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ABSTRACT 
 
This research aims to design a controller that is used on aircraft pitches using the Ackerman formula. The 
Ackerman formula makes it possible to obtain linear state feedback control in an explicit form with the 
desired eigenvalue.Pitch control is very important in take-off and stabilization when flying down. This 
critical criterion exists because the pitch can cause the aircraft in turbulence if the aircraft's pitch control is 
not calibrated correctly.Aircraft are considered rigid objects, and their movements consist of small 
interference originating from external conditions. There are two equations of an aircraft namely a lateral 
equation and a longitudinal equation. Matrix K feedback method is used to regulate the pitch angle. 
Transformation matrix T is one of the methods that can be used to find the feedback gain matrix K.The 
controller is used to find out the response value by several experiments with fixed setpoints, changed 
setpoints, and by adding load to the system. based on the results of simulations that have been done with 
a fixed setpoint, the system response has a value τ = 0.47, and td = 0.39. From several simulation that 
have been done show the system response can follow the setpoint well without passing the setpoint that 
has been determined. 
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1. INTRODUCTION 
 
For ensuring the safe operation of modern aviation, aircraft control systems are critical. One of the critical parameters that 
need accurate control is the aircraft's pitch. The pitch control influences the aircraft's ability and keep a level flight. 
Conventional pitch control technique basically depends on classical control theories like Proportional-Integral-Derivative 
(PID) controller. However, this technique may sometimes fall short when applied in complex aerodynamic, especially in 
modern aviation. 

Along with the development of increasingly modern times, technology embedded in aircraft is also increasingly 
sophisticated [1]. Basically, an aircraft is regulated by elevator, rudder, and aileron. The elevator serves to regulate the 
pitch motion of the aircraft. [2]. Basic control of the aircraft has 3 basic movements in determining the longitudinal stability 
of the plane including pitch and to establish lateral stability there roll, and yaw. [3]. Pitch control is very important in take-
off and stabilization when flying down. This critical criterion exists because the pitch can cause the aircraft in turbulence if 
the aircraft's pitch control is not calibrated correctly [4]. 

Overshooting issues are very important in some practical applications such as in the production process, which can result 
in damage to the product, another example is in aircraft [5]. The control system on the aircraft must have high precision 
control, which overshoot can risk the aircraft. In the past few years, there have been many studies on the controller 
methods to reach an overshoot response to linear systems [6 - 9]. 



 

 

Digital control theory usually assumes the same sampling interval [10]. This research aims to design a controller that is 
used on aircraft pitches using the Ackerman formula. The Ackerman formula makes it possible to obtain linear state 
feedback control in an explicit form with the desired eigenvalue [11]. The Ackerman formula used is determine of matrix K 
using the matrix transformation method, it was chosen because the method used is quite simple and can produce the 
desired response. 

This article consists of 5 parts. Part I contains the background of this research, the description of the problems to be 
studied, and the purpose of this research. Part II contains a mathematical model of the plant, which is a mathematical 
model of the aircraft pitch. Part III explains the control method proposed in the study. Part IV contains the implementation 
of the control method in the plant and its results. Part V contains conclusions from experiments that have been carried 
out. 
 
2. MODELLING OF AIRCRAFT PITCH CONTROL 
 
This section presents the mathematical model of the aircraft's pitch control system as a basis for simulations for the 
development of proposed control techniques. Aircraft are considered rigid objects, and their movements consist of small 
interference originating from external conditions [12]. The are two equations of an aircraft namely a lateral equation and a 
longitudinal equation. Figure 1 is the control system of the plane's pitch where Xb, Yb, Zb are the aerodynamic forces 
section and θ, Φ, δe are the pitch, roll and deflection angle of the elevator respectively [12 – 13]. 
 

 
Fig. 1 Aircraft Pitch Control. 
 

 
 
Fig. 2 The components in body coordinate. 

.Several conditions must be considered for modelling. First, aircraft conditions must be stable at a constant speed and 
altitude, so that the thrust and resistance and weight balance cannot be considered. Second, there is no impact on the 
modification in pitch for aircraft speed. The dynamic equations of an aircraft are presented in (1), (2), and (3). 
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The longitudinal parameters utilized in this paper are presented in Table I [14]. 
 
