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Locally attractivity results for fractional order quadratic 
functional integral equations 

 
 
 

Abstract: we prove using hybridfixed point theorem in Banach algebra an existence of 

solutions to fractional order quadratic functional integral equation inℛା	.Also locally 

attractivity results and solutions for fractional order quadratic functional integral equations is 

proved. Also, one example is considered. 

Keywords: Fixed point theorem, Banach algebra, Quadratic functional integral equation, 

existence result, locally attractive solution, Extremal Solution. 

 

1. INTRODUCTION: 
Fractional Calculus is a generalization of ordinary differentiation and integration to 

arbitrary order. The subject has its origin in 16th century. During three centuries, the theory of 

fractional calculus developed as pure theoretical field, useful only for Mathematicians [22] 

Quadratic functional integral equation has newly received a lot of attention and establishes a 

meaningful branch of nonlinear analysis[18-29]. For examples, quadratic integral equations 

are often applicable in the theory of radioactive transfer, kinetic theory of gases, in the theory 

of neutron transport and in the traffic theory. Numerous research papers and monographs 

devoted to quadratic differential and integral equations of fractional order have appeared 

(see [1-3, 5-7, 9-17].  These papers contain different types of existence results for equations 

of fractional order. Here we are concerned with the existence of solution for fractional order 

quadratic functional integral equation also locally attractive solutions of following QFIE will be 

proved. 

2. Statement of the Problem: 
Let	ߙ, ߞ ∈ (0,1)and ℛdenote the real numbers whereas ℛା	 be the set of nonnegative 

numbers i.e. ℛା	 = [0,∞) ⊂ ℛ. 

Consider the following nonlinear functional quadratic integral equations of fractional order  

(ݐ)ݔ = ቎
1

Γ(ߙ)න
݂ ቀݐ, ൯ቁ(ݏ)ߛ൫ݔ(ݐ)ݔ

ݐ) − ଵିఈ(ݏ
௧

଴
቏ݏ݀		 ቎(ݐ)ݍ +

1
Γ(ߞ)න

݃ ቀݏ, ൯ቁ(ݏ)ߚ൫ݔ(ݏ)ݔ
ݐ) − ଵି఍(ݏ

௧

଴
 ቏ݏ݀	

ݐ	∀																											 ∈ ℛା	(2.1) 
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Where ݍ:ℛା	 → ℛ	, ݂ ቀݐ, ൯ቁ(ݏ)ߛ൫ݔ(ݐ)ݔ = ݂:ℛା	 × ℛ → ℛ	,݃ቀݐ, ൯ቁ(ݏ)ߚ൫ݔ(ݏ)ݔ = ݃:ℛା	 ×ℛ → ℛ 

and By a solution of the  (2.1) we mean a function ݔ ∈ ℬࣝ(ℛା	,ℛ) that satisfies (2.1) onℛା	. 

Where	ℬࣝ(ℛା	,ℛ) is the space of continuous and bounded real-valued functions defined 

on	ℛା	. 

In this paper, we prove the locally attractive of the solutions for QFIE (2.1) employing a 

classical hybrid fixed point theorem of B.C. Dhage [5]. In the next section, we collect some 

preliminary definitions and auxiliary results that will be used in the follows. 

3.Preliminaries: 
Let ܺ = ℬࣝ(ℛା	,ℛ) be Banach algebra with norm ‖. ‖ and letΩ  be a subset of X. Let a 
mapping  	ࣛ ∶ ܺ → ܺ  be an operator and consider the following operator equation in X, 
namely, 

(ݐ)ݔ = ݐ					(ݐ)(ݔࣛ) ∈ ℛା																																																																																																																(3.1) 

Below we give different characterizations of the solutions for operator equation (3.1) on		ℛା	. 

 We need the following definitions in the sequel.  

Definition 3.1[29]: The solution (ݐ)ݔ  of the equation (3.1) is said to be locally attractive if 

there exists an closed ball ܤ௥[0] in		ℬࣝ(ℛା	,ℛ)  such that for arbitrary solutions ݔ =  and (ݐ)ݔ

ݕ = ∩௥[0]ܤ  of equation (3.1)  belonging to (ݐ)ݕ Ω		 such that  

lim
௧→ஶ

൫(ݐ)ݔ− ൯(ݐ)ݕ = 0 																																																																																																															(3.2) 

Definition 3.2[29]:Let X be a Banach space. A mapping  ࣛ ∶ 	ܺ → ܺ  is called Lipschitz if 

there is a constant	ߙ > 0  such that ‖ࣛݔ ‖ݕࣛ− ≤ ݔ‖ߙ − ݕ,ݔfor all  ‖ݕ ∈ ܺ  If  ߙ < 1 then ࣛis 

called a contraction on X with the contraction constant . 

Definition 3.3: (Dugundji and Granas [9]). An operator ࣛ on a Banach space X into itself 

is called Compact if for any bounded subset S of X, ࣛ (S) is a relatively compact subset of 

X. If ࣛ	is continuous and compact, then it is called completely continuous on X. 

Let X be a Banach space with the norm  ‖. ‖and Let	ࣛ ∶ 	ܺ → ܺ  be an operator ( in general 

nonlinear). Then ࣛ is called  

(i) Compact if ࣛ(ܺ) is relatively compact subset of X; 

(ii) totally bounded if ࣛ(ܵ) is a totally bounded subset of X for any bounded subset S 

of X. 

