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ABSTRACT: 

In this paper, Fredholm integro-differential equations are solved using the derivative of the Lucas 
polynomials in matrix form. The equation is first transformed into systems of nonlinear algebraic 
equations using the Lucas polynomials. The unknown parameters required for approximating the solution 
of Fredholm integro-differential equations are then determined using Gaussian elimination. The method 
has proven to be an active and dependable technique for solving many Fredholm integro-differential 
equations of different order. The novelty in this technique is that it is capable of solving Fredholm integro 
differential equation of any order by simply updating the matrix of derivative of the Lucas polynomials 
also surprisingly the technique was tried on mix Fredholm-Volterra integro differential equation and the 
result obtained was amazing. Some test problems contained in the literature were solved using the 
developed technique and the results confirmed the applicability, validity and efficiency of the method. 
The accuracy of the method was observed to be better when compared with some existing methods.   
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1 INTRODUCTION 
The Fredholm integro-differential equation is the result of converting boundary value problems in differential 

equations to integro-differential equations with limits of integration considered as constant. This class of 

problems has gained importance in the literature with a variety of applications such as epidemiology, the 

mathematical modeling of epidemics, particularly when the models contain age-structure or describe spatial 

epidemics. These equations are characterized by the existence of one or more of the derivatives 𝑧′(𝑥),

𝑧″(𝑥), outside the integral sign. The linear Fredholm integro differential equation is of the form 

𝑧(𝑘)(𝑥) = 𝑓(𝑥) + 𝜆 ∫ ℋ(𝑥, 𝑡)𝑧(𝑡)𝑑𝑡
𝑏

𝑎
, 𝑧(𝑚)(0) = 𝛽𝑚, 0 ≤ 𝑚 ≤ 𝑘 − 1  𝑥 𝜖 [𝑎, 𝑏]  (1.0) 

where the function 𝑓(𝑥) and the kernel ℋ(𝑥, 𝑡) are known 𝑧(𝑘)(𝑥) =
𝑑𝑘𝑧

𝑑𝑥𝑘. Since (1.0) combines differential 

and integral operators, it is important to define initial conditions 𝑧(0), 𝑧(1)(0), 𝑧(2)(0), … , 𝑧(𝑘−1)(0) for the 

determination of the particular solution  𝑧(𝑥).  

The expectation here is to develop an efficient numerical method as opposed to proving theoretical 

concepts of convergence and existence. Presented over the last few decades are varieties of powerful 

methods, such as the numerical solution of two-dimensional Fredholm integro-differential equations by 

Chebyshev integral operational matrix method [1], Two-dimensional Chebyshev polynomials for solving 

two-dimensional integro-differential equations [2], Operational matrices of Bernstein polynomials and their 

applications [3], Sixth-kind Chebyshev and Bernoulli polynomial numerical methods for solving nonlinear 

mixed partial integro differential equations with continuous kernels [4], [5] The numerical solution of non-

linear 2D Volterra-Fredholm integro-differential equations using two-dimensional triangular function by [6], 

A computational technique for solving three-dimensional mixed volterra–fredholm integral equations [4], 

The Legendre Galerkin method for solving fractional integro-differential equations of Fredholm type by [7], 

Comparison of some numerical methods for the solutions of first and second orders linear integro-

differential equations [8], The numerical solution of Fredholm integro-differential equations using hybrid 

function operational matrix of differentiation [9]. These methods generated impressive numerical results for 

the model problems considered as experiment.  



 

 

This paper proposes a method based on the derivative of Lucas polynomials similar to [9], [10], , [11] and 

[12] but with a divergent approach for the numerical solution of (1.0). This approach, to the best of our 

knowledge has not been discussed by any researcher to date. It is our strong believe that others will find 

the method appealing and convincing as an improvement to many existing methods for the numerical 

solution of (1.0). 

2. MATERIALS AND METHODS 

Lucas Polynomial 

The Lucas polynomials denoted by 𝑧𝑛(𝑥) are defined using the recurrence formula; 

𝑧𝑛(𝑥) = 2−𝑛 (𝑥 − √𝑥2 + 4)
𝑛

(𝑥 + √𝑥2 + 4)
𝑛

 

The first few Lucas polynomials are given below;  

𝑧0(𝑥) = 2 

𝑧1(𝑥) = 𝑥 

𝑧2(𝑥) = 𝑥2 + 2 

𝑧3(𝑥) = 𝑥3 + 3𝑥 

𝑧4(𝑥) = 𝑥4 + 4𝑥2 + 2 

𝑧5(𝑥) = 𝑥5 + 5𝑥3 + 5𝑥 

𝑧6(𝑥) = 𝑥6 + 6𝑥4 + 9𝑥2 + 2 

Approximate Solution 

This is an expression obtained after the unknown parameters have been found and substituted back into 

the assumed solution. It is referred to as an approximate solution since it is a reasonable replacement of 

the exact solution. It is denoted by  𝑧𝑁(𝑥), and taken as an inexact representation of the exact solution, 

where 𝑁 is the degree of the approximant used in the calculation. Methods of approximate solution are 

usually adopted because complete information needed to arrive at the exact solution may not be available. 