TABLE I.  LONGITUDINAL PARAMETERS 
 

Longitudinal 
Derivatives 

Devices 
ܳ	 = ܵܳ ;2ݐ݂/36.8݈ܾ	 = 	6771݈ܾ;  

ܳܵܿ̅ 	= .ݐ38596݂	 ݈ܾ; , 	0ݑ2̅/ܿ =  ݏ0.016	

X (S-1) Z (F-1) Pitching 
Moment (FT-1) 

Rolling 
Velocities ܺ௨ = −0.045 ܼ௨ = ௨ܯ 0.369− = 0 

Yawing 
Velocities ܺ௪ 	= 	0.03 ܼ௪ = −2.02 

ܼ௪̇ = 0 
௪ܯ 	= 	0.05 
௪̇ܯ 	= 	0.051 

Angle of 
attack 

ܺఈ 	= 	0 
ܺఈ̇ 	= 	0 

ܼఈ = −355.42 
ܼఈ̇ 	= 	0 

ఈܯ 	= 	 −8.8 
ఈ̇ܯ 	= 	 −0.8976 

Pitching rate ܺ௤ = 	0 ܼ௤ = ௤ܯ 0	 = 	 −2.05 

Elevator 
Deflection ܺߜ௘ = ௘ߜܺ 0	 = ௘ߜܺ 28.15−	 = −28.15 

 
Small disturbance can be applied to linearization in equations (1), (2), and (3). The formula are substituted by variables as 
follows. 
 
	ݑ = 	 ଴ݑ + ;ݑ∆ ݒ	 = ଴ݒ + ;ݒ∆	 ݓ	 = ଴ݓ +   ݓ∆
	݌  = 	 ଴݌ + ;݌∆ ݍ	 = ଴ݍ + ;ݍ∆	 ݎ	 = ଴ݎ +   ;ݎ∆
	ߜ  = 	 ଴ߜ +  (4)      ߜ∆

This indicatesthat the expression ݒ଴ = ଴݌ = ଴ݍ = ଴ݎ = ଴ݓ = 0. Afterwards, using linearization the (5), (6) and (7) are as 
follows 
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By manipulating and substituting longitudinal stability parameter values derived from table I, the following transfer function 
for the transformation is presented in (8). 
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The expression of pitch angle deviation to elevator angle deviation is obtained through the pitch rates change to elevator 
angle change. 
 

ݍ∆ = 	  (9)     ߠ̇∆
(ݏ)ݍ∆  =  (10)      (ݏ)ߠ∆ݏ
 ∆ఏ(௦)
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      (11) 
 
Therefore, the expression of the aircraft pitch control system is shown as follows. 
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 The expression ischanged to the state space form as follows. 
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3. TRANSFORMATION MATRIX T 
 
In this paper, matrix K feedback method is used to regulate the pitch angle. Transformation matrix T is one of the methods 
that can be used to find the feedback gain matrix K. This method is selected because it can provide good results on a 
system. In general, finding the feedback matrix K using transformation matrix T is done in five steps. The first step is 
checking the system controllability. To check controllability, we can find the system rank. The matrix T is needed in case 
the system is completely uncontrollable. The transformation of matrix T is expressed as follows. 
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The second step is determining the values of a(1,)  a_2  ,⋯,an by using the characteristic polynomial. 
 

ࡵݏ| − |࡭ = ௡ݏ + 	ܽଵݏ௡ିଵ +⋯+ 	ܽ௡ିଵݏ + 	ܽ௡    (17) 
 

Then, the third step is utilizing the desired eigenvalue and obtain the value of ∝1,∝_2 ),⋯,∝_n. 
 
(s - µ1 )(s - µ_2 )…(s - µ_n )=s^n+ ∝_1 s^(n-1)+⋯+∝_(n-1) s+ ∝_n   (18) 
 
The last step is determining feedback gain matrix K using equation that expressed. 
 
