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Integrating Deep Learning and Ensemble Techniques for 

Improved Epileptic Seizure Detection 

 

 

 

Abstract:  

Introduction: Automated seizure detection from EEG data is crucial for improving the lives of 

individuals with epilepsy. In order to identify seizures, we investigated various deep learning and 

machine learning models, aiming to identify the most accurate and efficient approach. 

Problem Statement: Existing seizure detection methods often struggle with balancing accuracy, 

computational efficiency, and generalizability across diverse EEG datasets. This study addresses 

this challenge by evaluating various models on two distinct datasets. 

Methodology:  Several models were trained and evaluated on two EEG datasets: a novel Voting 

Classifier ensemble (combining SVM, Random Forest, and XGBoost), CNN, DWT-based DNN, 

SVM, Random Forest, XGBoost, and MDBCN. Accuracy, precision, recall, F1-score, and 

computation time were used to evaluate performance. 

Results: The Voting Classifier demonstrated outstanding performance across both datasets, achieving 

perfect accuracy, precision, recall, and F1-scores (100%) with competitive computation times of 9.63 

seconds on Dataset 1 and 15 seconds on Dataset 2. In comparison, other models such as DWT-based DNN, 

CNN, MDBCN, SVM, Random Forest, and XGBoost showed strong but varied performance, with 

accuracies ranging from 88% to 99% and significantly different computational times. The MDBCN, in 

particular, struggled with low seizure recall on Dataset 2 (39%), while the CNN exhibited high 

computational demands. The results emphasize the Voting Classifier's ability to balance accuracy and 

efficiency, making it highly effective for seizure detection tasks. 

Conclusion: The Voting Classifier consistently outperformed other models, demonstrating its 

potential as a highly accurate and efficient solution for automated seizure detection. The DWT-

based DNN also emerged as a compelling option, especially for applications requiring rapid 

processing. Future research will focus on optimizing computationally intensive models like CNN, 

exploring hybrid models, validating performance on larger and more diverse real-world datasets, 

and integrating these models into real-time monitoring systems for improved patient care. 
 

Keywords: Seizure Detection, Deep Learning, Multi-Dimensional Bayesian Convolutional 

Network, Deep Neural Network, Voting Classifier, Discrete Wavelet Transform. 
 

1. Introduction 

 According to the World Health Organization (WHO), epilepsy is a chronic neurological illness that 

affects over 50 million individuals worldwide and is characterized by recurring seizures.[1] [2].  

Unpredictable occurrences brought on by aberrant brain electrical activity, seizures can have a 

major negative impact on a person's and their family's quality of life. The impact goes beyond the 

immediate discomfort and disruption of daily routines, often leading to long-term challenges in 

various aspects of life.  Seizures can lead to injuries from falls, cognitive impairment, social 

isolation, and, in severe cases, sudden unexpected death in epilepsy (SUDEP) [3].  The 

unpredictable nature of seizures necessitates continuous monitoring and rapid intervention to 

mitigate these risks.  Current methods of seizure detection, largely reliant on manual review of 

electroencephalography (EEG) data by trained professionals, are laborious, time-consuming, 

subjective, and lack the scalability required for continuous, real-time monitoring of large 
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populations [4].  This limitation underscores the urgent need for more accurate, efficient, and 

readily deployable seizure detection systems.  The development of such systems holds the potential 

to revolutionize epilepsy care, enabling timely interventions, personalized treatment strategies, and 

potentially even seizure prediction and prevention, ultimately improving patient outcomes and 

reducing the overall burden of this debilitating condition [5] [6]. 

 

Electroencephalography (EEG) continues to be the gold standard for epilepsy diagnosis and 

surveillance. Electrodes are applied to the scalp using this non-invasive neurophysiological method 

to capture the brain's electrical activity.  These recordings provide a detailed representation of 

brainwave patterns, offering invaluable insights into the underlying neurological processes. Figure 

1 illustrates a typical EEG recording system.  The characteristic EEG patterns associated with 

epileptic seizures differ significantly from those observed during interictal periods (between 

seizures).   

 

 
Figure 1: Illustration of EEG Recording Process [7]. 

 

Several distinct EEG patterns are recognized [8]: 

• Interictal Spikes: Brief bursts of high-frequency electrical activity between seizures, often 

signaling a higher risk of seizures and helping identify epileptogenic brain zones. Detecting 

these transient, low-amplitude spikes is challenging. 

• Ictal Activity: Abnormal electrical patterns during a seizure. These patterns vary by seizure 

type and brain location, making automated detection a complex task requiring advanced 

algorithms. 

• Post-ictal Slowing: Low-frequency waves following a seizure, reflecting brain recovery. 

Their duration and characteristics offer valuable diagnostic insights. 

• High-Frequency Oscillations (HFOs): Fast oscillations (>80 Hz) linked to interictal spikes 

and epileptogenic activity. HFOs are promising biomarkers for epilepsy but demand 

sophisticated signal-processing techniques for detection. 

These EEG patterns' complexity underscores the limitations of manual analysis, highlighting the 

need for advanced computational tools to identify subtle but critical diagnostic features accurately. 

 

 

 

 

1.1 Machine Learning: A Paradigm Shift in Seizure Detection: 
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Seizure detection traditionally relies on neurologists visually analyzing EEG traces, a subjective 

and time-consuming process prone to variability. With the large volume of EEG data from 

continuous monitoring, there’s a growing need for faster and more consistent solutions. Machine 

learning (ML) and deep learning (DL) now enable automated analysis of EEG data to identify 

seizure patterns and provide objective, data-driven evaluations. This shift transforms epilepsy 

management from reactive (responding to seizures) to proactive, enabling early warnings and 

personalized prevention strategies.[9]. 

The application of ML to EEG-based seizure detection has several key advantages [10]: 

• Automation: ML algorithms can automate the process of seizure detection, freeing up 

clinicians' time and allowing for continuous monitoring of large patient populations. 

• Objectivity: ML eliminates the subjectivity inherent in manual analysis, leading to more 

consistent and reliable seizure detection. 

• Scalability: ML-based systems can easily handle the large volumes of data generated by 

continuous EEG monitoring. 

• Real-time processing:  Advanced ML architectures allow for real-time or near real-time 

seizure detection, enabling prompt interventions. 

• Potential for prediction:  Some ML models show promise in predicting seizure onset, 

enabling preventative measures.  

 

 

1.2 Existing Challenges and Research Gaps: 

Despite advances in ML for seizure detection, several challenges persist: 

• Data Variability: EEG results vary due to factors like electrode placement, noise, and 

individual brain differences. This requires algorithms that can handle noisy and inconsistent 

data. 

• Computational Complexity: Deep learning models need significant processing power, 

making them hard to implement in resource-limited settings. 

• Interpretability: Many deep learning models are "black boxes," making their predictions 

hard to understand, which can limit their acceptance in medical use. 

• Dataset Limitations: The lack of large, high-quality, annotated EEG datasets hinders the 

development of accurate models. Issues like class imbalance and data inconsistencies affect 

current datasets. 

 

1.3  The Proposed Approach: Integrating Deep Learning and Ensemble Methods: 

This study presents a novel approach combining deep learning and ensemble methods to address 

key challenges in seizure detection. Deep learning models like the Multi-Dimensional Bayesian 

Convolutional Network (MDBCN) and Deep Neural Networks (DNNs), along with Discrete 

Wavelet Transform (DWT), capture the complex spatiotemporal properties of EEG signals. To 

combat overfitting and complexity, ensemble techniques such as Support Vector Machines 

(SVMs), Random Forests, and XGBoost classifiers are used. A Voting Classifier combines the 

outputs of these models to improve accuracy, robustness, and generalizability. DWT enhances 

feature extraction by breaking down EEG signals into frequency sub-bands, capturing both high 

and low-frequency components essential for accurate seizure detection. 

 

1.4 Objectives and Contributions: 
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The goal of the proposed study is to create a reliable and accurate system for detecting epileptic 

seizures. Using deep learning methods like Multi-Dimensional Bayesian Convolutional Networks 

(MDBCNs), [11] and Deep Neural Networks (DNNs) [12], with ensemble methods like Support 

Vector Machines (SVMs), Random Forests (RF), and XGBoost (XGB), the system aims to capture 

complex spatiotemporal features in EEG signals and improve overall performance. 

