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ABSTRACT 
 
In this article, optimized hybrid block methods are proposed for the solution of first-
order ordinary differential equations. The techniques of interpolation and collocation 
were adopted for the derivation of the methods using a three-parameter 
approximation. The hybrid points were obtained by m i n i mizing the local truncation 
error of the main method. The schemes obtained were reformulated to reduce the 
number of function evaluation. The discrete schemes were produced as a by-product of 
the continuous scheme and used to simultaneously solve initial value problems (IVPs) in 
block mode. The resulting schemes are self-starting, do not require the creation of 
individual predictors, consistent, zero-stable, and convergent. The accuracy and 
efficiency of the methods were ascertained using several numerical experiments. The 
numerical results were favorably compared to some techniques from the cited 
literature. 

 
Keywords: Linear stability, Local truncation error (LTE), Parameter approximations, 
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1. INTRODUCTION  
 
A system of differential equations is derived via mathematical modelling of physical 
phenomena in the scientific and technical domains, specifically in epidemiological 
systems characterized by many interactions among separate compartments. Finding 
analytical solutions to most differential equations is often challenging. The utilization of 
numerical techniques was necessary in order to obtain an approximate solution. Various 
approaches, such as collocation, interpolation, integration, and interpolation 
polynomials, have been thoroughly investigated in academic literature to construct 
continuous linear multistep methods (LMMs) for the direct solution of initial value 
problems in ordinary differential equations see [1,2,3,4,5,6,7,8,11] and the literature 
therein. 
The study conducted by the author in [13] proposed a two-step methodology that 
involved the selection of two intermediate locations through the optimization of the 
LTEs. The method was reformulated as an R-K method, but its implementation required 
a greater computational cost. However, the most optimal formulation was attained 
through the process of reformulating the method in a manner that decreases the 
frequency of instances of the source term f. Upon conducting a comparative analysis 
between the proposed economic reformulation and the existing methodologies 
documented in the literature, it was observed that the former demonstrated a higher 
level of performance. In [10], the authors presented a novel optimized one-step hybrid 
block technique that is specifically tailored for the optimization of first-order initial value 
problems (IVPs). The methodology entailed the careful selection of three hybrid points 
to optimize the LTEs (Local Truncation Errors) of the basic equations governing the 
behavior of the block. The technique displayed zero-stability, therefore showcasing a 
level of algebraic correctness that is fifth-order. The validation of the approach's efficacy 

scholar
Highlight
Developed

scholar
Highlight
Which one is the method and which one is the other method? Recast.

scholar
Highlight

scholar
Highlight
What is your findings and recommendations?

scholar
Highlight
formulated



 

 

and precision was accomplished through the use of numerical illustrations. Furthermore, 
[20] introduced a novel one-step implicit block approach that incorporates three intra-
step grid points. The major goal of the LTE was to minimize the principal term in order to 
attain one of the three optimal intra-step positions. A revision of the methodology led to 
a significant decrease in computing costs while maintaining the same degrees of 
consistency, zero-stability, A-stability, and convergence. The methodology was utilized 
in order to tackle practical concerns, and a comparison analysis was carried out with 
current approaches in the literature to determine the superiority of the innovative 
approach. Several scholarly studies have been conducted to explore the enhancement 
of hybrid points by minimizing the LTE. Notable contributions in this area include the 
research conducted by [12,14,15,16,17,18,19,20,21]. 
The study conducted in our research utilizes a novel class of hybrid block techniques 
that contains three off-step points and employs three-parameter approximations. By 
implementing optimization techniques for LTE, it is possible to attain optimal hybrid 
points. The main aim of this work is to present an efficient methodology for solving initial 
value problems that adhere to the prescribed form. 

𝑥′ = 𝑓(𝑡, 𝑥), 𝑥(𝑡0) =  𝑥0                 (1) 
where, 𝑡 ∈  [𝑡0, 𝑇 ], 𝑓 ∶  [𝑡0, 𝑇 ] × ℜ →  ℜ. It is assumed that equation (1) satisfies the 
conditions of the existence and uniqueness theorem for initial value problems (see 
[11,13]). 
 

2. MATERIAL AND METHODS 
 
In this section, we provide the derivation of the proposed optimal hybrid block 
method. This method incorporates three intra-step points and is derived by the 
reduction of the major term of the LTE.  