(iii) Completely continuous if it is continuous and totally bounded operator on X. 

It is clear that every compact operator is totally bounded but the converse need not be true. 

The solutions of (2.1) in the space ℬࣝ(ℛା	 ,ℛ)of continuous and bounded real-valued 

functions defined onℛା	. Define a standard supremum norm ‖. ‖ and a multiplication “.” in  
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ℬࣝ(ℛା	,ℛ)  by ‖ݔ‖ = sup{|(ݐ)ݔ|: ݐ ∈ 	ℛା	}(3.3)                          

(ݐ)(ݕݔ) = ݐ					(ݐ)ݕ(ݐ)ݔ ∈ ℛା	                                                                   (3.4)  

Clearly, ℬࣝ(ℛା	,ℛ)   becomes a Banach space with respect to the above norm and the 

multiplication in it. By  ℒଵ(	ℛା	,ℛ) we denote the space of Lebesgue integrable functions on 

ܴା	with the norm ‖. ‖ℒభ  defined by  

‖ܺ‖ℒభ = න ݐ݀|(ݐ)ݔ|
ஶ

଴
(3.5) 

Denote by ℒଵ(	ܽ,ܾ) be the space of Lebesgue integrable functions on the interval (a, b), 

which is equipped with the standard norm. Let ݔ	 ∈ ℒଵ(	ܽ, ܾ)  and let ߚ > 0 be a fixed 

number.  

Definition 3.4[3]: The Riemann-Liouville fractional integral of order ߚ of the function ݂(ݐ) is 

defined by the formulaܫఉ݂(ݐ) = ଵ
୻(ఉ) ∫

௙(௦)
(௧ି௦)భషഁ 	ݐ		ݏ݀	 ∈ (ܽ, ܾ)௧

଴ (3.6) 

Where Γ(ߚ) denote the gamma function. 

It may be shown that the fractional integral operator  ܫఉ  transforms the space ℒଵ(	ܽ, ܾ)   into 

itself and has some other properties (see [12-19]) 

Definition 3.5[5]:  A set A⊆ [a,b] is said to be measurable if  m* A  =  In this case we . ܣ∗݉

define mA , the measure of A as   mA = m* A  =  	ܣ∗݉

  If A1and A2 are measurable subsets of [a ,b] then their union and their intersection is also    

measurable. 

Clearly every open or closed set in R is measurable. 

Definition 3.7[12]:Let f be a function defined on [a,,b].Then f is measurable function if for 

each ߙ ∈ ܴ	, (ݔ)݂:ݔ	}	ݐ݁ݏ	ℎ݁ݐ >  . is measurable set {ߙ

i.e. f  is measurable function if for every real number ߙ	the inverse image of (ߙ	,∞) is an 

open set .  

As (ߙ	,∞) is an open set and if f is continuous, then inverse image under f  of (ߙ	,∞) is  open 

Open sets being measurable , hence every continuous function is measurable. 

Definition 3.8[7]:  A sequence of functions {	 ௡݂ 	}is said to converge uniformly on an interval 

[ܽ, ܾ]  to a function f if for any ߳ > 0 and for all ݔ ∈ [ܽ, ܾ]  there exists an integer N 

(dependent only on ߳	)  such that for all ݔ ∈ [ܽ, ܾ] 

| ௡݂(ݔ)− |(ݔ)݂ < ߳			∀	݊ ≥ ܰ 

Definition 3.7[7]: The Family F is Equi continuous at a point ݔ଴	 ∈ ܺ  if for every  ߝ > 0	there 

exists ߜ > 0	a such that ݀(݂(ݔ଴), ((ݔ)݂ < ∋ for all f	ߝ ,	଴ݔ)݀  and all x that ܨ (ݔ <  .ߜ

The family is point wise Equi continuous if it is Equi continuous at each point of X.  
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The family is uniformly Equi continuous if for every ߝ > 0	there exists ߜ > 0	a such that 

,(ଵݔ)݂)݀ ((ଶݔ)݂ < ∋ for all f	ߝ ଶݔ, ଵݔ	and allܨ ∈ ܺ such that ݀(ݔଵ	 , (ଶݔ <  .ߜ

 
Theorem 3.1: (Arzela-Ascoli theorem (7)):If every uniformly bounded and Equi-continuous 

sequence { }nf  of functions in ࣝ(ܬ,ℛ), then it has a convergent subsequence. 

Theorem 3.2[7]:A metric space X is compact iff every sequence in X has a convergent 

subsequence. 

We employ a hybrid fixed point theorem of Dhage [5] for proving the existence result. 

Theorem 3.3 :( Dhage [5]). Let S be a closed-convex and bounded subset of the Banach 

space X and let ࣛ,ℬ: ܵ → ܵ  be two operators satisfying: 

(a) ࣛ is Lipschitz with the Lipschitz constant k, 

(b) ℬ is completely continuous, 

(c) ࣛݔℬݔ ∈ ܵ	for all ,ݔ ∈ ܵ	and  

(d) ݇ܯ < 1 Where ܯ = ‖ℬ(ܵ)‖ = sup	{‖ℬݔ‖: ݔ ∈ ܵ	} 

Then the operator equation   ࣛݔℬݔ =  has a solution and the set of all solutions is compact ݔ

in S  
4. Existence results: 