This study introduces the use of Discrete Wavelet Transform (DWT) to improve feature extraction 

by breaking EEG data into frequency sub-bands, capturing both low- and high-frequency 

components linked to seizures. A voting classifier combines predictions from multiple models, 

enhancing the system's resilience and reducing errors. This ensemble approach helps address EEG 

data variability and minimizes overfitting, improving generalization and real-time detection. 

Focused on binary classification of seizure vs. non-seizure events, the study aims to advance 

automated seizure detection for more accurate and reliable patient monitoring and timely 

intervention. 

 

1.5 Outline of the Study: 

This manuscript's remaining sections are organized as follows: A thorough analysis of relevant 

research in the area of EEG-based seizure detection is provided in Section 2. The methodology is 

described in Section 3, which also includes model designs, data pretreatment methods, performance 

evaluation criteria, and a description of the dataset. Section 4 presents the results of the 

experiments, providing a detailed analysis of the performance of each model and the proposed 

ensemble system. Section 5 discusses the findings, limitations, and potential directions for future 

research. Finally, Section 6 concludes the study and highlights potential future avenues for 

exploration. 

2. Related Work 

EEG-based automated seizure detection has emerged as a key area of study in deep learning (DL) 

and machine learning (ML). Traditional ML approaches have typically relied on handcrafted 

feature extraction, while recent DL methods allow for learning directly from EEG data with 

minimal preprocessing. This section reviews notable advancements in seizure detection, focusing 

on ML and DL methodologies applied across various datasets with different evaluation metrics. 

 

Feature-Based Machine Learning Approaches 

Feature-based ML techniques have shown success in seizure detection by leveraging the statistical 

and geometric properties of EEG signals. Support Vector Machines (SVM), Naive Bayes, and k-

nearest Neighbors (k-NN) are popular classifiers in this context: 

• SVM classifiers utilizing covariance matrices with Riemannian geometry achieved high 

accuracy (99.87%) and sensitivity (99.91%) on the CHB-MIT dataset, using 2-second 

segments without overlap and validated via 10-fold cross-validation (CV). 

• Naive Bayes models with 10 geometric features extracted across frequency bands (θ, β, δ, 

α) demonstrated 94.54% accuracy on the CHB-MIT dataset using 20-second segments with 

15-second overlap. 

• Fuzzy k-NN classifiers applied to GNMF-decomposed SSTFT maps achieved high 

accuracy (98.99%) and sensitivity (99.27%) on both the CHB-MIT and Bonn datasets. 

• K-NN combined with Random Forests (RF) classifiers, applied to weighted degree and 

clustering coefficients, achieved an F1 score of 86.69% on the CHB-MIT and Siena datasets 

using 4-second segments. 

• SVM classifiers utilizing kurtosis, skewness, and line length features with PCA 

dimensionality reduction achieved 96.67% accuracy on the CHB-MIT and Siena datasets 

with 1-second segments and a 0.5-second overlap. 
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Deep Learning Approaches 

Deep learning has enabled major advancements in seizure detection, as DL models can learn 

representative features from raw EEG data directly, thereby reducing reliance on manual feature 

engineering. 

• CNNs in combination with classifiers like ANN, LR, RF, SVM, GB, k-NN, SGD, and 

ensembles achieved ensemble accuracies of up to 97% on the CHB-MIT and Bonn datasets 

with 5-second, non-overlapping segments. 

• BERT-based large language models (LLMs) reached approximately 77% accuracy on the 

TUSZ dataset with 1-second segments, indicating the potential for LLM applications in 

sequence data. 

• Graph-generative neural Networks (GGNs) trained on the TUH dataset achieved 91% 

accuracy with a 70-30 train-test split and a 5-second segment length. 

• CNNs combined with RNNs achieved 96.23% accuracy on the CHB-MIT, Bonn, and 

Bern-Barcelona datasets with 8-fold cross-validation. 

• Attention-enhanced CNNs reached 86% accuracy and an F1 score of 81% on the TUH 

dataset with leave-one-out validation, using 3-second, non-overlapping segments. 

• CNN with CBAM and GRU layers applied on the CHB-MIT dataset achieved 91.73% 

accuracy with 88.09% sensitivity using a 30-second segment with a 1-second overlap. 

• Standard CNN architectures applied on the CHB-MIT dataset reached 97.57% accuracy 

and 98.90% sensitivity with 5-second segments and 1-second overlap. 

• Scalp Swarm Algorithm (SSA) and LSTM classifiers achieved 99.2% accuracy on the 

TUSZ dataset, supported by high sensitivity (98.99%) and specificity (99.01%) using an 80-

20 train-test split with 1-second segments. 

Table 1 gives an overview of deep learning and machine learning techniques for EEG-based 

seizure detection. 

Table 1: Deep Learning and Machine Learning Methods for EEG-Based Seizures 

Classifier / 

Model 

Features / 

Architecture 
Dataset(s) 

Performance 

Metrics 

Validation 

Method 

Segment 

Length, 

Overlap 

Year Reference 

SVM 

Covariance 

matrices 

(Riemannian 

geometry) 

CHB-MIT 

Acc: 99.87%, 

Sens: 99.91%, 

Spec: 99.82% 

10-fold 

CV 

2s, no 

overlap 
2022 [13] 

Naive Bayes 

Geometric 

features (θ, β, 

δ, α bands) 

CHB-MIT Acc: 94.54% 
10-fold 

CV 

20s, 15s 

overlap 
2022 [14] 

Fuzzy k-NN 

GNMF-

decomposed 

SSTFT maps 

CHB-MIT, 

Bonn 

Acc: 98.99%, 

Sens: 99.27%, 

Spec: 98.53% 

10-fold 

CV 

1s, no 

overlap 
2023 [15] 

k-NN, RF 

Weighted 

degree, 

clustering 

coefficient 

CHB-MIT, 

Siena 

F1: 86.69%, 

AUC: 84.33%, 

Acc: 84.83%, 

Prec: 85.6%, 

Sens: 87.81% 

5-fold CV 4s 2023 [16] 

SVM 

Kurtosis, 

skewness, line 

length (PCA) 

CHB-MIT, 

Siena 

Acc: 96.67%, 

Spec: 95.62%, 

Sens: 97.72% 

Bootstrap 
1s, 0.5s 

overlap 
2023 [17] 

Ensembles, 

CNN, ANN, 

LR, RF, 

SVM, GB, k-

NN, SGD 

Feature 

extraction 

CNN 

CHB-MIT, 

Bonn 

Ensembles 

Acc: 97% 

10-fold 

CV 

5s, no 

overlap 
2022 [18] 

BERT BERT LLM TUSZ Acc: ~77% - 1s 2022 [19] 
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Classifier / 

Model 

Features / 

Architecture 
Dataset(s) 

Performance 

Metrics 

Validation 

Method 

Segment 

Length, 

Overlap 

Year Reference 

GGN 

Graph-

Generative 

Network 

TUH Acc: 91% 
Train-test 

(70-30) 
5s 2022 [20] 

CNN and 

RNN 

CNN-RNN 

combination 

CHB-MIT, 

Bonn, 

Bern-

Barcelona 

Acc: 96.23% 8-fold CV N/A 2023 [21] 

CNNs with 

Attention 

Attention 

mechanism 
TUH 

Acc: 86%, 

F1: 81% 
LOO 

3s, no 

overlap 
2023 [22] 

CNN-CBAM, 

GRU 

CNN with 

CBAM, GRU 
CHB-MIT 

Acc: 91.73%, 

Sens: 88.09%, 

FPR: 0.053/h 

10-fold 

CV 

30s, 1s 

overlap 
2023 [23] 

CNN Standard CNN CHB-MIT 

Acc: 97.57%, 

Sens: 98.90%, 

FPR: 2.13% 

LOO 
5s, 1s 

overlap 
2023 [24] 

SSA, LSTM 

SSA for 

feature 

selection, 

LSTM 

TUSZ 

Acc: 99.2%, 

Sens: 98.99%, 

FDR: 98.43%, 

F1: 97.54% 

Train-test 

(80-20) 
1s 2024 [25] 

 

Effective contributions to EEG-based seizure identification are made by both ML and DL 

techniques. While DL models give greater accuracy by managing temporal patterns in EEG signals 

and learning features directly from the data, feature-based machine learning techniques offer 

interpretability and high performance. The dataset's properties, the intended segment length, and the 

target accuracy all influence the method selection. 