ࡷ = [∝௡− ܽ௡ ⋮	∝௡ିଵ	− ܽ௡ିଵ ⋮ 	⋯ 	 ⋮	∝ଶ− ܽଶ 	 ⋮	∝ଵ− ܽଵ]      (19) 
 
4.RESULT AND DISCUSSION 
 
To get the performance of the proposed method, the MATLAB Simulink is employed. The open loop system of the aircraft 
pitch is presented in Fig 3. 

 
Fig. 3 open-loop block diagram in MATLAB 

The response of diagram block in Fig 3 is presented in Fig. 4. The open loop response cannot follow the setpoint.  the 
value of the response will continue to rise with time. with results like this, the controller is needed with the aim of the 
response of the system to follow the setpoint because the aircraft pitch requires high precision. 
 
 
 



 

 

 
Fig. 4 response system without controller 
 
Controller matrix K is obtained by means of transformation T matrix using equations (16)-(19). The parameters needed to 
use the matrix T transformation method must have the input, output and pole of the aircraft pitch system. The input and 
output of the aircraft are shown in equations (14) and (15), while the missing parameter is the pole. In this article the 
determination of the pole value of the system is obtained from the formula in MATLAB by entering the input and the output 
of the plant. After all the parameters exist, the next step is to determine the K matrix using equations (16) – (19) with the 
required parameters. From the calculation results, the K matrix value is shown in equation (20). 
 

ܭ = [0 0 0.87]      (20) 
 
After obtaining the controller formula, the proposed controller is applied to control aircraft pitch. The proposed controller is 
examined using three conditions namely fixed reference, the variation of the reference and a load change. the reference 
employed in this paper is 0.2 rad. The result of fixed reference is depicted in Fig 5. 

 
Fig. 5 System waveform of the pitch angle using Fixed reference 
 
The proposed method is applied, and the performance of the system follows the reference. From the figure, the response 
of the system after using the proposed method, the time constant is 0.47 s. the detail performance of the system is 
presented in Table 2. 
 
 
Table 2. Response System with fixed Setpoint 
 

 

Reference (rad) ݀ݐ  

Rise Time Settling time 
ݎݐ  

(5%-
95%) 

ݎݐ  
(10%-
90%) 

ݏݐ  
5% 

ݏݐ  
2% 

0.2 0.39 2.003 1.54 2.09 2.93 
 



 

 

 
The next examination is the variation of reference namely 0.2 rad, 0 rad and 0.2 rad. The performance of the proposed 
controller is depicted in Fig. 6. It can be seen that at t=8 s, the reference is decreased to 0 rad and the pitch of the system 
can follow the reference. Then, at t=16 s the pitch reference is back to 0.2 rad and again the pitch response can follow the 
reference. 
The last test is the additional load with the aim to determine the durability of the system. Adding load is done by adding a 
load block to the main block diagram with the aim of disrupting the system response. The response of the pitch after 
adding the load are presented in Figure 7. The load is added to the system at t=13 s and t=18 s. As presented in the 
Figure, the proposed method can maintain the pitch although there are the changes in the load. The detail performance of 
the proposed method is presented in Table 3. 
 

TABLE 3. THE PERFORMANCE OF THE SYSTEM AFTER ADDING THE LOAD 
 

 
 

 
 

Fig. 6 System waveform of the pitch angle after changing the reference 
 

 
 

Fig. 7 System waveform of the pitch angle after adding the load disturbance 
 
5. CONCLUSION 
 
In this article we have learned how to search for aircraft pitch controllers using Formula Ackerman namely transformation 
matrix T, then it will be implemented in MATLAB software to determine the performance of the proposed method. The 
controller is used to find out the response value by several experiments with fixed setpoints, changed setpoints, and by 
adding load to the system. based on the results of simulations that have been done with a fixed setpoint, the system 

Reference (rad) 
the pitch angle deviation (rad) 

ݐ = ݐ ݏ 13 =  ݏ 18

0.2 0.042 0.039 
 



 

 

response has a value τ = 0.47, and td = 0.39. From several simulation that have been done show the system response 
can follow the setpoint well without passing the setpoint that has been determined. 
 

 
Fig 8- 
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