Let us consider the polynomial 𝑝(𝑡) as an approximation for the exact solution 𝑥(𝑡) 
of equation (1). The coefficients of the polynomial function 𝑝(𝑡) are determined by 

utilizing approximate values of 𝑥 and 𝑓 at various grid and off-step points.  

Let 𝑥 =  𝑥(𝑡𝑗 ) and 𝑥′𝑗 = 𝑓𝑗 =  𝑓(𝑡𝑗, 𝑥 ) be the approximate values of 𝑥 and 𝑓 

respectively at 𝑡𝑗. And 𝑡𝑛 is the grid point given by 𝑡𝑛+𝑗  =  𝑡𝑛  +  𝑗ℎ, ℎ =  𝑡𝑗 − 𝑡𝑗−1 . 

Then 

𝑥(𝑡) ≈  𝑄(𝑡) =∑𝑏𝑗𝑡
𝑗

∞

𝑗=0

          (2) 

where 𝑏𝑗 ∈  𝑅 are real unknown coefficients to be determined. Thus the 𝑚 partial 

sum of equation (2) is obtained as 

𝑥(𝑡) ≈  𝑄(𝑡) =∑𝑏𝑗𝑡
𝑗

𝑘

𝑗=0

 .             (3) 

The first derivative of (3) is obtained as 

𝑥′(𝑡) ≈  𝑄′(𝑡) =∑𝑗𝑏𝑗𝑡
𝑗−1

𝑚

𝑗=0

 ,         (4) 

where 𝑘 =  (𝐼 + 𝐶) − 1, 𝐼 and 𝐶 denote the number of interpolation and 

collocation points respectively. Let 𝑝, 𝑞, 𝑟 be the of f -step points such that 0 <

𝑝 <  𝑞 <  𝑟 <  1. Interpolating equation (3) at 𝑡𝑛+𝑗 , 𝑗 =  0, and collocating 

equation (4) at 𝑡𝑛+𝑗 , 𝑗 =  0, 𝑝, 𝑞, 𝑟, 1 yield the optimized hybrid block method 

(OHBM) which can be written in matrix form as 
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(

 
 
 
 

1 𝑡𝑛 𝑡𝑛
2

0 1 2𝑡𝑛
0 1 2𝑡𝑛+𝑝

    

𝑡𝑛
3 𝑡𝑛

4 𝑡𝑛
5

3𝑡𝑛
2 4𝑡𝑛

3 5𝑡𝑛
4

3𝑡𝑛+𝑝
2 4𝑡𝑛+𝑝

3 5𝑡𝑛+𝑝
4

0 1 2𝑡𝑛+𝑞
0 1 2𝑡𝑛+𝑟
0 1 2𝑡𝑛+1

    

3𝑡𝑛+𝑞
2 4𝑡𝑛+𝑞

3 5𝑡𝑛+𝑞
4

3𝑡𝑛+𝑟
2 4𝑡𝑛+𝑟

3 5𝑡𝑛+𝑟
4

3𝑡𝑛+1
2 4𝑡𝑛+1

3 5𝑡𝑛+1
4 )

 
 
 
 

(

 
 
 

𝑏0
𝑏1
𝑏2
𝑏3
𝑏4
𝑏5)

 
 
 

=

(

 
 
 

𝑥𝑛
𝑓𝑛
𝑓𝑛+𝑝
𝑓𝑛+𝑞
𝑓𝑛+𝑟
𝑓𝑛+1)

 
 
 

            (5) 

Solving equation (5) by Gaussian Elimination method to obtain the coefficients 𝑏𝑗 
’s, 𝑗 =  0, 1, . . . , 5 and putting back into equation (3), then the implicit 
continuous scheme can be written in the form 

𝑄(𝑡)  =  𝛼0(𝑡)𝑥𝑛  +  ℎ(𝛽0(𝑡)𝑓𝑛  + 𝛽𝑝 (𝑡)𝑓𝑛+𝑝  + 𝛽𝑞 (𝑡)𝑓𝑛+𝑞  + 𝛽𝑟 (𝑡)𝑓𝑛+𝑟  
+ 𝛽1 (𝑡)𝑓𝑛+1 .                    (6) 

Where 𝛼0(𝑡), 𝛽0(𝑡), 𝛽𝑝 (𝑡), 𝛽𝑞 (𝑡), 𝛽𝑟 (𝑡), 𝛽1 (𝑡) are continuous coefficients. 