 

2.1 Preliminaries 

Table 2 provides a detailed description of the individual machine-learning models employed in this 

study. These models, selected for their complementary strengths and proven effectiveness in 

classification tasks, form the foundational components of our proposed ensemble approach for 

epileptic seizure detection. Each model's description includes its underlying principles, training 

methodology, advantages, and potential limitations. This comparative overview facilitates a 

comprehensive understanding of the individual model contributions within the context of the 

overall ensemble framework. 
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Table 2: Characteristics and Properties of Individual Machine Learning Models for Seizure Detection 
Model Description Steps Pros Cons 

MDBCN 

[11] 

MDBCN is a deep learning 

model that improves 

classification performance, 

especially in complicated 

datasets, by fusing multi-scale 

feature extraction with the 

concepts of convolutional 

neural networks (CNNs). It 

learns the hierarchical 

representations of input data 

using a multi-layer architecture. 

1. Data Preparation: Preprocess the dataset, 

including normalization and augmentation. 

2. Feature Extraction: Apply convolutional 

layers with different kernel sizes to capture 

multi-scale features. 

3. Pooling Layers: Use pooling layers to reduce 

dimensionality while retaining essential features. 

4. Training: Utilize a suitable optimizer (e.g., 

Adam) to train the model with a labeled dataset. 

5. Fine-tuning: Adjust hyperparameters and 

layers to improve accuracy. 

6. Evaluation: Use metrics such as accuracy, 

precision, and recall on a validation dataset to 

gauge the model's performance. 

- Effective at capturing multi-scale features 

from data. 

- Improved classification accuracy for complex 

datasets. 

- Hierarchical representation learning enhances 

generalization. 

- Suitable for various applications, including 

image and time series classification. 

- Computationally intensive and 

requires significant resources for 

training. 

- If improperly regularized, it could be 

prone to overfitting on small datasets. 

- Complexity in model design and 

tuning hyperparameters can be 

challenging. 

- needs a lot of labeled data in 

order to train well. 

CNN [12] Convolutional Neural Network 

(CNN)  One kind of deep 

learning model that works 

very well for picture and 

sequence data processing. 

It captures spatial hierarchies 

by applying filters to input data 

in a grid-like topology. 

1. Data Preparation: Preprocess data, including 

normalization and augmentation for images.  

2. Convolutional Layers: To extract spatial 

characteristics, use convolutional filters.  

3. Pooling Layers: Use max or average pooling 

layers to reduce spatial dimensions.  

4. Training: Use optimizers (e.g., Adam) to 

update weights based on training data.  

5. Fine-tuning: Adjust filter sizes, number of 

layers, and regularization parameters.  

6. Evaluation: Use measures like as accuracy and 

validation data loss to gauge performance. 

 

- Highly effective in image classification and 

pattern recognition.  

- Reduced need for extensive preprocessing 

due to feature extraction layers.  

- Adaptable to various data types, such as time 

series and speech. 

- Prone to overfitting if not regularized 

properly.  

- needs a lot of labeled data in order to 

train well.  

- Computationally demanding, 

especially with deep architectures. 

 DWT-

based DNN 

[26]               

 A deep neural network (DNN) 

that incorporates a Discrete 

Wavelet Transform (DWT) for 

pre-processing.  The DWT 

decomposes the EEG signal 

into different frequency sub-

bands, enhancing feature 

extraction for the subsequent 

DNN.     

 1. DWT decomposition of EEG signal 

2. Feature extraction from DWT coefficients3. 

DNN training and evaluation                                                                              

 - Improved feature extraction through multi-

resolution analysis 

- Potentially enhanced performance with noisy 

data 

- Reduced computational cost compared to 

some pure deep learning approaches  

 - Performance depends on DWT 

parameters and DNN architecture 

- May not capture all relevant features 

effectively                                                                                                        
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Model Description Steps Pros Cons 

SVM [27] A popular supervised machine 

learning approach for 

classification and regression 

problems is the Support Vector 

Machine (SVM). In order to 

successfully divide the data into 

discrete categories, it finds the 

best hyperplane in the feature 

space that optimizes the gap 

between classes. When working 

with non-linear data, SVM may 

transfer the input data into 

higher-dimensional spaces 

using kernel functions. This 

allows the algorithm to choose 

the optimum hyperplane to 

divide the classes in the 

converted space. Because of its 

adaptability, SVM works 

incredibly well for challenging 

classification issues. 

1. Data Preparation: Begin by preprocessing the dataset, which 

includes normalizing the data to ensure consistent scaling and 

handling missing values to maintain data integrity. 

2. Choosing the Kernel: Depending on the type of data, 

choose the right kernel function. A radial basis function 

(RBF) kernel for more intricate, non-linear patterns, a 

polynomial kernel for capturing non-linear connections, or a 

linear kernel for linearly separable data are among the 

available options. 

3. Training the Model: Fit the SVM model to the training data, 

optimizing the hyperplane that maximizes the margin between 

the different classes. 

4. Parameter Tuning: Fine-tune hyperparameters like the 

regularization parameter (C) and the kernel-specific parameter 

(gamma) to improve model performance. Techniques like 

GridSearchCV or RandomizedSearchCV can be used to identify 

the best parameter combinations. 

5. Prediction: After training the model, use it to make predictions 

on new or test data, classifying the input into the appropriate 

categories. 

6. Evaluation: Evaluate the model's performance in 

classification tasks using a variety of measures, including 

accuracy, precision, recall, and F1-score. 

1. Data Preparation: 

Preprocess the dataset, 

including normalization 

and handling missing 

values. 

2. Choosing the Kernel: 

Select an appropriate 

kernel function (linear, 

polynomial, RBF, etc.) 

based on the data 

characteristics. 

3. Training the Model: 

Fit the SVM model to the 

training data by optimizing 

the hyperplane that 

separates classes. 

4. Parameter Tuning: 

Adjust hyperparameters 

(like C and gamma) using 

techniques such as 

GridSearchCV for better 

performance. 

5. Prediction: Use the 

trained model to predict 

classes on new or test data. 

6. Evaluation: Evaluate 

the model's performance 

with measures like F1-

score, recall, accuracy, and 

precision. 

 

 

 

 

- Computationally intensive, 

particularly for large datasets. 

- Performance is heavily dependent on 

the choice of kernel and parameters. 

- Less effective on very large datasets 

or noisy data. 

- Requires careful tuning of 

hyperparameters to achieve optimal 

results. 

Random 

Forest [28] 

During training, many decision 

trees are constructed using the 

Random Forest ensemble 

1. Data Preparation: To prepare the data for 

modeling, start by preprocessing the dataset. 

This involves encoding categorical variables 

• Handles Large Datasets with Higher 

Dimensionality Well: Random Forest 

can effectively manage large and high-

• Slower to Predict: Due to its 

ensemble nature, Random Forest 

can be slower at making 
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Model Description Steps Pros Cons 

learning approach, which then 

aggregates the output to 

generate predictions. It 

determines the mean forecast of 

all the trees for regression tasks 

and the modal (most common 

class) of each tree's predictions 

for classification tasks. The 

technique makes use of bagging 

(bootstrap aggregating), in 

which a random subset of the 

data, drawn with replacement, 

is used to train each tree. By 

lowering variance and avoiding 

overfitting, this method 

increases model resilience and 

improves prediction accuracy. 

using methods like one-hot encoding or 

label encoding and addressing missing 

values using imputation or removal. 

