabriel, C. N. Wanjalla, and J. R. Koethe, "OBESITY AND WEIGHT GAIN IN PERSONS WITH HIV," Curr. HIV/AIDS Rep., vol. 17, no. 2, pp. 138–150, Apr. 2020, doi: 10.1007/s11904-020-00483-5.

[21] N. Crum-Cianflone, R. Tejidor, S. Medina, I. Barahona, and A. Ganesan, "Obesity among Patients with HIV: The Latest Epidemic," AIDS Patient Care STDs, vol. 22, no. 12, pp. 925–930, Dec. 2008, doi: 10.1089/apc.2008.0082.

[22] M. N. Pedro et al., "Insulin Resistance in HIV-Patients: Causes and Consequences," Front. Endocrinol., vol. 9, p. 514, Sep. 2018, doi: 10.3389/fendo.2018.00514.

[23] S. S. Bailin, C. L. Gabriel, C. N. Wanjalla, and J. R. Koethe, "OBESITY AND WEIGHT GAIN IN PERSONS WITH HIV," Curr. HIV/AIDS Rep., vol. 17, no. 2, pp. 138–150, Apr. 2020, doi: 10.1007/s11904-020-00483-5.

[24] N. K. Belete, D. T. Assefa, T. F. Gadore, M. Y. Teshale, and E. Z. Tariku, "Association Between Overweight/Obesity and ART Drug Regimen Among Adult HIV Patients in Gamo Zone Public Health Facilities Southern Ethiopia," HIVAIDS - Res. Palliat. Care, vol. 15, pp. 349–360, Jun. 2023, doi: 10.2147/HIV.S412586.

[25] E. A. Nalugga et al., "Prevalence of overweight and obesity and associated factors among people living with HIV attending a tertiary care clinic in Uganda," BMC Nutr., vol. 8, p. 107, Sep. 2022, doi: 10.1186/s40795-022-00604-w.

[26] D. A. Amugsi, Z. T. Dimbuene, and C. Kyobutungi, "Correlates of the double burden of malnutrition among women: an analysis of cross sectional survey data from sub-Saharan Africa," BMJ Open, vol. 9, no. 7, p. e029545, Jul. 2019, doi: 10.1136/bmjopen-2019-029545.

[27] G. Y. Yitbarek, M. T. Engidaw, B. A. Ayele, S. A. Tiruneh, and M. T. Alamir, "Magnitude of Obesity/Overweight and Its Associated Factors Among HIV/AIDS Patients on Antiretroviral Therapy in Jimma Zone Hospitals, South West Ethiopia: Hospital-Based Cross-Sectional Study," Diabetes Metab. Syndr. Obes., vol. 13, pp. 1251–1258, Apr. 2020, doi: 10.2147/DMS0.S247221.

[28] G. A. Shayo and F. M. Mugusi, "Prevalence of obesity and associated risk factors among adults in Kinondoni municipal district, Dar es Salaam Tanzania," BMC Public Health, vol. 11, no. 1, p. 365, May 2011, doi: 10.1186/1471-2458-11-365.

[29] G. Y. Yitbarek, M. T. Engidaw, B. A. Ayele, S. A. Tiruneh, and M. T. Alamir, "Magnitude of Obesity/Overweight and Its Associated Factors Among HIV/AIDS Patients on Antiretroviral Therapy in Jimma Zone Hospitals, South West Ethiopia: Hospital-Based Cross-Sectional Study," Diabetes Metab. Syndr. Obes. Targets Ther., vol. 13, pp. 1251–1258, Apr. 2020, doi: 10.2147/DMSO.S247221.

[30] A. de C. O. Castro, E. A. Silveira, M. de O. Falco, M. W. Nery, and M. D. Turchi, "Overweight and abdominal obesity in adults living with HIV/AIDS," Rev. Assoc. Medica Bras. 1992, vol. 62, no. 4, pp. 353–360, Jul. 2016, doi: 10.1590/1806-9282.62.04.353.

[31] G. A. Shayo and F. M. Mugusi, "Prevalence of obesity and associated risk factors among adults in Kinondoni municipal district, Dar es Salaam Tanzania," BMC Public Health, vol. 11, no. 1, p. 365, May 2011, doi: 10.1186/1471-2458-11-365.

[32] F. Mashinya, M. Alberts, R. Colebunders, and J.-P. Van Geertruyden, "Weight status and associated factors among HIV-infected people on antiretroviral therapy in rural Dikgale, Limpopo, South Africa," Afr. J. Prim. Health Care Fam. Med., vol. 8, no. 1, p. 1230, Nov. 2016, doi: 10.4102/phcfm.v8i1.1230.