Definition 4.1:. A mapping ݃:ℛା	 × ℛ → ℛ is said to be Caratheodory if  

ݐ .1 → ,ݐ)݃ ݔ  is measurable for all (ݔ ∈ ℛ	 , and  

ݐ .2 → ,ݐ)݃ ݐ is continuous almost everywhere for  (ݔ ∈ ℛା	 

Again a caratheodory function ݃ is called ℒଵ-Caratheodory if  

3. for each real number ݎ > 0	  there exists a function ℎ௥ ∈	ℒଵ(ℛା	,ℛ)	  such that   

ቚ݃ ቀݏ, ൯ቁቚ(ݏ)ߚ൫ݔ(ݏ)ݔ ≤ ℎ௥(ݐ)     a.e. 	ݐ ∈ ℛା for all ݔ ∈ ℛ	 with |ݔ| ≤  ݎ

     Finally, a Caratheodory function ݃(ݐ, is called ℒℛଵ  (ݔ − Caratheodory if  

4. there exists a function ℎ ∈ 	ℒଵ(ℛା,ℛ)	   such that ቚ݃ ቀݏ, ൯ቁቚ(ݏ)ߚ൫ݔ(ݏ)ݔ ≤ ℎ(ݐ) 

a.e.ݐ ∈ ℛା for all ݔ ∈ ℛ	 

Throughout this paper, we assume the following Hypothesis 

	The function ݂:ℛା  (ଵܪ)	 × ℛ → ℛ is continuous and bounded with bound 

ܨ(ଵܪ) = ต݌ݑݏ ,ݐ)݂| |(ݔ
(௧,௫)∈ℛశ	×ℛ

there exists a bounded function ݈	 ∶ 	ℛା	 → ℛା	with bound L Satisfying     

ቚ݂ ቀݐ, ൯ቁ(ݏ)ߛ൫ݔ(ݐ)ݔ − ݂ ቀݕ(ݐ)ݕ,ݐ൫(ݏ)ߛ൯ቁቚ ≤ (࢚)࢒ ௰(ఈାଵ)
(௧)ഀ

ݔ	| − ݐ|ݕ ∈ ℛା	 for all ݕ,ݔ ∈ ℛ	 

	ℛା:ݍ(ଶܪ) → ℛ is continuous function on ℛା;   also   lim௧→ஶ (ݐ)ݍ = 0 



 

 5

	The functions ݂,݃:ℛା (ଷܪ) × ℛ → ℛ satisfy caratheodory condition (i.e. measurable in t for 

all	ݔ ∈ ℛ and continuous in x for all	ݐ ∈ ℛା) and there exist function ℎଵ		, ℎଶ	 ∈ 	ℒଵ(ℛା	,ℛ)	    

Such that  ݂ ቀݐ, ൯ቁ(ݏ)ߛ൫ݔ(ݐ)ݔ ≤ ℎଵ		(ݐ)		ܽ݊݀	݃ ቀݏ, ൯ቁ(ݏ)ߚ൫ݔ(ݏ)ݔ ≤ ℎଶ	(ݐ)			∀(ݐ, (ݔ ∈ ℛା	 × ℛ 

	ℛା:ݒ The uniform continuous function (ସܪ)	 → ℛା	defined by the formulas     

(ݐ)	ଵݒ = න
ℎଵ	(ݏ)

ݐ) − ଵିఈ(ݏ
௧

଴
,	ݏ݀ (ݐ)	ଶݒ = න

ℎଶ	(ݏ)
ݐ) − ଵି఍(ݏ

௧

଴
 ݏ݀

 

is bounded on		ℛା	  and vanishes at infinity, that is,lim௧→ஶ (ݐ)௜ݒ = 0 

Remark 4.1: Note that if the hypothesis	(ܪଶ) and (ܪଷ)  hold, then there exist constants 

ଵܭ > 0   and    ܭଶ > 0  such that: ܭଵ = :(ݐ)ݍ}݌ݑݏ ݐ ∈ ℛା	},  

ଶܭ = ต݌ݑݏ
௧ஹ଴

1
Γ(ߙ)න

ℎଵ	(ݏ)
ݐ) − ଵିఈ(ݏ

௧

଴
,	ݏ݀ ଷܭ = ต݌ݑݏ

௧ஹ଴

1
Γ(ߚ)න

ℎଶ	(ݏ)
ݐ) − ଵି఍(ݏ

௧

଴
 ݏ݀

Theorem 4.1: Let the assumptions [	(ܪଵ)-(ܪହ) ] are satisfied. Furthermore if	ܭ)ܮଵ + (ଷܭ < 1, 

where ܭଵ ,ܭଶand ܭଷ are defined remark (4.1), Then the equation (2.1)has a solution in the 

space ℬࣝ(ℛା	 ,ℛ) and solutions of the equation (2.1)are locally attractive onℛା	. Moreover 

(2.1) has attractive solutions. 

Proof: By a solution of the (2.1) we mean a continuous function ݔ:ℛା	 → ℛ that satisfies 

(2.1) on	ℛା	. 

 Let ܺ = ℬࣝ(ℛା	,ℛ) be Banach Algebras of all continuous and bounded real valued function 

on	ℛା	with the norm‖ݔ‖ = ต݌ݑݏ
௧∈	ℛశ	

  (4.1)   |(ݐ)ݔ|

We show that existence of solution for (2.1) under some suitable conditions on the functions 

involved in (2.1). 