In this paper, the approximate solutions used are given as; 

𝑧𝑁(𝑥) = ∑ 𝛿𝑖𝑧𝑖(𝑥)

𝑁

𝑖=0

 

where 𝑥 represents the independent variables in the problem, 𝛿𝑖(𝑖 ≥ 0)are the unknown parameters to be 

determined and 𝑧𝑖(𝑥), (𝑖 ≥ 0) is the Lucas Polynomials basis function. Note that the approximate solution 

above can be written in matrix form as;  

𝑧𝑁(𝑥) = ∑ 𝛿𝑖𝑧𝑖(𝑥)

𝑁

𝑖=0

= 𝑍(𝑥)𝜕𝑇 

Where the Lucas coefficients vector 𝜕 and the Lucas vector 𝑍(𝑥) are defined as; 

𝜕 = 𝛿0, 𝛿1, 𝛿2, … , 𝛿𝑁

 
𝑍(𝑥) = 𝑧0(𝑥), 𝑧1(𝑥), 𝑧2(𝑥), … , 𝑧𝑁(𝑥)

} 

Similarly, the derivative of the approximate solution above can be written in matrix form as; 

𝑧𝑁
(𝑘)(𝑥) = ∑ 𝛿𝑖𝑧𝑖

(𝑘)(𝑥)

𝑁

𝑖=0

= 𝑍(𝑥)(Ω𝑇)(𝑘)𝜕𝑇 



 

 

where Ω is an (𝑁 + 1) × (𝑁 + 1) square matrix of the derivative of the Lucas polynomial. 

2.1 Methodology 

We consider a technique for the numerical solution of the linear Fredholm integro-differential equations of 

the form (1.0). First, we consider the approximate solution of (1.0) in the form of Lucas series given below 

as; 

𝑧(𝑥) ≅ 𝑧𝑁(𝑥) = ∑ 𝛿𝑖𝑧𝑖(𝑥)𝑁
𝑖=0 = 𝑍(𝑥)𝜕𝑇        (2.0) 

where 𝑧𝑖(𝑥) are the Lucas polynomials of degree 𝑖 and 𝛿𝑖′𝑠 are the unknown parameters to be sought for. 

We approximate equation (1.0) by substituting (2.0) into (1.0) with 𝜆 = 1 to get; 

𝑍(𝑥)(Ω𝑇)(𝑘)𝜕𝑇 = 𝑓(𝑥) + ∫ ℋ(𝑥, 𝑡)𝑍(𝑥)𝜕𝑇𝑑𝑡
𝑏

𝑎
      (3.0) 

Expanding the integral in (3.0), we obtain the following expression; 

𝑍(𝑥)(Ω𝑇)(𝑘)𝜕𝑇 = 𝑓(𝑥) + (𝛿0 ∫ ℋ(𝑥, 𝑡)𝑧0(𝑡)𝑑𝑡
𝑏

𝑎
+ ⋯ + 𝛿𝑁 ∫ ℋ(𝑥, 𝑡)𝑧𝑛(𝑡)𝑑𝑡

𝑏

𝑎
)  (4.0) 

Replacing 𝑥 with 𝑥𝑖 in (4.0), we obtain the expression below as; 

𝑍(𝑥𝑖)(Ω𝑇)(𝑘)𝜕𝑇 = 𝑓(𝑥𝑖) + (𝛿0 ∫ ℋ(𝑥𝑖 , 𝑡)𝑧0(𝑡)𝑑𝑡
𝑏

𝑎
+ ⋯ + 𝛿𝑁 ∫ ℋ(𝑥𝑖 , 𝑡)𝑧𝑛(𝑡)𝑑𝑡

𝑏

𝑎
) (5.0) 

Collocating equation (5.0) at the points  

𝑥𝑖 =
𝑖

𝑁 − 𝑘
, 𝑖 = 0,1, … , 𝑁 − 𝑘,    𝑥𝜖[𝑎, 𝑏] 

We obtain (𝑁 + 1) by (𝑁 + 1) system of nonlinear algebraic equations. Since we need to solve a nonlinear 

system with a large number of equations, we have to rely on some iterative type method. Here, we apply 

Gaussian elimination for the unknown parameters 𝛿0, 𝛿1, 𝛿2, … , 𝛿𝑁. Replacing the calculated parameters 𝛿0,

𝛿1, 𝛿2, … , 𝛿𝑁 into (2.0), we obtain the approximate solution to (1.0). 