Evaluating equation (6) at the points 𝑡 =  𝑡𝑛+𝑝 , 𝑡𝑛+𝑞 , 𝑡𝑛+𝑟  , 𝑡𝑛+1, yield the following 

 

𝑥𝑛+𝑝 = 𝑥𝑛 +
ℎ𝑢1(−3𝑝

3 + 30𝑞𝑟 + 5𝑝2)(1 + 𝑞 + 𝑟) − 10𝑝(𝑞 + 𝑟 + 𝑞𝑟))𝑓𝑛  
60𝑞𝑟

+
ℎ𝑝3(3𝑝2 + 10𝑞𝑟 − 5𝑝(𝑞 + 𝑟))𝑓𝑛+1

60(−1 + 𝑝)(−1 + 𝑞)(−1 + 𝑟)
                                      (7)

+
ℎ𝑝(12𝑝3 − 30𝑞𝑟 + 5𝑝2(1 + 𝑞 + 𝑟) + 20𝑝(𝑞 + 𝑟 + 𝑞𝑟))𝑓𝑛+𝑝  )

60(−1 + 𝑝)(𝑝 − 𝑞)(𝑞 − 𝑟)

+
ℎ𝑝3(3𝑝2 + 10𝑟 − 5𝑝(1 + 𝑟))𝑓𝑛+𝑞

60(𝑝 − 𝑞)(−1 + 𝑞)𝑞(𝑞 + 𝑟)
+
ℎ𝑝3(3𝑝2 + 10𝑞 − 5𝑞(1 + 𝑞))𝑓𝑛+𝑟
60(𝑝 − 𝑟)(−1 + 𝑟)𝑟(−𝑞 + 𝑟)

 

 

𝑥𝑛+𝑞 = 𝑥𝑛 +
ℎ𝑞(5𝑢1(𝑞

2 + 6𝑟 − 𝑞(1 + 𝑟)) + 𝑞(−3𝑞2 − 10𝑟 + 5𝑞(1 + 𝑟))𝑓𝑛
60𝑝𝑟

+
ℎ𝑞3(𝑞(3𝑞 − 5𝑟) − 5𝑝(𝑞 − 2𝑟))𝑓𝑛+1
60(−1 + 𝑝)(−1 + 𝑞)(−1 + 𝑟)

−
ℎ𝑞3(3𝑞2 + 10𝑟 − 5𝑞(1 + 𝑟))𝑓𝑛+𝑝

60(−1 + 𝑝)𝑝(𝑝 − 𝑞)(𝑝 − 𝑟)

+
ℎ𝑞(5𝑢1(3𝑞

2 + 6𝑟 − 4𝑞(1 + 𝑟)) + 𝑠(−12𝑞2 − 20𝑟 + 𝑞(1 + 𝑟))𝑓𝑛+𝑞

60(𝑝 − 𝑞)(−1 + 𝑞)(𝑞 − 𝑟)
  (8)

−
ℎ𝑞3(5𝑝(−2 + 𝑞) + (5 − 3𝑞)𝑞)𝑓𝑛+𝑟
60(𝑝 − 𝑟)(−1 + 𝑟)(−𝑞 + 𝑟)
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𝑥𝑛+𝑟 = 𝑥𝑛 +
ℎ𝑟(𝑟(5𝑞(−2 + 𝑟) + (5 − 3𝑟)𝑟) + 5𝑝(−2𝑞(−3 + 𝑟) + (−2 + 𝑟)𝑟))𝑓𝑛

60𝑝𝑞

+
ℎ𝑟3(10𝑝𝑞 − 5𝑝𝑟 − 5𝑞𝑟 + 3𝑟2)𝑓𝑛+1
60(−1 + 𝑝)(−1 + 𝑞)(−1 + 𝑟)

+
ℎ𝑟3(5𝑞(−2 + 𝑟) + (5 − 𝑟)𝑟)𝑓𝑛+𝑝

60(−1 + 𝑝)𝑝(𝑝 − 𝑞)(𝑝 − 𝑟)

−
ℎ𝑟3(5𝑝(−2 + 𝑟) + (5 − 3𝑟)𝑟)𝑓𝑛+𝑞

60(𝑝 − 𝑞)(−1 + 𝑞)(𝑞 − 𝑟)
                                                                       (9)

+
ℎ𝑟(𝑟(3(5 − 4𝑟)𝑟 + 5𝑞(−4 + 3𝑟)) + 5𝑞(𝑞(6 − 4𝑟) + 𝑟(−4 + 3𝑟)))𝑓𝑛+𝑟

60(𝑝 − 𝑟)(−1 + 𝑟)(−𝑞 + 𝑟)
 