 

2. Bootstrap Sampling: Create many subsets 

of the original dataset using replacement 

sampling and random sampling. To ensure 

variation among the trees in the forest, a 

decision tree will be trained from each 

subgroup 

 

3. Building Decision Trees: For each subset, 

construct a decision tree by selecting a 

random subset of features at each split, 

helping to reduce correlation between trees 

and increasing model robustness. 

4. Aggregating Results: For classification 

tasks, combine the predictions of all trees by 

taking a majority vote. For regression tasks, 

aggregate the predictions by calculating the 

average value from all the trees. 

5. Evaluation: Use measures like accuracy, 

precision, recall, and F1-score to evaluate 

the model's performance on a test dataset. 

These metrics assist determine how 

effectively the model generalizes to data that 

hasn't been seen before. 

dimensional datasets due to its ensemble 

approach, which processes multiple 

decision trees in parallel and leverages a 

variety of features. 

• Reduces the Risk of Overfitting: By 

averaging the predictions of multiple 

trees, Random Forest reduces the 

likelihood of overfitting, which is a 

common issue with individual decision 

trees that may model noise in the data. 

• Provides Feature Importance: By 

identifying the most significant variables 

in the dataset through feature significance 

scores, Random Forest provides 

insightful information that can be helpful 

for feature selection and model 

interpretation 

• . 

• Robust to Noise and Handles Missing 

Values Well: Random Forest is resistant 

to noise, as it relies on multiple trees and 

aggregates their predictions. It also has 

built-in mechanisms for handling missing 

data, such as using surrogate splits when 

certain features are unavailable. 

 

predictions compared to individual 

decision trees, as it requires 

aggregating the outputs of 

multiple trees for each prediction. 

• Requires More processing 

Resources: In contexts with 

limited resources, the model 

may be a constraint due to its 

higher processing power and 

memory requirements, 

especially when utilizing a 

large number of trees. 

• Less Interpretable: Unlike a single 

decision tree, which provides a 

clear and understandable decision 

path, Random Forest is more 

complex and harder to interpret, 

making it less transparent and 

more difficult to explain the 

reasoning behind its predictions. 

• Performance Degradation with 

Too Many Trees: While adding 

more trees can improve the 

model's performance to a certain 

extent, beyond a certain point, the 

performance can plateau or even 

degrade, leading to diminishing 

returns in terms of prediction 

accuracy. 

XGB 

Classifier 

[29] 

Extreme Gradient Boosting, or 

XGBoost, is a fast and efficient 

gradient boosting framework 

implementation that is very 

scalable and adaptable. 

Decision trees are constructed 

in a sequential fashion using 

this ensemble learning 

1. Data Preparation: To prepare the data for 

the model, start by preprocessing the dataset. 

This involves encoding categorical variables 

using techniques like one-hot encoding or 

label encoding and addressing missing values 

using imputation or removal. 

2. . 

3. Feature Selection: Select the most relevant 

• High Predictive Accuracy and 

Performance: XGBoost offers excellent 

predictive accuracy due to its ensemble 

approach and advanced optimization 

techniques, making it a top choice for many 

machine learning tasks. 

• Regularization Capabilities: It has built-in 

regularization (L1 and L2) that penalizes 

• Complex to Tune: XGBoost has a 

large number of hyperparameters 

that need to be carefully tuned, 

which can make the model 

optimization process complex and 

time-consuming. 

• Interpretability Challenges: It 

can be challenging to interpret the 
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Model Description Steps Pros Cons 

technique, with each new tree 

aiming to fix the mistakes of 

the one before it. Over time, 

this iterative process increases 

the predicted accuracy of the 

model. Because of its great 

success in a range of machine 

learning competitions and real-

world applications, as well as 

its high efficiency and 

resilience, XGBoost is 

frequently employed for both 

classification and regression 

problems. 

 

features for model training. While XGBoost 

can handle large feature sets, choosing the 

right features can improve model 

performance, reduce computation time, and 

avoid overfitting. 

4. Model Initialization: Establish the model's 

hyperparameters, including the number of 

estimators (trees), maximum tree depth, 

learning rate, and other factors like 

regularization terms to prevent bias and 

overfitting. 

5. Training: Iteratively construct decision trees 

to fit the model to the training data. To 

increase prediction accuracy, each new tree is 

trained to fix the mistakes caused by the ones 

that came before it. The model is then 

adjusted depending on the residual errors. 

6. Evaluation: Use measures like accuracy, 

precision, recall, and F1-score to assess the 

model's performance on a test dataset after 

training. These measures aid in gauging the 

model's efficacy in classification tasks as well 

as its ability to generalize to new data. 

7.  

too complicated models, reducing 

overfitting and improving generalization. 

• Handles Missing Data Internally: 

XGBoost can handle missing values during 

training without requiring explicit data 

imputation, simplifying the preprocessing 

step. 

• Highly Efficient in Terms of Speed and 

Memory Usage: XGBoost is designed for 

efficiency, with fast training times and 

optimized memory usage, especially when 

working with large datasets. 

• Supports Parallel and Distributed 

Computing: Because XGBoost facilitates 

distributed computing and parallel 

processing, training is accelerated, making 

it appropriate for complicated models and 

huge datasets. 

model due to its ensemble 

structure and decision tree 

complexity, which makes it more 

difficult to explain the model's 

conclusions than simpler models 

like logistic regression or decision 

trees. 

• Higher Computational 

Resources: Compared to more 

straightforward models (like 

logistic regression), XGBoost uses 

more memory and processing 

resources, particularly when 

working with big datasets or a lot 

of trees. 

• Sensitive to Noisy Data and 

Outliers: Because outliers and 

noisy data might impair the 

model's performance, XGBoost 

may be susceptible to them. To 

lessen these problems, proper data 

preparation and outlier treatment 

are essential. 
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3. Methodology 

3.1 Dataset (1) Description 

A pre-processed and restructured version of a popular epileptic seizure detection dataset that is 

accessible on Kaggle is utilized in this work 

 [https://www.kaggle.com/datasets/harunshimanto/epileptic-seizure-recognition/data] [30]. The 

original dataset includes 500 participants' EEG recordings and was provided from the UCI 

Machine Learning Repository. Each 23.6-second recording is split into 4097 data points that 

represent the EEG signal's amplitude at different periods in time. 

 

The original data is organized into five folders, each containing 100 files corresponding to 

individual subjects. Each file represents a 23.6-second EEG recording with 4097 data points.  

These recordings have been pre-processed for this study by segmenting and shuffling the data. 

 

Each 4097-data point sequence is divided into 23 chunks, each 178 data points long, 

representing one second of brain activity. This results in 11,500 (23 x 500) one-second EEG 

segments. Each segment is labeled according to the following scheme: 

 

 1: Seizure activity 

 2: EEG data obtained from the region of the brain containing the tumor 

 3: EEG from a healthy part of the brain in tumor-bearing patients 

 4: Eyes closed 

 5: Eyes open 

 

This study employs binary classification, differentiating between seizure activity (class 1) and 

non-seizure activity (classes 2–5), although the original dataset included five classes. While 

tackling the fundamental issue of seizure detection, our binary classification method streamlines 

the analysis and is consistent with the standard practice in the literature. Applying different 

machine-learning models is made easier by the restructure, which makes data access and 

manipulation simpler. The response variable (y, in column 179) shows the class name, whereas 

the explanatory variables (X1 to X178) show the EEG signal levels inside each one-second 

segment. This dataset and its pre-processing are based on the work of Andrzejak et al. (2001) 

[31], who investigated nonlinear deterministic structures in brain electrical activity.  Their 

research highlighted the dependence of these structures on the recording region and brain state, 

providing a valuable foundation for EEG-based seizure detection studies.  

 

Figure 2 represents a decision tree visualization that depicts the structure and flow of a 

classification or regression model. The tree begins at the root node, displayed at the top, which 

represents the first decision point based on a specific feature and its threshold value. As the tree 

branches out, each node represents further splits based on feature thresholds, dividing the dataset 

into subsets with shared characteristics. 

 

https://www.kaggle.com/datasets/harunshimanto/epileptic-seizure-recognition/data
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Figure 2 shows the correlation between the dataset features. 