Consider the closed ball ܤ௥[0]  in X centered at origin 0 and of radius r, where       

ݎ = ଵܭ]ଶܭ + [ଷܭ > 0 

Let us define two operators ࣛ and B on ܤ௥[0]   by  

(ݐ)ݔࣛ											 = 	
1

Γ(ߙ)න
݂ ቀݐ, ൯ቁ(ݏ)ߛ൫ݔ(ݐ)ݔ

ݐ) − ଵିఈ(ݏ
௧

଴
 (4.2)																																																												ݏ݀	

and	ℬ(ݐ)ݔ = ቈ	(ݐ)ݍ + ଵ
୻(఍)∫

௚ቀ௦,௫(௦)௫൫ఉ(௦)൯ቁ

(௧ି௦)భషഅ
௧
଴ ݐ		∀						቉ݏ݀		 ∈ ℛା                (4.3) 
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The function ݍ is continuous on ℛା , the function ℬx is also continuous and bounded in view 

of hypotheses (ܪଶ −   ( (ଵܪ) Since the hypotheses) is well defined	ଷ)  The mapping ࣛܪ

holds) and the function ࣛx is continuous and bounded onℛା.  

Thereforeࣛ and ℬ define the operators ࣛ,ℬ:ܤ௥[0] → ܺ. we shall show that ࣛ andℬ satisfy 

all the requirements of theorem (3.3) on	ܤ௥[0] . 

Step I: Firstly, we show that ࣛ is Lipschitz on ܤ௥[0] . let  ݕ,ݔ	 ∈  ௥[0]  be arbitrary, and thenܤ

by hypothesis (ܪଶ) , we get  

|(ݐ)ݕࣛ−(ݐ)ݔࣛ| = ቮ
1

Γ(ߙ)න
݂ ቀݐ, ൯ቁ(ݏ)ߛ൫ݔ(ݐ)ݔ

ݐ) − ଵିఈ(ݏ
௧

଴
ݏ݀ −

1
Γ(ߙ)න

݂ ቀݕ(ݐ)ݕ,ݐ൫(ݏ)ߛ൯ቁ
ݐ) − ଵିఈ(ݏ

௧

଴
 ቮݏ݀

																							≤ 		
1

Γ(ߙ)න
1

ݐ) − ଵିఈ(ݏ
௧

଴
ቚ	݂ ቀݐ, ൯ቁ(ݏ)ߛ൫ݔ(ݐ)ݔ − 	݂ ቀݕ(ݐ)ݕ,ݐ൫(ݏ)ߛ൯ቁቚ  ݏ݀

≤
1

Γ(ߙ)න
1

ݐ) − ଵିఈ(ݏ
௧

଴
(ݐ)ݔ		| −  |(ݐ)ݕ		

≤ (ݐ)݈
ߙ)߁ + 1)

ఈ(ݐ)
ݔ	| − |ݕ

1
Γ(ߙ)න

1
ݐ) − ଵିఈ(ݏ

௧

଴
 ݏ݀	

≤ (ݐ)݈
ߙ)߁ + 1)

ఈ(ݐ)
ݔ	| − |ݕ

1
(ߙ)߁ ቈ

ݐ) − ఈ(ݏ

ߙ
቉
଴

௧

 

≤ (ݐ)݈
ߙ)߁ + 1)

ఈݐ
ݔ	| − |ݕ

ఈݐ

ߙ)߁ + 1) 

≤ ݔ‖ܮ − ݐ    for all‖ݕ ∈ ℛା  (4.4) 

Taking supremum over t 
ݔࣛ‖ − ‖ݕࣛ ≤ ݔ‖ܮ − ݕ,ݔ				all	for‖ݕ ∈  (4.5)																																																																				௥[0]ܤ

Gives that ࣛ is Lipschitz on ܤ௥[0]with the Lipschitz constant L. 

Step II: Now we show thatℬ is completely continuous operator onܤ௥[0]. 

Firstly we show that ℬ is continuous on	ܤ௥[0]. 

Case I: let us assume that,  ݐ ∈ [0,ܶ] then evaluating we obtain the following estimate  
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|(ℬݔ)ݐ − (ℬݕ)ݐ|

≤ ቮ(ݐ)ݍ +
1

Γ(ߞ)න
݃ቀݏ, ൯ቁ(ݏ)ߚ൫ݔ(ݏ)ݔ

ݐ) − ଵି఍(ݏ ݏ݀
௧

଴
− −(ݐ)ݍ

1
Γ(ߞ)න

݃ ቀݕ(ݏ)ݕ,ݏ൫(ݏ)ߚ൯ቁ
ݐ) − ଵି఍(ݏ ݏ݀

௧

଴
ቮ 

																																																				

≤ ቮ
1

Γ(ߚ)න
݃ ቀݏ, ൯ቁ(ݏ)ߛ൫ݔ(ݐ)ݔ

ݐ) − ଵି఍(ݏ 		ݏ݀	
்

଴
−

1
Γ(ߚ)න

݃ቀݕ(ݏ)ݕ,ݏ൫(ݏ)ߚ൯ቁ
ݐ) − ଵି఍(ݏ 		ݏ݀	

்

଴
ቮ 

																									≤
1

Γ(ߞ) ቎න
ቚ݃ ቀݏ, ൯ቁ(ݏ)ߚ൫ݔ(ݏ)ݔ − ݃ ቀݏ, ൯ቁቚ(ݏ)ߚ൫ݔ(ݏ)ݔ

ݐ) − ଵି఍(ݏ 		ݏ݀	
்

଴
቏ 

≤
1

Γ(ߞ) ቈන
௥்ݓ 	(ℎ	ଶ, ߳)

