Some Fixed Point Results for Integral Type Mappings in b-Metric Space

Abstract

Singh[15] obtained some results on fixed point theorems for Lebesgue integrable mapping
satisfying b-(E.A.) property in b- metric spaces. In this manuscript, we prove some common
fixed point theorems for generalized b-(E.A.) property in b- metric spaces. We have given an
example to support our results.
Keywords: Fixed Point, Generalized b-(E.A) property, Weakly Compatible Mapping, b-metric
Space.
Mathematical Subject Classification (2000): Primary 47H10, Secondary 54H25.

1. Introduction

Many fixed point results have been established over the past 95 years and we discover that the
majority of these results are based on the Banach contraction principle. There are numerous ways
to generalize the idea of metric spaces. Czerwik introduced the idea of a b- metric space in [7, 8]
and in the following few years, other writers have proved numerous fixed point theorems in b-
metric spaces. Jungck [11] first proposed the idea of compatible mapping in 1986 and he used it
to strengthen the commutativity requirements in standard fixed point theorems.

Aamri and Moutawakil [1] and Liu et al. [17] have defined the property (E.A) and the common
property (E.A), respectively. Later on, authors such as Ali et al. [3], Babu and Sailaja [5], Nazir
and Abbas [12], Oztirk and Radanovic [13] and Ozturk and Turkoglu [14] published new fixed
point results based on this idea. Sequential requires the following definitions.

2. Preliminaries

Definition 2.1[7] Let X be a non empty set. A mapping d: XxX— [0, ) is called b-metric if

there exists a real number b > 1 such that for every x,y,z € X, we have

() d(x,y) = 0ifand only if x = y.
(i) d(x,y) =d(y,x)ifand onlyif x = y.
(i)  d(x,z) < b[d(x,y) + d(y,2)]



In this case (X, d) is called a b-metric space. There exists so many examples in literature see

[3,4,5] showing that every metric space is a b- metric space with b = 1, while the converse

need not be true i.e the class of b-metric space is effectively larger than that of ordinary

metric spaces.

Definition 2.2 [10] Let{x,} be a sequence in a b-metric space(X, d).

Q) {x,} is called b-convergent if and only if there exists x € X such that d(x,, x) — 0 as
n — oo,

(i)  {x,} is called b-Cauchy sequence if and only if there exists x € X such that
d(xp, xn) 2 0asn,m — oo.

A b-metric space (X, d) is said to be complete if and only if each b-Cauchy sequence in X is

b-convergent.

Definition 2.3 [9] Let (X, d) be a b-metric space. A subset Y c X is called closed if and only

if for each sequence {x,,} in Y which is b-converges to an element x, we have x € Y.

Definition 2.4 [11] Let(X, d) be a b-metric space and f and g are self maps on X

Q) f and g are said to be compatible if whenever a sequence {x,,} in X such that {gx,}

and {fx,} are b- convergent to some t € X, then lim d(fgx,, gfx,) = 0.
n-—-oo

(i)  fand g are said to non-compatible if there exists at least one sequence {x,} in X such

that {fx,} and {gx,} are b-convergent to some t € X, but lim d(fgx,, gfx,) is
n—->oo

either non zero or does not exist.
Definition 2.5 [14] f and g are said to satisfy the b-(E.A) property if there exists a sequence

{x,.} such thatlim fx, = lim gx,, = t, for some t € X.
n—-oo n—-oo

Remarks 2.6 Non compatibility implies b-(E.A)-property.
Example 2.7 [14] Let X = [0, 1] and define d : X X X — [0, «) as follows
d(x,y) = (x =%
Let f, g:X — X be defined as
L wefod
f(x) = x+1 1
=, xel51]
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and g(x) =

)

for a sequence {x,,} in X such that x,, =

. . 1
and lim fx, = lim gx,, ==
n—-oo n—oo 6



So f and g are satisfying the b-(E.A) property.

lim d(fgx,, gfx,) exists and it is not equal to 0. Thus f and g are non-compatible.
n—->oo

Definition 2.8 [3] Let f and g be self-maps of a set X. If w = fx = gx for some x in X then
x is called a coincidence point of f and g and w is called a point of coincidence of f and g.
Definition 2.9[3] Let f and g be self-maps of a set X. Then f and g are said to be weakly
compatible if they commute at their coincidence point.