 

3.2 Dataset (2) Description 

The dataset, which includes 500 people's EEG records, was made available by Bonn 

University's Epileptology Department. There are 4096 uniformly spaced data points 

(sampled every 0.0057 seconds) in each 23.5-second recording. These recordings are 

classified into one of five labeled classes, as described below: 

• Set A - Class 4: EEG recording of an awake patient without epilepsy who has their 

eyes open. 

• Set B - Class 3: EEG recording of an awake, non-epileptic subject with both eyes 

open and closed. 

• Set C - Class 2: Electrodes inserted in the brain's epileptogenic zone are used to 

record an epileptic patient's EEG during a seizure-free interval. 

• Set D - Class 1: EEG recording from the hippocampus formation of the opposite 

hemisphere of the brain from Set C of an epileptic patient during a seizure-free 

period. 

• Set E - Class 0: EEG recording of a patient having an epileptic seizure in progress. 

These diverse classes provide a comprehensive dataset for analyzing and classifying EEG 

signals associated with both epileptic and non-epileptic states. 

 

Set A - Class 4: EEG recording of an awake patient without epilepsy who has their 

eyes open 

 

Figure 3: Example of Class 4 EEG [32]. 

 

 

Set B - Class 3: EEG recording of an awake, non-epileptic subject with both eyes open and 

closed 
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Figure 4: Example of Class 3 EEG [32]. 

 

Set C - Class 2: Electrodes inserted in the brain's epileptogenic zone are used to record an 

epileptic patient's EEG during a seizure-free interval. 

 

 

Figure 5:  Example of Class 2 EEG [32]. 

 

Set D - Class 1: EEG recording from the hippocampus formation of the opposite 

hemisphere of the brain from Set C of an epileptic patient during a seizure-free 

period. 

 

 

Figure 6: Example of Class 1 EEG [32]. 

 

Set E - Class 0: EEG recording of a patient having an epileptic seizure in progress 

 

Figure 7: Example of Class 0 EEG [32]. 

 

The dataset is balanced and clean, with 100 recordings per category. Since EEG patterns are 

subtle and crucial for identifying epileptic activity, no modifications, over-sampling, or synthetic 

data augmentation were applied to maintain data integrity. 

 

The dataset is publicly accessible through the Department of Epileptology at Bonn University at 

this link: https://tinyurl.com/yylxbzfj. All data points have been pre-processed, aggregated, and 

labeled in the file `all_data_epileptic_seizures.csv`, available on GitHub: 

(https://github.com/jkuypers93/LSTM-Epileptic-Seizure-Recognition) [32].  

 

3.3  Data Pre-processing Phase 

To get the EEG dataset ready for precise and trustworthy seizure detection modeling, important 

procedures are carried out during the data pre-processing phase. In this stage, data integrity is 

guaranteed, class labeling is optimized, and the data is organized for efficient training and 

assessment. The following is an overview of the steps: 

I. Handling Missing Values:   

https://tinyurl.com/yylxbzfj
https://github.com/jkuypers93/LSTM-Epileptic-Seizure-Recognition
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- Challenge: Missing data can compromise model accuracy and reliability.   

- Solution: Either remove entries with missing values or apply imputation techniques to fill 

them with appropriate values, ensuring data consistency and completeness. 

 

 

 

II. Class Labeling:   

- Binary Classification Approach: Although the original dataset contains five classes, this 

study focuses on binary classification, distinguishing between seizure activity (class 1) and 

non-seizure activity (classes 2-5). This binary restructuring is widely used in literature, 

simplifying the analysis and zeroing in on the key objective of seizure detection. 

- Explanatory and Response Variables: The EEG signal values within each one-second 

segment are represented by explanatory variables (X1 to X178), and the response variable 

(y, in column 179) indicates the class label. 

- Target Variable Labeling: The target variable, “Diagnosis,” is set as binary, with “0” 

indicating no seizure (unaffected) and “1” indicating seizure presence (affected), enabling 

clear and accurate seizure event classification. 

 

III. Data Splitting and Evaluation: 

- Training Set (80%): The model is trained on 80% of the dataset, learning patterns, and 

relationships to minimize errors and enhance predictive accuracy. 

- Validation Set (20%): The remaining 20% is used to assess model generalization to new 

data, identifying any overfitting and ensuring real-world applicability. Validation is further 

supported by 5-fold cross-validation, reinforcing the reliability of the model’s 

performance. 

 

 

3.4  Model Architecture (Voting Classifier) 

A voting classifier is a type of ensemble machine learning technique that enhances overall 

performance by combining the predictions of several models. To arrive at a final judgment, it 

aggregates the predictions from several classifiers (such as logistic regression, support vector 

machines, and decision trees). [33]. 

 

Three primary categories of voting classifiers exist: 

1. Hard Voting: A class is selected based on the number of votes each model casts for it. 

How it Works: 

A class label (such as "Class 1" or "Class 0") is predicted by each model in the ensemble. 

The final forecast is made for the class that receives the most votes from the models. 

A random class is chosen from among the tied classes in the event of a tie (i.e., an equal 

number of votes for several classes). 

The majority class that each individual model in the ensemble predicts determines the final 

prediction in a hard voting process. The mathematical expression for hard voting can be written 

as: 

𝑦̂ = arg max
𝑐ϵ𝐶

∑ II(ℎ𝑖(x) = c) 𝑁
𝑖=1    (1) 

Where: 

• 𝑦̂: Final predicted class. 

• ∁: Set of all possible classes. 

• 𝑁: Total number of classifiers. 

• ℎ𝑖: Prediction of the 𝑖-th classifier for input 𝑥. 

• II: Indicator function, which is 1 if ℎ𝑖(x) = c, otherwise 0. 
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2. Soft Voting: The class chosen is the one with the highest average projected probability across 

all models. 

How it Works: 

The likelihood that an instance will belong to each class is predicted by each model.  

All models' probabilities are averaged for each class.  

The class with the highest average probability is picked as the final forecast.  

Each model produces the probability distribution across classes in soft voting, and the average of 

these probabilities serves as the basis for the final forecast. The class chosen is the one with the 

highest average probability. The mathematical equation for soft voting is: 

 𝑦̂ = arg max
𝑐ϵ𝐶

1

𝑁
 ∑ 𝑃𝑖

𝑁
𝑖=1 (𝑐|𝑥)    (2) 

Where: 

• 𝑃𝑖(𝑐|𝑥): Probability of class ccc predicted by the 𝑖-th classifier for input 𝑥 

• 𝑦̂: Final predicted class. 

Key Points: 

- Advantages: Improves accuracy, reduces overfitting, and is easy to implement. 

- Disadvantages: Requires diverse models, can be computationally expensive, and may not 

outperform more advanced techniques like boosting. 

 

3. Weighted Voting 

3.1. Weighted Soft Voting 

In weighted soft voting, classifiers are assigned weights 𝜔𝑖 based on their importance or 

accuracy. The final prediction is determined by the weighted average of probabilities. 

Equation: 

𝑦̂ = arg max
𝑐ϵ𝐶

∑ 𝜔𝑖∙𝑃𝑖(𝑐|𝑥)𝑁
𝑖=1

∑ 𝜔𝑖
𝑁
𝑖=1

     (3) 

Where: 

• 𝜔𝑖: Weight assigned to the 𝑖-th classifier. 

3.2. Weighted Hard Voting 

In weighted hard voting, classifiers cast votes that are weighted by their importance. 

Equation: 

𝑦̂ = arg max
𝑐ϵ𝐶

∑  𝜔𝑖
𝑁
𝑖=1 ∙ II(ℎ𝑖(𝑥) = c)   (4) 

Voting Classifiers are effective for both classification and regression tasks, especially when 

combining diverse models. 

The Voting Classifier offers several benefits, including improved accuracy by combining 

predictions from multiple models, which reduces overfitting and increases resilience to noise. Its 

flexibility allows it to handle both classification and regression tasks, and it’s easy to deploy. 

However, its effectiveness depends on the diversity of the base models, as a lack of variety can 

reduce performance. It may not always outperform more advanced methods like boosting or 

stacking, and hard voting can lead to suboptimal decisions by ignoring model confidence. 