ݐ) − ఍(ݏ 		ݏ݀	
்

଴
቉ 

																								≤
1

Γ(ߞ) ቈ
௥்ݓ 	(ℎ	ଶ, ߳)
Γ(ߚ)ߚ

ܶ఍݀ݏ቉ 

		≤ 			 ቈ
௥்ݓ 	(ℎ	ଶ, ߳)
Γ(ߞ + 1) ܶ఍݀ݏ቉																																																																					(4.6) 

Where  ݓ௥்(݃, ߳) = sup	{|݃(ݏ, (ݔ :|(ݕ,ݏ)݃− ݏ ∈ ݕ,ݔ;[ܶ,0] ∈ ,ݎ−] ,[ݎ ݔ| − |ݕ ≤ ߳} 

Therefore, from the uniform continuity of the function ݃(ݐ, on the set [0,ܶ] (ݔ × ,ݎ−]  we.  [ݎ

derive that ݓ௥்(݃, ߳) → 0as	ߝ → 0. 

Case II: Suppose that ݐ ≥ ܶ there exist ܶ > 0	and let us fix arbitrary	ߝ > 0 and take ݕ,ݔ	 ∈

ݔ‖  ௥[0] such thatܤ − ‖ݕ 	≤  Then	ߝ

|(ℬݔ)ݐ − (ℬݕ)ݐ| 

≤ 	 ቮ(ݐ)ݍ +
1

Γ(ߞ)න
݃ቀݏ, ൯ቁ(ݏ)ߚ൫ݔ(ݏ)ݔ

ݐ) − ଵି఍(ݏ
௧

଴
ݏ݀		 − −(ݐ)ݍ

1
Γ(ߚ)න

݃ ቀݕ(ݏ)ݕ,ݏ൫(ݏ)ߚ൯ቁ
ݐ) − ଵି఍(ݏ 		ݏ݀	

௧

଴
ቮ 

			≤ ቮ
1

Γ(ߞ)න
݃ቀݏ, ൯ቁ(ݏ)ߚ൫ݔ(ݏ)ݔ

ݐ) − ଵିఉ(ݏ 		ݏ݀	
௧

଴
−

1
Γ(ߚ)න

݃ ቀݏ, ൯ቁ(ݏ)ߚ൫ݕ(ݏ)ݕ
ݐ) − ଵି఍(ݏ 		ݏ݀	

௧

଴
ቮ 
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			≤
1

Γ(ߞ) ቎න
ቚ݃ ቀݏ, ൯ቁቚ(ݏ)ߚ൫ݔ(ݏ)ݔ

ݐ) − ଵିఉ(ݏ 		ݏ݀	
௧

଴
+ න

ቚ݃ ቀݕ(ݏ)ݕ,ݏ൫(ݏ)ߚ൯ቁቚ
ݐ) − ଵି఍(ݏ 		ݏ݀	

௧

଴
቏ 

		≤
1

Γ(ߞ) ቈන
ℎ	ଶ(ݏ)

ݐ) − ଵି఍(ݏ 		ݏ݀	
௧

଴
+න

ℎ	ଶ	(ݏ)
ݐ) − ଵି఍(ݏ 		ݏ݀	

௧

଴
቉ 

				≤
2

Γ(ߞ) ቈන
ℎ	ଶ	(ݏ)

ݐ) − ଵି఍(ݏ 		ݏ݀	
௧

଴
቉ 

		≤
(ݐ)ଶ	ݒ	2
Γ(ߞ) 																																																																																			(4.6) 

Hence we see that There exists T >0 s.t.  

(ݐ)ଶ	ݒ 	≤ 	
(ߞ)Γ	ߝ

2
ݐ	ݎ݋݂		 > ܶ 

Sinceis an arbitrary,  

from (4.7) we derive that |(ℬݔ)ݐ − (ℬݕ)ݐ| 	 ≤  (4.8)																																																																										ߝ	

Now combining the case I and II, we conclude that the operator B is continuous operator on 

closed ball 		ܤ௥[0] in to itself. 

Step III:  Next we show that ℬ is compact on		ܤ௥[0].  

(A)  First prove that every sequence {ℬݔ௡}  in ℬ(ܤ௥[0]) has a uniformly bounded sequence 

in	ℬ(ܤ௥[0]). Now by ( ܪଶ) – (ܪଷ)-(ܪସ) 

 

|(ℬݔ௡)ݐ| = ቤ(ݐ)ݍ +
1

Γ(ߞ)න
,ݏ)݃ , (((ݏ)ߚ)௡ݔ(ݏ)ݔ

ݐ) − ଵି఍(ݏ ݏ݀
௧

଴
ቤ 

|(ℬݔ௡)ݐ| ≤ |(ݐ)ݍ| +
1

Γ(ߞ)න
,ݏ)݃| , |(((ݏ)ߚ)௡ݔ(ݏ)ݔ

ݐ) − ଵି఍(ݏ ݏ݀
௧

଴
 

|(ℬݔ௡)ݐ| ≤ |(ݐ)ݍ| +
1

Γ(ߞ)න
ℎ	ଶ	(ݏ)

ݐ) − ଵି఍(ݏ ݏ݀
௧

଴
 

|(ℬݔ௡)ݐ| ≤ |(ݐ)ݍ| +
(ݐ)ଶݒ
Γ(ߞ)  

|(ℬݔ௡)ݐ| ≤ ଵܭ	 + ݐ		∀ଷܭ ∈ ℛା																																																																																																(4.9)	 

Taking supremum over t, we obtain  ‖ℬݔ௡‖ ≤ ଵܭ ଷܭ+ 						∀		݊ ∈ ܰ	 

This shows that {ℬݔ௡} is a uniformly bounded sequence inℬ(ܤ௥[0]). 
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(B) Now we proceed to show that sequence {ℬݔ௡}is also equicontinuous. 