3. ILLUSTRATION OF THE METHOD 

In demonstrating the present technique’s simplicity and computational efficiency, four sample problems 

contained in the literature are considered. In each of these sample problems, we compare our results with 

the exact solution and the solutions obtained by other methods in literature. All calculations are performed 

using Scientific Workplace 5.5 Software; the detailed procedure is outline below. Also, the absolute errors 

in tables are the values of |𝑧(𝑥)  − 𝑧𝑁(𝑥)| at selected points. 

Problem 3.1 

We first consider the mix linear third order Fredholm-Volterra integro-differential equation considered by 

[13] 

𝑧(3)(𝑥) = 𝑥 − 2𝑥3 + 3𝑥4 + ∫ x𝑧(𝑡)𝑑𝑡
1

0
+ ∫ t𝑧(𝑡)𝑑𝑡

𝑥

0
, 0 ≤ 𝑥 ≤ 1,    (6.0) 

with the initial conditions 𝑧(0) = 0,  𝑧(1)(0) = 6, 𝑧(2)(0) = −24 and the exact solution 𝑧(𝑥) = 6𝑥 − 12𝑥2. 

Applying the present technique on (6.0) with  𝑁 = 4, the given problem becomes; 

𝑍(𝑥)(Ω𝑇)(2)𝜕𝑇 = 𝑥 − 2𝑥3 + 3𝑥4 + ∫ 𝑥𝑍(𝑡)𝜕𝑇𝑑𝑡
1

0
+ ∫ t𝑍(𝑡)𝜕𝑇𝑑𝑡

𝑥

0
    (7.0) 



 

 

with the initial condition 

 

𝑍(0)𝜕𝑇 = 0, 𝑍(0)(Ω𝑇)(1)𝜕𝑇 = 6, 𝑍(0)(Ω𝑇)(2)𝜕𝑇 = −24 

Collocating (7.0) at 𝑥𝑖 =
𝑖

1
, 𝑖 = 0,1 and evaluating the initial condition at  𝑥 = 0 and solving for the unknown 

parameters, we have  

[𝛿0 = 12, 𝛿1 = 6, 𝛿2 = −12, 𝛿₃ = 0, 𝛿₄ = 0] 

Substituting these parameters into  (2.0), we get the approximate solution to problem 3.1 as; 

𝑧𝑁(𝑥) = 6𝑥 − 12𝑥2 

The approximate solution is the same as the exact solution showing that the method has higher accuracy 

than the method considered by [13]. 

Problem 3.2 

Consider the model Fredholm integro-differential equation: 

𝑧′′(𝑥) = 32𝑥 + ∫ (1 − 𝑥t)𝑧(𝑡)𝑑𝑡
1

−1
,   0 ≤ 𝑥 ≤ 1      (8.0) 

subject to the initial conditions: 𝑧′(0) = 0, 𝑧(0) = 1. The exact solution to the problem is given by; 

𝑧(𝑥) = 1 +
3

2
𝑥2 + 5𝑥3 

Source: [14]. 

Applying the present technique with  𝑁 = 4, the given problem becomes; 

𝑍(𝑥)(Ω𝑇)(2)𝜕𝑇 = 32𝑥 + ∫ (1 − xt)𝑍(𝑡)𝜕𝑇𝑑𝑡
1

−1
      (9.0) 

with the initial conditions  

 

𝑍(0)𝜕𝑇 = 1,   𝑍(0)(Ω𝑇)(1)𝜕𝑇 = 0 

Collocating (9.0) at 𝑥𝑖 =
𝑖

2
, 𝑖 = 0,1,2 and evaluating the initial conditions at  𝑥 = 0and solving for the unknown 

parameters, we have  

[𝛿0 = −1, 𝛿1 = −15, 𝛿₂ =
3

2
, 𝛿₃ = 5, 𝛿₄ = 0] 

 

Substituting the calculated parameters into  (2.0), we get the approximate solution to the problemas; 

𝑧(𝑥) = 1 +
3

2
𝑥2 + 5𝑥3 

The approximate solution is the same as the exact solution showing the accuracy of the method. 

Table 1compared our results with [14]. 