Additionally, it’s computationally expensive and can be complex to tune. Despite these 

drawbacks, the Voting Classifier is a practical and balanced option for many machine learning 

tasks, especially for reducing overfitting and handling diverse datasets. 

 

3.5 Model Architecture 
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The proposed architecture for epileptic seizure detection leverages a combination of deep 

learning techniques and ensemble methods to achieve robust and accurate results as shown in 

Figure 8. 

 

Data preprocessing is a crucial initial step to ensure data quality. This process involves removing 

null cells, normalizing the data, and balancing the dataset to address any class imbalances. After 

preprocessing, the data is labeled as either "seizure" or "non-seizure" to facilitate the 

classification task. There are several different models used to extract pertinent characteristics 

from the EEG data. Complex spatiotemporal patterns in the EEG data are captured using Multi-

Dimensional Bayesian Convolutional Networks (MDBCN), which makes it possible to identify 

subtle seizure features. Deep neural networks based on discrete wavelet transform (DWT-DNN) 

break down EEG data into distinct frequency sub-bands, enabling the extraction of 

characteristics from both high- and low-frequency components that are essential for precise 

seizure identification. In order to detect localized patterns linked to seizures, it is crucial to 

identify spatial elements in the EEG data using Convolutional Neural Networks (CNN). 

 

 

To further examine the collected features for classification, strong algorithms like Random 

Forest, XGBoost, and Support Vector Machine (SVM) are employed. These models can increase 

seizure detection accuracy and handle high-dimensional, complicated data. A Voting Classifier 

is used in order to improve the system's overall performance and resilience. This ensemble 

approach improves generality by combining the predictions of several models, so lessening the 

influence of mistakes from any one model. Training and testing sets make up the dataset. To 

determine the underlying patterns in the EEG signals, the models are trained using the training 

data. The testing set is used to assess the models' generalizability to new data. Several criteria 

are used to evaluate the system's performance, such as accuracy, precision, recall, F1 score, time 

required, and sensitivity, which give a thorough picture of how well the system detects seizures. 

 

By integrating these techniques and employing a rigorous evaluation framework, this 

architecture aims to provide accurate and reliable seizure detection, enabling early diagnosis and 

intervention for individuals with epilepsy. 
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Figure 8: Seizure Detection Framework. 

Figure 9 illustrates the comprehensive workflow followed in this binary classification task to 

detect seizures from the dataset. The process begins with setting up the environment, including 

fixing the random seed for reproducibility and suppressing warnings. The dataset is then loaded 

and preprocessed by separating the features and target variable while converting the target into 

binary classes: Seizure (1) and No Seizure (0). 

Following data preprocessing, the class distribution and balance are shown using a bar chart. To 

create a soft-voting ensemble classifier, several machine learning models are used, such as 

Random Forest, Logistic Regression, and Extra Trees classifiers. After assessing the model's 

performance through cross-validation, the entire dataset is used for training and prediction 

generation. Using sensitivity analysis and a classification report, the model's performance is 

evaluated. Calculations are made for important measures including sensitivity, F1-score, recall, 

and accuracy. Sensitivity is the ratio of true positives to the sum of false negatives and true 

positives. Plotting the confusion matrix and ROC curve allows for a more thorough analysis of 

the model's performance. 

Finally, the execution time for cross-validation is recorded, providing an overview of the time 

efficiency of the process. This figure encapsulates the steps taken from data loading and 

preprocessing to model evaluation and performance visualization. 

 
1. Set Up Environment: 

    - Set random seed for reproducibility (for numpy and random). 

    - Suppress warnings to avoid unnecessary outputs. 
 

2. Load Dataset: 

    - Read dataset from 'data_1.csv' into a DataFrame. 

    - Drop the 'Unnamed' column from the DataFrame. 

    - Split the DataFrame into features (X) and target variable (y). 
 

3. Preprocess Data: 

    - Convert target variable (y) to binary classes: 1 for Seizure and 0 for No Seizure. 
  

4. Visualize Data: 

    - Count the occurrences of Seizure and No Seizure classes. 

    - Plot the distribution of the Seizure vs. No Seizure classes using a bar chart. 
 

5. Set Up Models: 

    - Initialize a Logistic Regression model. 

    - Initialize a Random Forest Classifier. 

    - Initialize an Extra Trees Classifier. 

    - Combine all models into a Voting Classifier using soft voting. 
 

6. Cross-Validation Setup: 

    - Set up Stratified K-Fold Cross-Validation with 5 splits. 
 

7. Evaluate Models Using Cross-Validation: 

    - Start the timer. 

    - Perform cross-validation using the Voting Classifier. 

    - Calculate accuracy scores and print the results: 

        - Print individual accuracy scores. 

        - Print the mean and standard deviation of the accuracy scores. 

    - Measure the time taken for cross-validation. 
 

8. Train on Full Dataset: 

    - Fit the Voting Classifier on the full dataset (X and y_binary). 

    - Make predictions using the trained model. 
 

9.. Generate Classification Report: 

    - Print the classification report (precision, recall, F1-score, etc.) using the Voting Classifier. 
 

10. ROC Curve Plotting: 

    - Define a function to draw the ROC curve: 
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        - Calculate False Positive Rate (FPR) and True Positive Rate (TPR). 

        - Compute the Area Under the Curve (AUC). 

        - Plot the ROC curve with labels and AUC value. 

   

11. Confusion Matrix Plotting: 

    - Define a function to plot the confusion matrix: 

        - Compute the confusion matrix. 

        - Plot it as a heatmap with annotations for each cell. 
 

12. Plot ROC and Confusion Matrix: 

    - Get predicted probabilities from the Voting Classifier. 

    - Call the function to plot the ROC curve. 

    - Call the function to plot the confusion matrix. 
 

13. Print Execution Time: 

    - Print the time taken for cross-validation 

Figure 9: Overview of the Binary Classification Workflow for Seizure Detection. 

 

3.6 Performance Metrics 

The performance of each model is evaluated using several key metrics to gain insights into its 

classification capabilities, particularly in scenarios with imbalanced datasets. These metrics 

provide a deeper understanding of the model's strengths and weaknesses, going beyond a simple 

accuracy score. 

1. Confusion Matrix:  

o The confusion matrix offers a detailed summary of the model's predictions by 

categorizing them into four key components:  

▪ True Positives (TP): Malignant cases correctly classified as "Malignant." 

▪ False Positives (FP): Benign cases incorrectly classified as "Malignant." 

▪ True Negatives (TN): Benign cases correctly classified as "Benign." 

▪ False Negatives (FN): Malignant cases incorrectly classified as "Benign." 

o This tool highlights the model’s misclassifications and provides a comprehensive 

breakdown of its performance, aiding in pinpointing specific areas for 

improvement. 

 

2. Accuracy:   

Accuracy [34] represents the overall proportion of correct predictions and is calculated as:  

Accuracy =
TP +  TN

TP +  FP +  TN +  FN
 

 

Although accuracy provides a broad sense of model performance, it might be deceptive in cases 

when the dataset is unbalanced since it fails to take the severity of misclassifications into 

consideration. 

 

3. Precision:   

Precision [35] measures the proportion of correct positive predictions among all instances 

predicted as positive:  

Precision =
TP 

TP +  FP 
 

 

A high accuracy means a low false positive rate, which is important when false positives (like 

misdiagnosing cancerous patients) are expensive. 

 

4. Recall (Sensitivity or True Positive Rate):   
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Recall [36] [37]evaluates the model's ability to correctly identify all actual positive instances. It 

is calculated as:  

Recall =
TP 

TP +   FN
 

 

High recall is essential when it's critical to find as many positive examples as possible, such in 

medical diagnosis, where failing to identify a malignant case (false negative) might have 

detrimental effects. 