Proposition 2.10[3] Let f and g be weakly compatibility self-maps of a set X. If f and g
have a unique point of coincidence w = fx = gx, then w is called unique common fixed
point of f and g.

Definition 2.11 [3] A function ¢ is said to be integral sub additive, if for each a, 8 > 0,

at+p a B
Of p(t)dt sof (p(t)dt+0f e(t)dt

Lemma 2.12[17] Let ¢: [0, ) — [0, ) be lebesgue integrable mapping which is summable
on each compact subset of [0, ), non negative and such that for each € > 0, fOE p(t)dt >0

and {a,,} be a sequence of nonnegative numbers with lim a,, = a. Then

n—-oo

an a

Tlll_)rroloof (p(t)dtzf p(t)dt

0
Lemma 2.13 [17] Let ¢:[0,0) = [0,) be lebesgue integrable mapping which is
summable on each compact subset of [0, ), non negative and such that for each € > 0,
J, p®dt >0

and {a,,} be a sequence of non negative numbers with lim a,, = a. Then

n—->oo
an a
limf p(t)dt @f p(t)dt
n—0o
0 0

We define i and ¢ as follows:
Y = {:[0,0) - [0, ), is upper semi-continuous, sequence ™ (t) converges to 0 asn —
oo forall t > 0 and ¥(t) < t forany t > 0}

¢ = {¢:[0,0) = [0,00), ¢ is lebesgue integrable, summable on each compact subset of

[0, ), non negative and for each € > 0, foego(t)dt > 0}
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3. Main Result

In 2020, Amarjeet Singh Saluja[15] proved the following fixed point theorem:

“Let (X,d) be b-metric space withb > 1and f,g,S,T: X = X be mappings with fX € TX
and gX < SX such that

(3.1.1) fobgd(fx'gy)fp(t)dt < féwb(x’y) p(t)dt forallx,y € X

Where € > 1 is a constant and ¢: [0, ) — [0, ) is Lebesque integrable mapping which is

summable on each compact subset of [0,c0), non-negative and such that for ¢ >

0, [, p(©)dt > 0 and

d(Sx,Ty),d(fx,Sx),d(gy, Ty),
(3.1.2) My(x,y) = maxid(gy,ry)+d(fx.Sx) d(Sx,gy)+d(fxTy)
2b ’ 2b

Suppose that one of the pair (f,S) and (g, T) satisfy the b- (E.A)- property and that one of
the subspaces f(X), g(X), T(X)and S(X) is b-closed in X. Then the pair (f,S) and (g, T)
have a point of coincidence in X, Moreover, if the pair (f,S) and (g,T) are weakly
compatible, then f, g, S and T have a unique common fixed point.”

In this paper, we prove the above-mentioned theorem proved by Singh[15]by using
generalized b- (E.A)- property as follows:

Theorem 3.1 Let (X, d)be b-metric space with b > 1 and f, g, S, T: X — X be mappings with
fX € TX and gX € SX such that

3.13) [ h0de < [ p(0)dt for allx,y € X

where € > 1 is a constant and ¢: [0, c0) — [0, ) is Lebesque integrable mapping which is

summable on each compact subset of [0, ), non-negative and such that for

¢ >0, ¢(®)dt > 0and

(3.1.4) My(x,y) = {d(Sx,Ty),d(fx,Sx),d(gy, Ty), d(ngy)+d(fxTy)
1+d(Sx, Ty) 1+ d(Sx Ty)
e [1 +d(Ty, fy )l 97) [1 +d(Sx, fx)l

d*(Sx, fx)  d*(Ty,gy) }
1+d(fx, gy)'1+d(fx, gy)