𝑥𝑛+1 = 𝑥𝑛 +
ℎ(−3 + 𝑞(5 − 10𝑟) + 5𝑞 + 5𝑝(1 − 2𝑟 + 𝑞(−2 + 6𝑟)))𝑓𝑛

60𝑝𝑞𝑟

+
ℎ(12 + 15𝑞 + 15𝑟 − 20𝑞𝑟 + 5𝑝(3 − 4𝑟 + 𝑞(−4 + 6𝑟)))𝑓𝑛+1

60(−1 + 𝑝)(−1 + 𝑞)(−1 + 𝑟)
   (10)

+
ℎ(3 − 5𝑟 + 5𝑞(−1 + 2𝑞))𝑓𝑛+𝑝

60(−1 + 𝑝)𝑝(𝑝 − 𝑞)(𝑝 − 𝑟)
+
ℎ(3 − 5𝑟 + 5𝑝(−1 + 2𝑞))𝑓𝑛+𝑞

60(𝑝 − 𝑞)(−1 + 𝑞)(𝑞 − 𝑟)

+
ℎ(3 − 5𝑞 + 5𝑝(−1 + 2𝑞))𝑓𝑛+𝑟
60(𝑝 − 𝑟)(−1 + 𝑟)(−𝑞 + 𝑟)

 

where, 𝑓𝑛+𝑗 =  𝑓 (𝑡𝑛+𝑗 , 𝑥𝑛+𝑗  ), for 𝑗 =  𝑝, 𝑞, 𝑟, 1, and 𝑥𝑛+𝑗  ≈  𝑥(𝑡𝑛  +

 𝑗ℎ) are approximations of the exact solution. E xpanding the main 

formula 𝑥(𝑡𝑛+1) in the Taylor series around 𝑡𝑛. 

ℒ(𝑥(𝑡𝑛+1); ℎ) =
1

7200
(−2 + 3𝑝 + 3𝑞 − 5𝑝𝑞 + 3𝑟 − 5𝑝𝑟 − 5𝑞𝑟 + 10𝑝𝑞𝑟)𝑥6[𝑡𝑛]ℎ

6

+
1

302400
(−24 + 21𝑝 + 21𝑝2 + 21𝑞 − 14𝑝𝑞 − 35𝑝2𝑞 + 21𝑝2 − 35𝑝𝑝2

+ 21𝑟)𝑥7[𝑡𝑛]ℎ
7

+
1

302400
(−14𝑝𝑟 − 35𝑝2𝑟 − 14𝑞𝑟 + 70𝑝2𝑞𝑟 − 35𝑞2𝑟 + 70𝑝𝑞2𝑟)𝑥7[𝑡𝑛]ℎ

7

+
1

302400
(21𝑟2 − 35𝑝𝑟2 − 35𝑞𝑟2 + 70𝑝𝑞𝑟2)𝑥7[𝑡𝑛]ℎ

7

+ 𝑂(ℎ)8.                        (11) 

Setting the principal term of the LTE in (11) to zero yields the following 
equation in three unknowns: 

1

7200
(−2 + 3𝑝 + 3𝑞 − 5𝑝𝑞 + 3𝑟 − 5𝑝𝑟 − 5𝑞𝑟 + 10𝑝𝑞𝑟) = 0                 (12) 

𝑞 =
2 − 3𝑝 − 3𝑟 + 5𝑝𝑟

3 − 5𝑝 − 5𝑟 + 10𝑝𝑟
                   (13) 

while the other two parameters are given as 



 

 

𝑝 =
1

10
(5 − √5); 𝑟 =

1

10
(5 + √5)               (14) 

Substituting equation (14) into equation (13), we get 𝑞 = 1

2
. 