 

 

5. F1 Score (F-measure): 

The F1 score [38] [39] is the harmonic mean of Precision and Recall, offering a balanced metric 

that considers both false positives and false negatives. It is calculated as:  

F1 −  score = 2 ∗ 
(Precision ×  Recall)

(Precision +  Recall)
   

 

Due to its ability to balance precision and recall, the F1 score is particularly useful when there is 

an unequal distribution of classes. In situations where reducing false positives and false 

negatives is equally crucial, this statistic is essential for a more impartial assessment of the 

model's efficacy. 

 

4 Results and Analysis 

The outcomes of our tests to assess the suggested model's performance are shown in this 

section. A 3 GHz Intel CPU with 4 GB of RAM and 64-bit Windows 10 were part of the 

experimental configuration. Python was used to implement each experiment. We present a 

thorough examination of the outcomes of tests carried out on two different datasets. 

Evaluating and contrasting how well different machine learning models classified seizure 

and non-seizure events was the main objective. Key performance indicators including 

accuracy, precision, recall, F1-score, and execution time were used to evaluate performance. 

 

4.1 Results and Analysis (Dataset 1) 

The first dataset reveals the performance of seven different models: Multi-Dense Block 

Concatenation Network (MDBCN), DWT-based feature with DNN, CNN, SVM, Random 

Forest, XGBClassifier, and the proposed Voting Classifier. The results are summarized in Table 

3. 

 

Table 3: Performance Metrics of Various Machine Learning and Deep Learning Models on 

Seizure Detection for Dataset (1). 

Model Accuracy Precision Recall / 

Sensitivity 

F1-Score Time 

(seconds) 

Multi-Dense Block 

Concatenation Network 

(MDBCN) 

0.97 0.97 (No Seizure) 

/ 0.98 (Seizure) 

1.00 (No Seizure) 

/ 0.88 (Seizure) 

0.98 (No Seizure) 

/ 0.93 (Seizure) 

351.10  

DWT-based feature 

with DNN 

0.98 0.99 (No Seizure) 

/ 0.93 (Seizure) 

0.98 (No Seizure) 

/ 0.97 (Seizure) 

0.99 (No Seizure) 

/ 0.95 (Seizure) 

12.40  

CNN 0.99 0.99 (No Seizure) 

/ 0.98 (Seizure) 

1.00 (No Seizure) 

/ 0.95 (Seizure) 

0.99 (No Seizure) 

/ 0.97 (Seizure) 

531.76  

SVM 0.98 0.98 (No Seizure) 0.99 (No Seizure) 0.99 (No Seizure) 11.23  
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Model Accuracy Precision Recall / 

Sensitivity 

F1-Score Time 

(seconds) 

/ 0.97 (Seizure) / 0.91 (Seizure) / 0.94 (Seizure) 

Random Forest 0.98 0.99 (No Seizure) 

/ 0.95 (Seizure) 

0.99 (No Seizure) 

/ 0.95 (Seizure) 

0.99 (No Seizure) 

/ 0.95 (Seizure) 

19.96  

XGBClassifier 0.98 0.98 (No Seizure) 

/ 0.97 (Seizure) 

0.99 (No Seizure) 

/ 0.91 (Seizure) 

0.99 (No Seizure) 

/ 0.94 (Seizure) 

4.24  

Voting Classifier 

(Proposed) 

1.00 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00 9.63  

 

The confusion matrices for all the models and techniques used in the study are shown in Figure 

10 for Dataset (1). This figure provides a detailed comparison of the performance of each model. 

Each confusion matrix illustrates the model's ability to correctly classify data points into their 

respective categories, providing insights into their accuracy, sensitivity, and overall effectiveness 

on the first dataset used in the analysis. 

 

MDBCN 

 

DWT-based feature with DNN 

 

SVM 

 

CNN 
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Random Forest 

 

XGBClassifier 

 

Voting Classifier 

Figure 10: Confusion Matrices for All Models and Techniques on Dataset (1). 

Key Observations for Dataset (1): 

• The Voting Classifier (Proposed) performs best across all metrics (accuracy, precision, 

recall, and F1-score) for both seizure and no seizure predictions, achieving perfect scores 

of 1.00 in all categories. It also has a reasonable computation time of 9.63 seconds. 

• CNN stands out with high accuracy (0.99) and overall good performance but at the cost 

of significantly higher computation time (531.76 seconds). 

• DWT-based features with DNN and SVM have comparably good performance metrics 

but with much faster computation times, 12.40 seconds and 11.23 seconds respectively, 

making them efficient choices. 

• MDBCN has good precision and F1-scores but lower recall for seizures (0.88) and a 

higher computation time of 351.10 seconds. 

• Both Random Forest and XGBClassifier show good efficiency with competitive 

performance metrics and relatively short processing times. 
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In conclusion, while all models show strong performance, the Voting Classifier outperforms 

others in accuracy, recall, precision, and F1-score across both classes and does so with a 

relatively short computation time. 

 

4.2 Results and Analysis (Dataset 2) 

The second dataset provides a comparative analysis of the same models under different 

conditions. The metrics evaluated include accuracy, precision, recall, F1-score, execution time, 

and sensitivity. The results are presented in Table 4. 

Table 4: Performance Metrics of Various Machine Learning and Deep Learning Models on 

Seizure Detection for Dataset (2). 

Model Accuracy Precision Recall / Sensitivity F1-Score Time 

(seconds) 

Multi-DenseBlock 

Concatenation 

Network (MDBCN) 

0.88 0.88 (No Seizure) 

 / 1.00 (Seizure) 

1.00 (No Seizure) 

 / 0.39 (Seizure) 

0.94 (No Seizure) 

 / 0.56 (Seizure) 

49.76 

DWT-based feature 

with DNN 

0.98 0.99 (No Seizure) 

 / 0.94 (Seizure) 

0.97 (No Seizure) 

 / 0.98 (Seizure) 

0.98 (No Seizure) 

 / 0.96 (Seizure) 

0.62 

CNN 0.96 0.96 (No Seizure) 

 / 0.93 (Seizure) 

0.99 (No Seizure) 

 / 0.82 (Seizure) 

0.98 (No Seizure) 

 / 0.88 (Seizure) 

407.40 

SVM 0.95 0.96 (No Seizure) 

 / 0.88 (Seizure) 

0.98 (No Seizure) 

 / 0.82 (Seizure) 

0.97 (No Seizure)  

/ 0.85 (Seizure) 

0.68 

Random Forest 0.96 0.96 (No Seizure)  

/ 0.93 (Seizure) 

0.99 (No Seizure) 

 / 0.82 (Seizure) 

0.98 (No Seizure) 

 / 0.88 (Seizure) 

1.11 

XGBClassifier 0.94 0.96 (No Seizure) 

 / 0.82 (Seizure) 

0.96 (No Seizure) 

 / 0.82 (Seizure) 

0.96 (No Seizure) 

 / 0.82 (Seizure) 

6.04 

Voting Classifier 

(Proposed) 

1.00 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00 15.00 

 

Figure 11 presents the confusion matrices for each model evaluated on Dataset (2), providing a 

visual representation of their performance. These matrices illustrate the ability of each model to 

correctly classify data points into their respective categories, and facilitate a comprehensive 

comparison of their: Accuracy, Sensitivity, and Overall effectiveness. 

 

 

MDBCN 

 

DWT-based feature with DNN 
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SVM 

 

CNN 

 

Random Forest 

 

XGBClassifier 

 

Voting Classifier 

Figure 11: Model Performance Comparison using Confusion Matrices Dataset (2). 

 

Key Observations for Dataset (2): 

• The Voting Classifier (Proposed) emerges as the clear winner with perfect scores of 

1.00 across all metrics (accuracy, precision, recall, and F1-score) for both seizure and no 

seizure predictions, with a moderate computation time of 15.00 seconds. 
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• DWT-based feature with DNN also performs exceptionally well with high metrics 

across the board (Precision, Recall, and F1-score), demonstrating very efficient 

computation time at just 0.62 seconds. 

• CNN has high accuracy (0.96) and good performance metrics but requires significantly 

more computation time (407.40 seconds), which could be a limitation. 

• SVM and Random Forest show competitive performance with high accuracy and good 

precision, recall, and F1-scores, and they both have relatively low computation times 

(0.68 and 1.11 seconds respectively). 