Suppose that one of the pair (f,S) and (g, T) satisfy the b- (E.A)- property and that one of
the subspaces f(X), g(X), T(X)and S(X) is b-closed in X. Then the pair (f,S) and (g,T)



have a point of coincidence in X, Moreover if the pair (f,S) and (g,T) are weakly
compatible, then f, g, S and T have a unique common fixed point.
Proof If the pair (f, S) satisfies the b-(E.A)-property, then there exists a sequence {x,,} in X

satisfying lim fx,, = lim Sx,, = q, for some q € X.
n—-oo n—oo

As fX € TX there exists a sequence {y, } in X such that

fxn =Tyy.
Hence

lim Ty, =q

n—-oo

Now, we will show that
lim gy, =q,
n—->0o

From (3.1.3), we have

(315) fobsd(fxnIQYn) gﬂ(t)dt < foMb(xn,yn)(p(t)dt,

where

d(Sxn, gyn) + d(fxn, Ty,)
2b ’

1+ d(Sx, Ty,)

14+ d(Sxy, fxn)]|

My, (X, y) = max {d(Sxp, Tyn), d(f %, Sx), d(gyn, Tyn),
1+ d(Sx,, Tyy,)
14+ d(Tyn fyn)

d?(Sxp, f %) dz(Tyn,gyn)}
14+ d(fxn gyn)’ 1+ d(fxn, gyn)

d(Sxn, fn) I ] ATy, gyn) l

d(Sxn, gyn) + d(fxn, Tyy)
2b ’

1+d(Sxpy, Ty,)
14+ d(Sx,, fx)|

= {d(an, TYn): d(fxn; an): d(Q)’n: Tyn)'
1+ d(Sxp, Ty,)
14 d(Tyw fyn)
d?(Sxp, fx2) dZ(Tyn,gyn)}
14+ d(fxn gyn) 1+ d(fxn, gyn)

lim My (xy, ) = lim max{d(q,),d(q,9),d(4, gyn),5; (d(q, gya) +

1+d(q,q)
d(q, CI)) d(q,9) [1+Z(qqu/n

1+d(q, q)l d*(q,q) d*(q, gyn) }

d(Sxn, fxn) [ l y ATy, gyn) l

d(q, ’ ’
(q, 9y) ll +d(q,Q)|'1+d(q,9y,) '1+d(q,gy,)



n—oo

d*(q, gyn) }

1
— 1 0,0,d d 0,d(q, O —~
im max{ (q, gyn) (@, 9Yn), (4, 9yn), 0 1+d(q, gy
= lim d(q, gy»)-

Now, on taking limit and using lemma 2.13, we get

b¥d(fxn,g¥yn) d(q.9yn)

lim f p(t)dt < lim f p(t)dt
n—>oo
0

n—-oo
0

Since b® > b > 1, we have
lim gy, = q,
n—-o0o
If TX is closed subspace of X, then there exists r € X, such that Tr = q.

Now, we shall show that gr = g. Indeed, we have

From (3.1.3), we have

(3.1.6) [ g (ae < [ g,

where
d(Sxp, gr) + d(fxp,, T7)

My (%, 1) = {d(Sx, T1), d(f X, Sxy), d(gr, T1),

2b ’
1+ d(Sx,, Tr) 14 d(Sxp, TT)
d(SXn: fxn) l 1+ d(TT', fT') ;d(TT: gT) [1 + d(an'fxn) ’

d*(Sxn, fxn)  d*(Trgr)
1+d(fxngr)'1 + d(fxn,gr)}'

Taking limit as n — oo, we have
lim M, G, ) = max{dm D, d(0,0),d(0, g7) 57 (d(q,g7) + (g, ),

)l1+d(q,q)ld( T)l1+d(q.q)l d*(q,q) dz(q,gr)}

1+d(q,fr) 1+d(q,q)|'1+d(q,g97)'1+d(q,gr)
d*(q, gr)
= max{0,0,d(q, gr), 5 d(q, gr),0,d(q,gr),0, W}