 

 

 

Table 1.  Numerical results of problem 3.2 compared with [14] 

 

 

 

 

x 

 

Exact 

solution 

Approx solution 

of proposed 

method 

𝑵 = 𝟒 

Absolute error of 

proposed method 

|𝒛(𝒙)  − 𝒛𝑵(𝒙)| 

[14] 

 

|𝒛(𝒙)  − 𝒛𝑵(𝒙)| 

0.1000 1. 0200 1. 0200 0.0000 0.0000𝑒+00 

0.2000 1. 1000 1. 1000 0.0000 1.1102𝑒−16 

0.3000 1. 2700 1. 2700 0.0000 8.8818𝑒−16 

0.4000 1. 5600 1. 5600 0.0000 7.7716𝑒−16 

0.5000 2. 0000 2. 0000 0.0000 4.4409𝑒−16 

0.6000 2. 6200 2. 6200 0.0000 1.6653𝑒−15 

0.7000 3. 4500 3. 4500 0.0000 2.7756𝑒−15 

0.8000 4.5200 4.5200 0.0000 5.4401𝑒−15 

0.9000 5.8600 5.8600 0.0000 7.2165𝑒−15 

1.0000 7.5000 7.5000 0.0000 9.4369𝑒−15 

 

 

Problem 3.3 

Consider the model Fredholm integro-differential equation given by 

𝑧′′(𝑥) = 10 −
146

35
𝑥 +

1

2
∫ 𝑥t(𝑧(𝑡))

2
𝑑𝑡

1

0
,   0 ≤ 𝑥, 𝑡 ≤ 1       (10.0) 

subject to the boundary conditions: 𝑧′(0) = 0, 𝑧(0) = 1. The exact solution to the problem is given by; 

𝑧(𝑥) = 1 + 5𝑥2 − 𝑥3 

Source: [14]. 

Applying the present technique with  𝑁 = 4, the given problem becomes; 

𝑍(𝑥)(Ω𝑇)(2)𝜕𝑇 = 10 −
146

35
𝑥 +

1

2
∫ xt(𝑍(𝑡)𝜕𝑇)2𝑑𝑡

1

−1
      (11.0) 

with the initial conditions  

 

𝑍(0)𝜕𝑇 = 1,   𝑍(0)(Ω𝑇)(1)𝜕𝑇 = 0 

Collocating (11.0) at 𝑥𝑖 =
𝑖

2
, 𝑖 = 0,1,2 and evaluating the initial conditions at  𝑥 = 0and solving for the 

unknown parameters, we have 

[𝛿0 = −
9

2
, 𝛿1 = 3, 𝛿2 = 5, 𝛿3 = −1, 𝛿₄ = 0] 

 

Substituting the calculated parameters into  (2.0), we get the approximate solution to the problem as; 

𝑧(𝑥) = 1 + 5𝑥2 − 𝑥3 



 

 

The approximate solution is the same as the exact solution showing the accuracy of the method. 

Table 2compared our results with [14] 

Table 2:  Numerical results of problem 3.3 compared with [14] 

 

 

 

x 

Exact 

solution 

Approx solution 

of proposed 

method 

𝑵 = 𝟒 

Absolute error of 

proposed method 

|𝒛(𝒙)  − 𝒛𝑵(𝒙)| 

 

[14] 

|𝒛(𝒙)  − 𝒛𝑵(𝒙)| 

0.1 1. 049 1. 049 0.000 1.1477 × 10−14 

0.2 1. 192 1. 192 0.000 6.7141 × 10−14 

0.3 1. 423 1. 423 0.000 1.8341 × 10−13 

0.4 1. 736 1. 736 0.000 3.3856 × 10−13 

0.5 2. 125 2. 125 0.000 4.8611 × 10−13 

0.6 2. 584 2. 584 0.000 5.7987 × 10−13 

0.7 3. 107 3. 107 0.000 5.9475 × 10−13 

0.8 3. 688 3. 688 0.000 5.3291 × 10−13 

0.9 4. 321 4. 321 0.000 4.1600 × 10−13 

1.0 5.000 5.000 0.000 2.7444 × 10−13 

Problem 3.4 

Consider the model Fredholm integro-differential equation given by 

𝑧′′(𝑥) = 𝑥 − 𝑠𝑖𝑛𝑥 − ∫ xt𝑧(𝑡)𝑑𝑡
𝜋

2
0

,   0 ≤ 𝑥, 𝑡 ≤
𝜋

2
       (12.0) 

subject to the boundary conditions: 𝑧′(0) = 1, 𝑧(0) = 0. The exact solution to the problem is given by; 

𝑧(𝑥) = 𝑠𝑖𝑛𝑥 

Source: [15].  