[33] S. R. AlKalbani and C. Murrin, "The association between alcohol intake and obesity in a sample of the Irish adult population, a cross-sectional study," BMC Public Health, vol. 23, no. 1, p. 2075, Oct. 2023, doi: 10.1186/s12889-023-16946-4. [34] S. Dare, D. F. Mackay, and J. P. Pell, "Relationship between Smoking and Obesity: A Cross-Sectional Study of 499,504 Middle-Aged Adults in the UK General Population," PLoS ONE, vol. 10, no. 4, p. e0123579, Apr. 2015, doi: 10.1371/journal.pone.0123579.

[35] M. Dahlawi et al., "Association Between Smoking Habits and Body Weight Among General Population in Saudi Arabia," Cureus, vol. 16, no. 1, p. e51485, 2024, doi: 10.7759/cureus.51485.

[36] A. Dzudie et al., "Hypertension among people living with HIV/AIDS in Cameroon: A cross-sectional analysis from Central Africa International Epidemiology Databases to Evaluate AIDS," PLOS ONE, vol. 16, no. 7, p. e0253742, Jul. 2021, doi: 10.1371/journal.pone.0253742.

[37] P. V. Ebasone et al., "Coprevalence and associations of diabetes mellitus and hypertension among people living with HIV/AIDS in Cameroon," AIDS Res. Ther., vol. 21, no. 1, p. 36, Jun. 2024, doi: 10.1186/s12981-024-00624-5.

[38] A. Chen et al., "Hypertension among people living with human immunodeficiency virus in sub-Saharan Africa: a systematic review and meta-analysis," Sci. Rep., vol. 14, no. 1, p. 16858, Jul. 2024, doi: 10.1038/s41598-024-67703-5.

[39] E. J. Eteneneng and N. F. Akum, "Evaluation of risk factors/prevalence of insulin resistance, diabetes mellitus, hypertension and central-obesity in people living with HIV/AIDS at the Bamenda Regional Hospital," Recent Adv. Nat. Sci., pp. 101–101, Jul. 2024, doi: 10.61298/rans.2024.2.2.101.

[40] M. Aridegbe, I. Adeoye, and A. Oguntade, "Obesity, hypertension, and dyslipidemia among human immunodeficiency virus patients in Abeokuta Ogun State, Nigeria," Niger. J. Cardiol., vol. 16, no. 1, p. 83, Jun. 2019, doi: 10.4103/njc.njc_10_18.

[41] G. W. Mbuthia, K. Magutah, and S. T. McGarvey, "The Prevalence and Associated Factors of Hypertension among HIV Patients," Int. J. Hypertens., vol. 2021, 2021, doi: 10.1155/2021/5544916.

[42] S. Sarkar and T. T. Brown, "Diabetes in People Living with HIV," in Endotext [Internet], MDText.com, Inc., 2023. Accessed: Oct. 10, 2024. [Online]. Available: https://www.ncbi.nlm.nih.gov/sites/books/NBK545886/

[43] J. J. Bigna, J. R. Nansseu, J.-C. Katte, and J. J. Noubiap, "Prevalence of prediabetes and diabetes mellitus among adults residing in Cameroon: A systematic review and meta-analysis," Diabetes Res. Clin. Pract., vol. 137, pp. 109–118, Mar. 2018, doi: 10.1016/j.diabres.2017.12.005.

[44] D. S. Mbaga et al., "Prevalence of Diabetes Mellitus in Persons Living with HIV in Yaounde: A Cross-Sectional Study: Prévalence du diabètesucré chez les personnes vivant avec le VIH à Yaoundé," Health Sci. Dis., vol. 23, no. 6, Art. no. 6, May 2022, doi: 10.5281/hsd.v23i6.3715.

[45] M. L. Montes et al., "Incidence of Diabetes Mellitus and Associated Factors in the Era of Antiretroviral Drugs With a Low Metabolic Toxicity Profile," Open Forum Infect. Dis., vol. 11, no. 4, p. ofae112, Mar. 2024, doi: 10.1093/ofid/ofae112.

[46] C. M. de Oliveira et al., "Relationship between marital status and incidence of type 2 diabetes mellitus in a Brazilian rural population: The Baependi Heart Study," PLoS ONE, vol. 15, no. 8, p. e0236869, Aug. 2020, doi: 10.1371/journal.pone.0236869.

[47] N. J. Johnson, E. Backlund, P. D. Sorlie, and C. A. Loveless, "Marital Status and Mortality: The National Longitudinal Mortality Study," Ann. Epidemiol., vol. 10, no. 4, pp. 224–238, May 2000, doi: 10.1016/S1047-2797(99)00052-6.