=d(q, gr).
Hence from (3.1.6), we have

bd(q,g7) d(q.gm)

Of (0)dt < Oj (0,



which is a contradiction, since b > 1.
Hence q = gr or Tr = gr = q, which implies that r is coincident point of the pair (g,T). As
gX € SX, there exists z € X, such that g = Sz

From (3.1.3), we have

(3.1.7) fobgd(fz’gr) p(t)dt < fOMb(Z’r) p(t)dt forallx,y €X,

where

My(z,r) = max {d(Sz,Tr),d(fz, Sz),d(gr, Tr),d(SZ’ gr) +d(fz, Tr),

2b
1+d(Sz,Tr) 1+d(SzTr)
d(sz, f2) [1 +aar, oyl 4 ar) l1 +d(Sz f2)

d*(Sz,fz)  d*(Tr.gr)
1+d(fz,gr)'1+ d(fZ:gr)}

d(g, d(fz,
— max(d(q, ), d(f7 @), d(q, ), LD+ 42a)

2b
(q q) 1+d(q, @

d*(q, f2) dz(q, q)
1+d(fz,9)' 1+d(fzq)

2
=max{o,d(fz,q),O,%d(qlfz),d(q.fz), ¢*(q,f2) O}

1+d(fzq)’
= d(q,f2).

From (3.1.7), we have

d(q,fz) =0,as b€ > b > 1.

Therefore, Sz = fz = q.

Thus, fz=Sz=gr=Tr=gq

By weak compatibility of the pair (f,S) and (g, T), we obtain

fq=Sqand gq =Tgq.

Now we shall show that g is the common fixed point of f,g,Sand T.

From (3.1.3), we have

(3.1.8) [P0D o pyde = [0 o(nyde < [PV p()dt for all x,y €%,

where



d(Sq, gr) + d(fq,Tr)

My (q,7) = max {d(Sq,Tr),d(fq,Sq),d(gr, Tr),

1+ d(Tr, fr) 1+d(Sq, fo))|

d*(Sq.fq)  d*(Tr,gr) }
1+d(fq,gv)’'1+d(fq,gr)

a(5q, f) [1 + d(Sq, Tr)l i [1 + d(Sq, Tr)

d(fa,q) + d(fa,
— max{d(fq, ), d(fq, o), d(q, , L2 D@D

2b
d(fq,q) 1+d(fq,q)
4Sa. 50) l T+d@, l & [1 n d(fq.fq)l’

d*(Sq.fq)  d*(q,9) }
1+d(fq,.9)’'1+d(fq,q)

1
= max {d(fq' Q)' O' O, % d(fCI, CI), 01 0! O' 0 }

=d(fq, ).
Using (3.1.8), we have
fa=4q=35q.
Similarly, it can be shown gg = Tq = q.
To prove uniqueness of fixed point, suppose that p is an another fixed point of f, g, S, T.

From (3.1.3), we have

b%d(q,p) b#d(fq.gp) Mp(q,p)
(3.1.8) f pt)dt < f p(t)dt < f p()dt forallx,y€X,
0 0 0

where

d(Sq, gp) +d(fq,Tp)
2b ’

My(q, p) = max {d(Sq, Tp),d(fq,Sq),d(gp, Tp),
1+ d(Sq,Tp) 1+ d(Sq,Tp)
1+d(Tp, fp )l d(Tp Il +d(Sq, fo)|

d*(Sq.fq)  d*(Tp.gp) }
1+d(fq,gp)'1+d(fq,gpr)

d(Sq,fq)[

d(q,p) +d(q,p)
2b ’

= max{d(q,p),d(q,q),d(p,p),

+d(q,p) 1+d(q,p)
dq.q l1+d( l( )[1+d(qp)



d*(¢.9)  d*(q.9) }
1+d(g,p)'1+d(q,p)

=d(q,p)
From (3.1.8), we have

bed(q.p) d(q.p)
f p(t)dt < f p(t)dt forallx,y € X
0 0

From which it follows that d(q, p) = 0 because b > b > 1.