Applying the present technique with  𝑁 = 10, the given problem becomes; 

𝑍(𝑥)(Ω𝑇)(2)𝜕𝑇 = 𝑥 − 𝑠𝑖𝑛𝑥 − ∫ 𝑥t(𝑍(𝑥)𝜕𝑇)𝑑𝑡
𝜋

2
0

      (13.0) 

with the initial conditions  

 

𝑍(0)𝜕𝑇 = 0,   𝑍(0)(Ω𝑇)(1)𝜕𝑇 = 1 

Collocating (11.0) at 𝑥𝑖 =
𝑖

8
, 𝑖 = 0,1, … ,8 and evaluating the initial conditions at  𝑥 = 0and solving for the 

unknown parameters, we have 

[𝛿₀ = 4. 222357858 44 × 10⁻⁶, 𝛿₁ = 1. 590652422 74, 𝛿₂ = −7. 697862448 07 × 10⁻⁶, 𝛿₃

= −0.212750434 245, 𝛿₄ = 5. 575345015 04 × 10⁻⁶, 𝛿₅ = 9. 830141954 81 × 10⁻³, 

𝛿₆ = −2. 882400421 5 × 10⁻⁶, 𝛿₇ = −2. 256240440 61 × 10⁻⁴, 𝛿₈ = 9. 139904134 24 × 10⁻⁷, 𝛿₉

= 3. 059836347 40 × 10⁻⁶, 𝛿₁₀ = −1. 314304173 33 × 10⁻⁷] 



 

 

Substituting the calculated parameters into  (2.0), we get the approximate solution to the problemas; 

𝑧(𝑥) = −1. 314304173 33 × 10⁻⁷𝑥10 + 3. 059836347 4 × 10⁻⁶𝑥⁹ − 4. 003137599 06 × 10⁻⁷𝑥⁸

− 1. 980855169 34 × 10⁻⁴𝑥⁷ − 1. 705417207 63 × 10⁻⁷𝑥⁶ + 8. 333389227 76 × 10−3𝑥⁵

− 1. 077011213 × 10⁻⁸𝑥⁴ − 0.166666665 997𝑥3 + 4. 9 × 10−17𝑥2 + 1. 0𝑥 + 2.0 × 10−18 

The approximate solution and the exact solution are shown in the Table 3 and comparing our results with 

[15] 

Table 3:  Numerical results of Example 3.4 compared with [15] 𝑵 = 𝟏𝟎 

 

 

 

x 

Exact solution Approx solution 

of proposed 

method 

Absolute error of 

proposed method 

|𝒛(𝒙)  − 𝒛𝑵(𝒙)| 

 

𝑵 = 𝟏𝟎 

Absolute error by 

[15] 

|𝒛(𝒙)  − 𝒛𝑵(𝒙)| 

𝑵 = 𝟏𝟎 

0.0 0.0 0.0 0.0 0.0 

0.1 0.099833416650 0.09983341664 68 1. 00667 × 10−14 1.2 × 10−9 

0.2 0.198669330800  0.198669330 793 1. 59742 × 10−12 1.21 × 10−9 

0.3 0.295520206661 0.295520206 654 7. 11440 × 10−12 5.72 × 10−9 

0.4 0.389418342309 0.389418342 290 1. 83443 × 10−11 9.66 × 10−8 

0.5 0.479425538604 0.479425538 567 3. 72407 × 10−11 9.70 × 10−8 

0.6 0.564642473395 0.564642473 329 6. 57075 × 10−11 2.97 × 10−8 

0.7 0.644217687238 0.644217687 132 1. 05649 × 10−10 3.85 × 10−7 

0.8 0.717356090900 0.717356090 741 1. 59017 × 10−10 6.04 × 10−7 

0.9 0.783326909627 0.783326909 400 2. 27620 × 10−10 6.56 × 10−7 

1.0 0.841470984808 0.841470984 494 3. 13733 × 10−10 9.44 × 10−7 

4. CONCLUSION 

In this research, we proposed a new approach for solving both linear and nonlinear Fredholm integro 

differential equations and surprisingly the approach is able to handled mix Fredholm-Volterra integro 

differential equations. The present method has an advantage over other methods because of its simplicity 

in the determination of the unknown parameters being the main factor in this work. Another advantage of 

the method is its ability to solve Fredholm integro differential equation of any order by simply updating the 

matrix of derivative of the Lucas polynomials unlike other methods where the derived algorithm is only 

designed to solve problems of a specific order only. The present work revealed that the proposed scheme 

is comparatively simpler to apply than many existing methods, whereas the numerical results revealed the 

accuracy and superiority of the presented method. The main attraction of the present technique is displayed 

by the superior results for different input values which further suggest the novelty of the technique against 

some existing methods. 
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