The LTE of the main formula in equation (14) is computed by substituting 
the values of the parameters 𝑝, 𝑞, 𝑟 into equation (15) to obtain 

ℒ(𝑥(𝑡𝑛+1); ℎ) = −
𝑥7[𝑡𝑛]ℎ

7

1512000
+ 𝑂(ℎ)8.          (15) 

Lastly, putting the values of the parameters 𝑝, 𝑞, 𝑟 into equations (10) - (14) we 
get the following one-step optimal hybrid block method: 

𝑥𝑛+𝑝 = 𝑥𝑛 +
ℎ

3000
((275 + √5)𝑓𝑛 + (625 + 95√5)𝑓𝑛+𝑝 − 192√5𝑓𝑛+𝑞 + (625 − 205√5)𝑓𝑛+𝑟

+ (−25 + √5)𝑓𝑛+1), 

𝑥𝑛+𝑞 = 𝑥𝑛 +
ℎ

192
(17𝑓𝑛 + (40 + 15√5)𝑓𝑛+𝑝 + (40 − 15√5)𝑓𝑛+𝑟 − 𝑓𝑛+1),                          (16) 

𝑥𝑛+𝑟 = 𝑥𝑛 +
ℎ

3000
((275 − √5)𝑓𝑛 + (625 + 205√5)𝑓𝑛+𝑝 + 192√5𝑓𝑛+𝑞 + (625 − 95√5)𝑓𝑛+𝑟

− (25 + √5)𝑓𝑛+1), 

𝑥𝑛+1 = 𝑥 +
ℎ

12
(𝑓𝑛 + 5𝑓𝑛+𝑝 + 5𝑓𝑛+𝑟 + 𝑓𝑛+1).                                                                                         

The hybrid block method in (16) is reformulated to reduce the frequency of 
𝑓.This procedure is believed to reduce the number of function evaluation and 
hence the computing time. Thus, we obtain the modified optimal hybrid block 
method (MOHBM) as given in (17) below: 

ℎ𝑓𝑛+𝑝 = −
1

10
(2ℎ𝑓𝑛 + (21 + √5)𝑥𝑛 + (−25 + 15√5)𝑥𝑛+𝑝 + (32 − 32√5)) 𝑥𝑛+𝑞

+ (−25 + 15√5)𝑥𝑛+𝑟 + (−3 + √5)𝑥𝑛+1, 

ℎ𝑓𝑛+𝑞 =
1

16
(2ℎ𝑓𝑛 + 20𝑥𝑛 + (−25 − 25√5)𝑥𝑛+𝑝 + 32𝑥𝑛+𝑞 + (−25 + 25√5)𝑥𝑛+𝑟

− 2𝑥𝑛+1),          (17) 

ℎ𝑓𝑛+𝑟 =
1

10
(−2ℎ𝑓𝑛 + (−21 + √5)𝑥𝑛 + (25 + 15√5)𝑥𝑛+𝑝 − (32 + 32√5)) 𝑥𝑛+𝑞

+ (25 + 15√5)𝑥𝑛+𝑟 − (3 + √5)𝑥𝑛+1, 

ℎ𝑓𝑛+1 = ℎ𝑓𝑛 + 9𝑥𝑛 − 25𝑥𝑛+𝑝 + 32𝑥𝑛+𝑞 − 25𝑥𝑛+𝑟 + 9𝑥𝑛+1. 

 

3. Analysis of the basic properties of the methods 

In what follows, the basic properties of the OHBM (16) (or equivalently MOHBM 
(17)) including accuracy, consistency, zero-stability, convergence, linear stability,  
and A-stability are investigated. 

3.1 Order of accuracy and consistency 

Rewriting the OHBM (16) in the matrix difference form yields 

𝐴1𝑋𝑛 = 𝐴0𝑋𝑛−1 + ℎ(𝐵0𝐹𝑛−1 + 𝐵1𝐹𝑛),                          (26) 

Where 𝐴0, 𝐴1, 𝐵0, and 𝐵1 are  4 × 4 matrices given by 
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                    𝐴0 = (

0 0 0
0 0 0
0
0

0
0

0
0

   

1
1
1
1

); 𝐴1 = (

1 0 0
0 1 0
0
0

0
0

1
0

   

0
0
0
1

); 𝐵0 =

(

 
 
 
 0 0 0
0 0 0
0
0

0
0

0
0

   

275+√5

3000
17

192

275−√5

3000
1

12 )

 
 
 
 

      (18) 

𝐵1 =

(

 
 
 
 
 
 

625 + 95√5

3000

−192√5

3000

625 − 205√5

3000

40 + 15√5

192
0

40 − 15√5

192

625 − 205√5

3000
5

12

0
0

625 − 95√5

3000
5

12

   

275 + √5

3000
−1

192

−(25 + √5)

3000
1

12 )

 
 
 
 
 
 

       (19) 

𝑋𝑛 = (𝑥𝑛+𝑝, 𝑥𝑛+𝑞 , 𝑥𝑛+𝑟 , 𝑥𝑛+1)
𝑇 , 

𝑋𝑛−1 = (𝑥𝑛−1+𝑝, 𝑥𝑛−1+𝑞 , 𝑥𝑛−1+𝑟 , 𝑥𝑛)
𝑇 , 

                                                       𝐹𝑛 = (𝑓𝑛+𝑝, 𝑓𝑛+𝑞 , 𝑓𝑛+𝑟 , 𝑓𝑛+1)
𝑇 ,                      (20) 

𝐹𝑛−1 = (𝑓𝑛−1+𝑝, 𝑓𝑛−1+𝑞 , 𝑓𝑛−1+𝑟 , 𝑓𝑛)
𝑇 . 