Hence p = q, this proves the uniqueness of fixed point theorem.

Corollary 3.2 Let (X, d) be a b- metric space with s > 1 and f, T:X — X, be mappings with such
that

(3.2.1) f

Where € > 1 is a constant and ¢: [0, ) — [0, ) is Lebesque integrable mapping which is

bed(fx fy) o(t)dt < fo"/’b(x’y)<p(t)dt, forall x,y € X.

summable on each compact subset of [0,0), non negative and such that for ¢ >

0, f, ¢(t)dt > 0 and

(3.2.2) My(x,y) = {d(Tx, Ty),d(fx, Tx),d(fy, Ty), d<Txfy)+d<fxTy)

1+d(Tx,Ty) 1+d(Tx,Ty)
14+ d(Ty, fy )] )I1+d(Tx fx)l

d*(Tx, fx)  d*(Ty, fy) }
14+d(fx fy) 14+ d(fx fy)
Suppose the pair (f, T) satisfies the b-(E.A) property at a point of coincidence in X. Moreover, if

d(Tx, fx) I

the pair (f, T) is weakly compatible, then f and T have a uniqgue common fixed point.
Corollary 3.3 Let (X, d) be a b- metric space with s > 1 and f, T: X — X, be mappings with such
that

(331) [,

Where € > 1 is a constant and ¢: [0, ) — [0,0) is Lebesque integrable mapping which is

D p@yde < [} p(odr,  forallx,y e X

summable on each compact subset of [0, o0), non negative and such that for

c>0, foc<p(t)dt > 0 and

(3.3.2) My(x,y) = {d(Tx, Ty),d(fx, Tx),d(fy, Ty), d(Tx,fy)z-:Jd(fx,Ty)’




d(Tx, fx) ll +d(Tx, Ty)l ATy, 9) l1 +d(Tx, Ty)l’

1+d(Ty, fy) 1+ d(Tx, fx)

d*(Tx, fx)  d*(Ty. fy) }
1+d(fx fy) 1+ d(fx fy)
Suppose the pair (f, T) satisfied the b-(E.A) property and T (X) is b-closed in X, Moreover, if

the pair (f, T) is weakly compatible, then f and T have a unique common fixed point.
Example. 3.4 Let X = [0, 2], and define d:X X X — (0, ) as follows
0, xX=y

d(x,y) = {(x;ry)z ey

Then (X, d) be a b- metric space with b = 2. Let f, g,S, T: X — X are defined by

3x x x€1]0,1) 3
fE) =7, g =0 S = 1 x=1 |, 7T@)= =
3/, x€(@,2]

Clearly, g(x) is closed, g(x) € S(x) and f(x) € T(x).
Let {x,,} be the sequence in X such that x,, = 1 + ﬁ n=20,123..

So that the pair (f, ) is non —compatible since lim d(fSx,, Sfx,) # 0.
n—->0o

But satisfies the b-(E.A) property since lim fx,, = lim Sx,, = %
n—->oo n—->oo

To check the inequality (3.1.3), for all x,y € X and for x,y € X and € = 2.
If x = 0, (3.1.3) satisfied.
If x € (0,1), then

S 2 (30) _[2t¥
béd(fx,gy) = 2 (?) < > =d(fx,5x) < My(x,y)
If x =1, then
3x\2 Zr1 i
X 3x
bd(fr.gy) = 22 (%) <[ 4A— ] =d(xs0) < M)

If x € (1,2), then

10



2
2 3x_ 3

béd(fx, gy) = 22.(3%) < % =d(fx,Sx) < My(x,y)

Thus (3.1.3) is satisfied for all x,y € X. The pairs (f,S) and (g, T) are weakly compatible.

Hence, all the conditions of Theorem 3.1 are satisfied. Moreover,0 is the unique common
fixed point of f, g, S and T.
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