Let   ߝ > 0	ܾ be given. Since lim௧→ஶ (ݐ)ݍ = 0 there is constant ܶ > 0	 such that   

|(ݐ)ݍ| < ݐ for all 	2/ߝ ≥ ܶ 

Case I:  If  ݐଵ		, ଶݐ ∈ [0,ܶ]    then we have  

|(ℬݔ௡)ݐଶ − (ℬݔ௡)ݐଵ| 

≤ ቤݍ(ݐଶ	) +
1

Γ(ߞ)න
,ݏ)݃ (((ݏ)ߚ)௡ݔ(ݏ)ݔ

	ଶݐ) − ଵି఍(ݏ 		ݏ݀	
௧మ	

଴
− −(	ଵݐ)ݍ

1
Γ(ߞ)න

,ݏ)݃ (((ݏ)ߚ)௡ݔ(ݏ)ݔ
	ଵݐ) − ଵି఍(ݏ 		ݏ݀	

௧భ	

଴
ቤ 

≤ −(	ଶݐ)ݍ| |(	ଵݐ)ݍ + ቮ
1

Γ(ߞ)න
,ݏ)݃| , |(((ݏ)ߚ)௡ݔ(ݏ)ݔ

	ଶݐ) − ଵି఍(ݏ 		ݏ݀	
௧మ	

଴
−

1
Γ(ߚ)඲

,ݏ)݃| , |(((ݏ)ߚ)௡ݔ(ݏ)ݔ
	ଵݐ) − ଵି఍(ݏ 		ݏ݀	

௧భ	

଴

ቮ 

≤ (	ଶݐ)ݍ| − |(	ଵݐ)ݍ + ቤ
1

Γ(ߞ)න
ℎ	ଶ(ݏ)

	ଶݐ) − ଵି఍(ݏ 		ݏ݀	
௧మ	

଴
−

1
Γ(ߚ)න

ℎ	ଶ(ݏ)
	ଵݐ) − ଵି఍(ݏ 		ݏ݀	

௧భ	

଴
ቤ 

≤ (	ଶݐ)ݍ| − |(	ଵݐ)ݍ +
1

Γ(ߞ) ቤන
ℎ	ଶ(ݏ)

	ଶݐ) − ଵି఍(ݏ 		ݏ݀	
௧మ	

଴
−න

ℎ	ଶ(ݏ)
	ଵݐ) − ଵି఍(ݏ 		ݏ݀	

௧భ	

଴
ቤ 

≤ −(	ଶݐ)ݍ| +|(	ଵݐ)ݍ ଵ
୻(఍)

(	ଶݐ)ଶݒ| −  (4.10)|(	ଵݐ)ଶݒ

from the uniform continuity of the function (ݐ)ݒ,(ݐ)ݍ on	[0,ܶ], we get  

|(ℬݔ௡)ݐଶ − (ℬݔ௡)ݐଵ| → 0  as  ݐଵ 	→ 			  ଶݐ

 Case II:  If  ݐଵ	,			ݐଶ 	≥ ܶ   then we have  

|(ℬݔ௡)ݐଶ − (ℬݔ௡)ݐଵ| 

≤ ቤݍ(ݐଶ	) +
1

Γ(ߞ)න
,ݏ)݃ (((ݏ)ߚ)௡ݔ(ݏ)ݔ

	ଶݐ) − ଵି఍(ݏ 		ݏ݀	
௧మ	

଴
− −(	ଵݐ)ݍ

1
Γ(ߞ)න

,ݏ)݃ (((ݏ)ߚ)௡ݔ(ݏ)ݔ
	ଵݐ) − ଵି఍(ݏ 		ݏ݀	

௧భ	

଴
ቤ 

≤ −(	ଶݐ)ݍ| |(	ଵݐ)ݍ + ቮ
1

Γ(ߞ)න
,ݏ)݃| |(((ݏ)ߚ)௡ݔ(ݏ)ݔ

	ଶݐ) − ଵି఍(ݏ 		ݏ݀	
௧మ	

଴
−

1
Γ(ߚ)඲

,ݏ)݃| |(((ݏ)ߚ)௡ݔ(ݏ)ݔ
	ଵݐ) − ଵି఍(ݏ 		ݏ݀	

௧భ	

଴

ቮ 

≤ −(	ଶݐ)ݍ| |(	ଵݐ)ݍ + ቤ
1

Γ(ߞ)න
,ݏ)݃| |(((ݏ)ߚ)௡ݔ(ݏ)ݔ

	ଶݐ) − ଵି఍(ݏ 		ݏ݀	
௧మ	

଴
ቤ + ቤ

1
Γ(ߚ)න

,ݏ)݃| |(((ݏ)ߚ)௡ݔ(ݏ)ݔ
	ଵݐ) − ଵି఍(ݏ 		ݏ݀	

௧భ	

଴
ቤ 
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≤ −(	ଶݐ)ݍ| |(	ଵݐ)ݍ + ௩మ(௧మ	)
୻(఍) + ௩మ(௧భ	)