For a sufficiently differentiable test function 𝑚(𝑡𝑛) in the interval [0, 𝑇 ], Let the 

difference operator 𝐷̅ for the OHBM in (20) be given as 

𝐷̅(𝑚(𝑡𝑛); ℎ) = ∑ [𝜉𝑗̅(𝑡𝑛 + 𝑗ℎ) − ℎ𝜇𝑗𝑚′(𝑡𝑛 + 𝑗ℎ)]

𝑗 =0,𝑝,𝑞,𝑟,1

,        (21) 

Where ,  𝜉𝑗̅ and 𝜇𝑗 are  co lumn vectors o f  the  matr ices 𝐴0 and 𝐴1, respectively.  

The Taylor  ser ies expansion about  𝑡𝑛 for 𝑥(𝑡𝑛 + 𝑗ℎ) and 𝑥′(𝑡𝑛 + 𝑗ℎ) y ie ld  

ℒ̅(𝑚(𝑡𝑛); ℎ) = 𝑐0𝑥(𝑡𝑛) + 𝑐1ℎ𝑥
′(𝑡𝑛) + 𝑐2ℎ

2𝑥(2)(𝑡𝑛) + ⋯+ 𝑐𝑝ℎ
𝑝𝑥(𝑝)(𝑡𝑛) + ⋯           (22) 

where 𝑐𝑖 , 𝑖 = 0,1,2, … are  vectors.  From equat ion (22) ,  the order  o f  the 

OHBM is  𝑝 = (5,5,5,6)𝑇 w i th  the er ror  constant   

𝑐𝑝+1 =
1

180000
,

1

180000
,

1

230400
,

−1

1512000
                (23) 

Showing that  the OHBM has at  least  f i f th  order  accuracy.  

3.2 Zero-stability and convergence 

The concept of zero-stability pertains to the characteristics exhibited by a procedure 
when the value of h approaches zero. In the context of a homogeneous equation 
𝑥′ = 0 and the discretized form is  

                                                𝐴1𝑋𝑛 − 𝐴0𝑋𝑛−1 = 0                                                      (24) 
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where 𝑊0 and 𝑊1 are given in equations (27) and (34). The first characteristic 

polynomial 𝜌(𝜎)  =  𝑑𝑒𝑡 (𝜎𝐴1 − 𝐴0)  =  𝜎
3(𝜎 −  1)  =  0. This implies that 𝜎1 = 𝜎2 =

𝜎3 = 0, 𝜎4 = 1.  

Since the OHBM and the MOHBM satisfy the properties of consistency and zero-
stability, then the methods are convergent according to [9]. 

 
3.3 Linear stability and order stars 

The concept of linear stability focuses on the performance of a method in real-world 
scenarios, where it is crucial to ascertain if the approach will produce desirable 
outcomes for a given positive value of h. To validate this concept, commonly known as 
linear stability, we employ the methodology on a linearized test problem. 
                                                      𝑥(𝑡)  =  𝜎𝑥(𝑡), 𝑅𝑒(𝜎)  <  0                                 (25) 

Applying the proposed block method to  the trial problem (39), we obtain the 
recurrence relation 

𝑋𝑛 =  𝐻(ℏ)𝑋𝑛−1, ℏ =  𝜎ℎ.                             (26) 

where the matrix 𝐻(ℏ) is given by (𝐴1 − 𝑟𝐵0)
−1(𝐴0 −  𝑟𝐵0).  The stability property 

of this matrix’s eigenvalues, which governs how the numerical solution behaves, 
is the spectral radius, 𝐻(ℏ), w h i c h  is used in the method to define the region of 
absolute stability S. The method is A-stable if  

𝑆 =  {ℏ ∈  𝐶 ∶  |𝜌[𝐻(ℏ)]|  <  1}                           (27) 

Upon performing various calculations, it becomes evident that the predominant 
eigenvalue can be expressed as a quotient function. 

𝜌[𝐻(ℏ)] =
ℏ4 + 16ℏ3 + 132ℏ2 + 600ℏ + 1200

ℏ4 − 16ℏ3 + 132ℏ2 − 600ℏ + 1200
              (28) 

which has a modulus of less than one in C− (see Figure 1). Hence, the OHBM (16) 
is A-stable. 

 
            Fig. 1: (a) Region of absolute stability                     (b) Order star for OHBM 



 

 

 

4. RESULTS AND DISCUSSION 
 
In the sequel, the accuracy of the proposed methods will be demonstrated by 
implementation in solving some popular applied problems of the form (1) in 
literature. The methods being compared are the OHBM (16), the MOHBM (17), 
the OSBM in [10] and BHMO and RBHMO in [13]. 

To measure the performance of each of the aforementioned methods, maximum 
global absolute error (MAbErr), absolute error at the final grid point (AbErrF), and 
the CPU time in seconds are computed.  

Problem 4.1 

Given the first-order ODE which has appeared in [8,10]:  

𝑥′(𝑡) = −10(𝑥 − 1)2,   𝑥(0) = 2.            (29) 

The exact solution is 𝑥(𝑡) = 1 +
1

1+18𝑥
. The problem is solved in the interval [0,0.1] taking 𝑛 =

10, 20, 40. The MAbErr, AbErrF, and CPU time are computed using the methods 
OHBM, MOHBM, and OSBM, and results presented in Table 1. The efficiency curves of 
MAbErr and CPU time are represented in Fig 3a. The figure indicates that the OHBM and 
MOHBM outperform existing methods with respect to accuracy and computing time.  

Problem 4.2 

Given the first-order ODE which has appeared in [6,10]: 

                                                            𝑥′(𝑡) = 𝑡𝑥,   𝑥(0) = 1                  (30) 

The exact solution 𝑥(𝑡) = 𝑒
1

2
𝑡2

. The problem is solved in the interval [0,1] for step sizes 𝑛 =
20, 40, 80, with the MAbErr, AbErrF, and CPU time computed using the methods 
OHBM, MOHBM, BHMO and RBHMO, and results presented in Table 2. The 
efficiency curves of AbErr and CPU time are represented in Fig 4. The figure reveals that 
the MOHBM outperform existing method with respect to accuracy and computing time. 

Problem 4.3 

Given the nonlinear problem investigated by Akinfenwa and Jator. (2011):  

                                           𝑥′(𝑡) = −
𝑥3

2
,   𝑥(0) = 1,                     (31) 

with exact solution  𝑥(𝑡) = 1 √𝑡 + 1⁄ , The problem is solved in the interval [0,4] taking 𝑛 =
20, 40, 80,100. The MAbErr, AbErrF, and CPU time are computed using the 
methods OHBM, MOHBM, and OSBM, and results presented in Tables 3. The 
efficiency curves of MAbErr and CPU time are represented in Fig 4a. As revealed by the 
figure, the OHBM and MOHBM outperform existing method with respect to accuracy and 
computing time.   



 

 

    

    Fig.2a: Efficiency plot for Problem 4.1     Fig.2b: Solution plot for Problem 4.1    

                                         

 

   Fig.3a: Efficiency plot for Problem 4.2      Fig.3b: Solution plot for Problem 4.2 

 

  

     Fig.4a: Efficiency plot for Problem 4.3       Fig.4b: Solution plot for Problem 4.3 

Table 1: The MAbErr, AbErrF, and CPU time for Problem 4.1 using different 
methods and step sizes (n) 



 

 

n Method MAbErr AbErrF MErr Norm CPU time 

10 OHBM 2.85272E-10 1.5998E-10 2.06271E-10  7.29646E-10   4.687E-02 

 MOHBM 2.22905E-10 1.25002E-10 1.61175E-10  5.70126E-10   4.687E-02 

 OSBM 3.96097E-10 2.22137E-10   2.86408E-10  1.01311E-09   6.250E-02 

20 OHBM 4.49196E-12 2.51776E-12 3.37380E-12  1.61640E-11   7.813E-02 

 MOHBM 3.50919E-12 1.96665E-12 2.63545E-12  1.26266E-11   6.250E-02 

 OSBM 6.23834E-12 3.49609E-12   4.68514E-12  2.24468E-11   1.250E-01 

 40 OHBM 6.99441E-14 3.97460E-14 5.34478E-14  3.54737E-13   1.563E-01 

MOHBM 5.50671E-14 3.06422E-14 4.16740E-14  2.76761E-13 1.406E-01 

OSBM 9.79217E-14 5.44009E-14   7.47315E-14  4.96271E-13   2.344E-01 

 