୻(఍) ≤ 0+ ఢ
ଶ

+ ఢ
ଶ
 

≤ ߳		asݐଵ 	→ 			  (4.11)																																																													                                                         ଶ.ݐ

Case III: If ݐଵ	, ݐଶ	 ∈ 	ℛା  With ݐଵ	< T <ݐଶ	then we have  

|(ℬݔ௡)ݐଶ	 − (ℬݔ௡)ݐଵ	| ≤ |ℬݔ௡(ݐଶ	)− ℬݔ௡(ܶ)| + |ℬݔ௡(ܶ) − ℬݔ௡(ݐଵ	)|               (4.12)
 

Now if ݐଵ	 → 	ଵݐ	ℎ݁݊ݐ	ଶݐ →T and T→  	ଶݐ

Therefore,|ℬݔ௡			(ݐଶ	) −ℬݔ௡			(ܶ)| → 0 ,|ℬݔ௡			(ܶ)− ℬݔ௡			(ݐଵ	)| → 0 

and so |(ℬݔ௡			)ݐଶ	 − (ℬݔ௡			)ݐଵ	| → 	ଵݐ	ݏܽ	0 → 	ଶݐ ,	ଵݐ  for all	ଶݐ ∈ 	ℛା(4.13) 

 Hence {ℬݔ௡} is an equicontinuous sequence of functions in  ℬ(ܤ௥[0]).  

So applying Arzela-Ascoli theorem (see[23]) we say that {ℬݔ௡}has a uniformly convergent 

subsequence in ℬ(ܤ௥[0]) and consequently ℬ(ܤ௥[0]) is a  relatively compact subset of X. 

This shows that ℬ is compact operator on  ܤ௥[0]. Hence by Dugungi  ℬ is completely 

continuous on		ܤ௥[0]. 

Step IV: Next we show that  ࣛݔℬݔ ∈ ݔ ௥[0]  for allܤ ∈   ௥[0] is arbitrary, thenܤ

 

|(ݐ)ݔℬ(ݐ)ݔࣛ| ≤  |(ݐ)ݔ	ℬ||(ݐ)ݔ	ࣛ|

|(ݐ)ݔℬ(ݐ)ݔࣛ| ≤ ቮ
1

Γ(ߙ)න
݂ ቀݐ, ൯ቁ(ݏ)ߛ൫ݔ(ݐ)ݔ

ݐ) − ଵିఈ(ݏ
௧

଴
ቮݏ݀ ቮ቎(ݐ)ݍ +

1
Γ(ߞ)න

݃ቀݕ(ݏ)ݕ,ݏ൫(ݏ)ߚ൯ቁ
ݐ) − ଵି఍(ݏ ݏ݀

௧

଴
቏ቮ 

≤ 	ቈ
1

Γ(ߙ)න
ℎଵ(ݏ)

ݐ) − ଵିఈ(ݏ
௧

଴
቉ݏ݀	 ቎|(ݐ)ݍ| +

1
Γ(ߞ)න

ℎଶ(ݏ)
ݐ) − ଵି఍(ݏ ݏ݀	

௧

଴

቏ 

≤
(ݐ)ଵݒ
Γ(ߙ) ൤

|(ݐ)ݍ| +
(ݐ)ଶݒ
Γ(ߞ) ൨ 

	≤ ଵܭ]ଶܭ	 +  (4.14)																									ଷ]= r   for all t in ℛାܭ

Taking the supremum over t, we obtain ∥ 	ݔℬݔࣛ ∥≤ ݔ for all ݎ ∈   . ௥[0]ܤ

Hence   ࣛݔℬݔ ∈  ௥[0]ܤ
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Hence hypothesis (c) of Theorem (3.3) holds. 

Also we have  ܯ =∥ ℬ(ܤ௥[0]) 	 ∥= sup	{	∥ ℬݔ ∥ :	 ݔ ∈  {௥[0]ܤ

 

= ต݌ݑݏ		}݌ݑݏ
௧ஹ଴

|(ݐ)ݍ|}	 +
1

Γ(ߞ)න
ቚ݃ ቀݕ(ݏ)ݕ,ݏ൫(ݏ)ߚ൯ቁቚ

ݐ) − ଵି఍(ݏ ݔ:{ݏ݀ ∈ {	௥[0]ܤ
௧

଴

 

= ถ݌ݑݏ		}݌ݑݏ
௧ஹ଴

|(ݐ)ݍ|}	 +
1

Γ(ߞ)න
ℎଶ(ݏ)

ݐ) − ଵି఍(ݏ ݔ:{ݏ݀ ∈ {௥[0]ܤ
௧

଴
 

≤ ต݌ݑݏ
௧ஹ଴

|(ݐ)ݍ|}	 + 	 ต݌ݑݏ
௧ஹ଴

௩	మ(௧)
୻(఍) ≤ ଵܭ  ଷ                                                                          (4.15)ܭ+

Therefore   M݇	= L(ܭଵ < 1	ଷ)ܭ+
 

Now Appling Theorem 3.3 to shows that (2.1) has a solution onℛା. 

Step V. In this step we show the local attractivity of the solutions for (2.1).  