Table 2: The AbErr, FErr, and CPU time for Problem 4.2 using different methods 
and step sizes (n) 

n Method MAbErr AbErrF MErr Norm CPU time 

20 OHBM 7.28471E-11 7.28471E-11 1.44385E-11 8.79531E-11 3.125E-02 

 MOHBM 7.28471E-11 7.28471E-11 1.44385E-11 8.79531E-11 2.125E-02 

 BHMO   2.10081E-09 2.10081E-09   3.96744E-10 2.49730E-09 2.563E-02 

 RBHMO   2.10081E-09 2.10081E-09   3.96744E-10 2.49730E-09 2.125E-02 

40 OHBM 1.14420E-12 1.14420E-12 2.06914E-13 1.72935E-12  7.813E-02 

 MOHBM   1.14420E-12 1.14420E-12   2.06914E-13 1.72935E-12 3.125E-02 

 BHMO 3.16660E-11 3.16660E-11 5.54340E-12 4.73412E-11 3.125E-02 

 RBHMO 3.16660E-11 3.16660E-11 5.54340E-12 4.73412E-11 3.125E-02 

80 OHBM 1.97620E-14 1.97620E-14 3.49856E-15 3.99421E-14    1.406E-01 

MOHBM 1.97627E-14 1.97627E-14 3.49856E-15 3.99421E-14 9.125E-02 

BHMO 4.89608E-13 4.89608E-13 8.34184E-14 9.76046E-13 6.250E-02 

 RBHMO 4.89608E-13 4.89608E-13 8.34184E-14 9.76046E-13 4.687E-02 

 

Table 3: The MAbErr, AbErrF, and CPU time for Problem 4.3 using different 
methods and step sizes (n) 

n Method MAbErr AbErrF MErr Norm CPU time 

20 OHBM 2.59459E-09 4.73998E-10 1.1552E-09 6.21496E-09 7.813E-02 

 MOHBM 2.02819E-09 3.70502E-10 9.02985E-10 4.85811E-09 7.813E-02 

 OSBM   3.60018E-09 6.57769E-10   1.60301E-10 8.62403E-09 7.813E-02 

40 OHBM 4.19044E-11 7.61163E-12 1.91781E-11 1.41802E-10  1.718E-01 

 MOHBM   3.27428E-11 5.94735E-12   1.49850E-11 1.10798E-10 1.250E-01 

 OSBM 5.8186E-11 1.05694E-11 2.66302E-11 1.96901E-10 1.718E-01 

80 OHBM 6.63469E-13 1.19516E-13 3.05738E-13 3.15630E-12    3.437E-01 

MOHBM 5.18030E-13 9.34253E-14 2.38810E-13 2.46531E-12 2.500E-01 

OSBM 9.21374E-13 1.66145E-13 4.24857E-13 4.38475E-12 3.125E-01 

 
 

5. CONCLUSION 
 
the research has presented the optimal hybrid block method, and the modified optimal 
hybrid method for solving first-order initial value problems of ODEs.  The results in 
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Tables 1, 2, and 3 reveal that the methods OHBM (16), and MOHBM (17), are 
highly efficient with minimal errors. Furthermore, the modified method (17) apart 
from having minor errors also reduced the computational time which is an added 
advantage. The derived methods were implemented in block modes with the merit of 
being self-starting and thus required no starting values. The methods have good 
accuracy properties and are indeed of the higher order of accuracy at the final grid 
point where the LTEs were optimized, a major advantage of the method.  

Also, the methods do not require the creation of separate predictors. The MOHBM 
showed that the efficiency of the method is dependent on the implementation 
strategies. The method i s  advantageous when economic computations in terms  o f  
t he  number of function evaluations and computing times are of major concern. Hence, 
the techniques are strongly suggested for general use. The Mathematica software 
package version 12.1 was used to develop the schemes, the plots and the results on 
Windows Operating System with Processor Intel(R) Core (TM) i5-4310U CPU @ 
2.00GHz, 2601 Mhz, 2 Core(s), 4 Logical Processor(s) having 8.0GB installed RAM. 
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