Let x and y be any two solutions of the (2.1) in ܤ௥[0] defined on ℛା . Then we have, 

(ݐ)ݔ| − |(ݐ)ݕ =
ተ

ተ
1

Γ(ߙ)න
݂ ቀݐ, ൯ቁ(ݏ)ߛ൫ݔ(ݐ)ݔ

ݐ) − ଵିఈ(ݏ
௧

଴
ݏ݀ ቎(ݐ)ݍ +

1
Γ(ߞ)න

݃ቀݏ, ൯ቁ(ݏ)ߚ൫ݔ(ݏ)ݔ
ݐ) − ଵି఍(ݏ ݏ݀

௧

଴
቏

		−
1

Γ(ߙ)න
݂ ቀݕ(ݐ)ݕ,ݐ൫(ݏ)ߛ൯ቁ

ݐ) − ଵିఈ(ݏ
௧

଴
ݏ݀ ቎(ݐ)ݍ +

1
Γ(ߞ)න

݃ቀݕ(ݏ)ݕ,ݏ൫(ݏ)ߚ൯ቁ
ݐ) − ଵି఍(ݏ ݏ݀

௧

଴
቏ተ

ተ
 

−(ݐ)ݔ| |(ݐ)ݕ ≤ ቮ
1

Γ(ߙ)න
݂ ቀݐ, ൯ቁ(ݏ)ߛ൫ݔ(ݐ)ݔ

ݐ) − ଵିఈ(ݏ
௧

଴
ݏ݀ ቎(ݐ)ݍ +

1
Γ(ߞ)න

݃ቀݏ, ൯ቁ(ݏ)ߚ൫ݔ(ݏ)ݔ
ݐ) − ଵି఍(ݏ ݏ݀

௧

଴
቏ቮ

+ 																					 ቮ
1

Γ(ߙ)න
݂ ቀݕ(ݐ)ݕ,ݐ൫(ݏ)ߛ൯ቁ

ݐ) − ଵିఈ(ݏ
௧

଴
ݏ݀ ቎(ݐ)ݍ

+
1

Γ(ߞ)න
݃ቀݕ(ݏ)ݕ,ݏ൫(ݏ)ߚ൯ቁ

ݐ) − ଵି఍(ݏ ݏ݀
௧

଴
൩ቮ 

(ݐ)ݔ| − |(ݐ)ݕ ≤ ቮ
1

Γ(ߙ)න
݂ ቀݐ, ൯ቁ(ݏ)ߛ൫ݔ(ݐ)ݔ

ݐ) − ଵିఈ(ݏ
௧

଴
ቮݏ݀ ቈ|(ݐ)ݍ| +

1
Γ(ߞ)න

ห݃൫ݏ, ൯ห(ݏ)ݔ
ݐ) − ଵି఍(ݏ ݏ݀

௧

଴
቉ 
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+ ቮ
1

Γ(ߙ)න
݂ ቀݕ(ݐ)ݕ,ݐ൫(ݏ)ߛ൯ቁ

ݐ) − ଵିఈ(ݏ
௧

଴
ቮݏ݀	 ቈ|(ݐ)ݍ| +

1
Γ(ߞ)න

|((ݏ)ݕ,ݏ)݃|
ݐ) − ଵି఍(ݏ 		ݏ݀	

௧

଴
቉ 

(ݐ)ݔ| − |(ݐ)ݕ ≤
1

Γ(ߙ)න
ℎଵ(ݏ)

ݐ) − ଵିఈ(ݏ
௧

଴
ݏ݀ ቈ|(ݐ)ݍ| +

1
Γ(ߞ)න

ℎଶ(ݏ)
ݐ) − ଵି఍(ݏ ݏ݀

௧

଴
቉ 

+
1

Γ(ߙ)න
ℎଵ(ݏ)

ݐ) − ଵିఈ(ݏ
௧

଴
ݏ݀	 ቈ|(ݐ)ݍ| +

1
Γ(ߞ)න

ℎଶ(ݏ)
ݐ) − ଵି఍(ݏ 		ݏ݀	

௧

଴
቉ 

(ݐ)ݔ| − |(ݐ)ݕ ≤ 2
1

Γ(ߙ)න
ℎଵ(ݏ)

ݐ) − ଵିఈ(ݏ
௧

଴
	ݏ݀	 ቈ|(ݐ)ݍ| +

1
Γ(ߞ)න

ℎଶ(ݏ)
ݐ) − ଵି఍(ݏ 		ݏ݀	

௧

଴
቉ 

 

(ݐ)ݔ| − |(ݐ)ݕ ≤ 2 ௩భ(௧)
୻(ఈ) ቂ|(ݐ)ݍ| + ௩మ(௧)

୻(఍) ቃ                                                                        (4.16) 

For all ݐ ∈ 	ℛା. Since	lim௧→ஶ (ݐ)ݍ = 0 and lim௧→ஶ (ݐ)௜ݒ = 0 this gives that, 

lim௧→ஶ sup|(ݐ)ݔ − |(ݐ)ݕ = 0.	Thus the (2 .1) has a solution and all the solutions are locally 

attractive onℛା. 

5.Conculsion: In this paper we have studied that the attractivity results and existence 

solutions of quadratic type integral equation of fractional order. However, the method can be 

applied to other more than nonlinear quadratic integral equationinvolving integers or 

Riemann-Louville type fractional order of integration. The research in this direction forms the 

further scope for the work and some of the results of attractivity and extremal solution of 

maximal and minimal solutions.  
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