• XGBClassifier has lower performance compared to others in this list but still maintains a 

solid 0.94 accuracy, with balanced precision, recall, and F1-scores, and a moderate 

computation time (6.04 seconds). 

• MDBCN has the lowest accuracy (0.88) and performs poorly in recall and F1-score for 

seizure predictions, although its precision for seizures is high (1.00). The computation 

time is relatively high at 49.76 seconds, indicating inefficiency. 

In conclusion, the Voting Classifier outshines others with its perfect scores in all categories, 

making it the best choice among the listed models, followed by the DWT-based feature with 

DNN for its strong performance coupled with extremely efficient computation time. 
 

5 Discussion and Limitations 

The quest for accurate and reliable epilepsy diagnosis through EEG signal analysis has spurred a 

wealth of research employing a diverse array of methodologies. Several studies have leveraged 

frequency domain techniques, such as the Fourier transform, to extract diagnostically relevant 

features. Tzallas et al. [40] demonstrated the efficacy of a Fourier-based approach combined 

with an artificial neural network (ANN) for epilepsy classification, highlighting the significance 

of fractional energy features. Similarly, Peker et al. [41] explored the utility of the dual-tree 

complex wavelet transform, demonstrating the effectiveness of this method coupled with 

complex-valued neural networks in differentiating epileptic patients based on statistical features 

derived from the wavelet coefficients. 

Time-frequency (TF) analysis has also emerged as a powerful tool in epilepsy research. Alcin et 

al. [42] combined the Grey-Level Co-occurrence Matrix (GLCM) texture descriptor with Fisher 

vector encoding to extract features from TF images of EEG signals, achieving superior 

diagnostic performance. Li et al. [43] further refined TF analysis by developing a multiscale 

radial basis function method to generate high-resolution TF images, followed by GLCM feature 

extraction and Fisher vector encoding based on frequency sub-bands. These studies underscore 

the value of capturing both temporal and spectral information in EEG data for enhanced epilepsy 

diagnosis. 

Wavelet transforms, particularly the discrete wavelet transform (DWT) and stationary wavelet 

transform (SWT), have been widely employed for their ability to provide multi-resolution 

analysis of EEG signals. Sharmila [44] successfully implemented a DWT-based framework with 

linear and nonlinear classifiers for seizure detection in both normal and epileptic individuals. 

Islamet et al. [45] demonstrated the promising performance of an SWT algorithm for seizure 

detection. Furthermore, Hassan et al. [46] proposed a system utilizing the tunable wavelet 

transform and bagging techniques, achieving encouraging results in epilepsy diagnosis. The 

versatility of wavelet transforms in capturing both transient and sustained features in EEG 

signals makes them a valuable tool in this domain. 

Beyond signal processing techniques, researchers have explored various feature extraction and 

classification methods. Wang et al. [47] employed coherence analysis to extract information 
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flow features from EEG signals, demonstrating their utility for seizure detection. Jaiswal et al. 

[48] introduced novel feature extraction methods based on sub-patterns and correlations of 

Principal Component Analysis (PCA), coupled with a Support Vector Machine (SVM) classifier. 

Yuan et al. [49] proposed a weighted extreme learning machine (ELM) method utilizing wavelet 

packet analysis and time series complexity features, achieving accurate classification. 

Ensemble methods, such as random forests, have also been investigated to enhance diagnostic 

accuracy. Raghu et al. [50] demonstrated the efficacy of combining DWT-derived features with 

a random forest classifier for epileptic classification. Mursalin et al. [51] further explored the 

application of random forests by employing an improved correlation feature selection technique 

to identify crucial features from the time, frequency, and entropy domains of EEG signals. 

Optimization techniques, such as genetic algorithms and particle swarm optimization, have also 

been applied to fine-tune classifier parameters, as demonstrated by Subasi et al. [52] in their 

hybrid SVM approach. Finally, Chen et al. [53] focused on characterizing the dynamic behavior 

of EEG signals using the autoregressive average method, emphasizing the importance of time 

series characteristics in epilepsy diagnosis. 

The literature reveals a diverse landscape of approaches for EEG-based epilepsy diagnosis, 

encompassing a range of signal-processing techniques, feature extraction methods, and 

classification algorithms. This breadth of research reflects the complexity of epilepsy and the 

ongoing efforts to develop more accurate and reliable diagnostic tools. From frequency domain 

analysis to time-frequency representations and wavelet decompositions, researchers continue to 

explore innovative methods to unlock the hidden information within EEG signals and improve 

the lives of individuals affected by epilepsy. 

The integration of deep learning and ensemble techniques provides a sophisticated and effective 

approach to epileptic seizure detection, addressing the inherent complexities of analyzing EEG 

signals. Deep learning models, including the Multi-Dimensional Bayesian Convolutional 

Network (MDBCN) and Deep Neural Networks (DNNs), play a pivotal role in capturing 

intricate spatiotemporal features. These models excel at learning hierarchical representations, 

which reduces the reliance on manual feature engineering and enhances the detection of subtle 

seizure-related patterns. By incorporating Discrete Wavelet Transform (DWT), the system 

further enriches feature extraction, enabling the decomposition of EEG signals into distinct 

frequency bands that reveal both high-frequency and low-frequency components essential for 

identifying seizures. 

To strengthen the system's performance, ensemble methods such as Support Vector Machines 

(SVMs), Random Forests, and XGBoost classifiers are employed. These techniques mitigate 

overfitting and variability issues often associated with individual deep-learning models. By 

aggregating the predictions of these diverse models through a Voting Classifier, the system 

capitalizes on their complementary strengths, enhancing robustness and generalization. The 

combined use of deep learning for automatic feature learning, DWT for detailed signal 

decomposition, and ensemble strategies for prediction fusion ensures a multi-faceted and reliable 

detection framework. 

This approach underscores its capability to advance the state of the art in seizure detection by 

uniting advanced feature extraction methods, powerful learning algorithms, and robust ensemble 

strategies. The result is a system with significant potential for clinical applications and real-time 

monitoring, offering improved accuracy and resilience in distinguishing between seizure and 

non-seizure events. 

Despite the promising results, this study is subject to several limitations that warrant 

consideration. Firstly, the reliance on publicly available datasets, while facilitating 
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reproducibility and comparison, may not fully capture the heterogeneity and complexity of real-

world clinical scenarios. Datasets such as those from Kaggle and Bonn University, though 

widely used, may not encompass the diverse range of seizure types, patient populations, and 

recording conditions encountered in clinical practice. Consequently, the generalizability of the 

findings to broader populations and varied clinical settings may be limited. Additionally, the 

computational demands of deep learning models, particularly the MDBCN, pose challenges for 

deployment in resource-constrained environments. The training and execution of these models 

require substantial computational power and memory, potentially limiting their accessibility in 

settings with limited infrastructure. Furthermore, while ensemble methods enhance robustness, 

they can introduce increased complexity and potentially obscure the interpretability of the final 

predictions. The "black box" nature of deep learning models, coupled with the aggregation of 

multiple model outputs, can make it challenging to decipher the underlying factors influencing 

the system's decisions. This lack of interpretability can hinder clinical acceptance and trust, as 

clinicians may be hesitant to rely on a system whose decision-making process is not transparent. 

Finally, the binary classification approach, while practical and widely adopted, simplifies the 

complexity of seizure detection. Real-world seizure events are characterized by diverse patterns 

and temporal dynamics that may not be adequately captured by a binary distinction between 

seizure and non-seizure states. Future research should explore multi-class classification 

approaches and consider the temporal evolution of seizure activity to provide more nuanced and 

clinically relevant insights. Addressing these limitations through further research and 

development will be crucial for translating the promising findings of this study into practical and 

impactful clinical applications.  

6 Conclusions and Future Work 

The study evaluated various machine learning and deep learning models for seizure detection 

across two datasets. The Voting Classifier excelled, achieving perfect scores (accuracy, 

precision, recall, F1-score: 1.00) with short computation times, making it the most effective and 

efficient model. The CNN showed high accuracy but required more computation time, limiting 

its real-time applicability. Models like DWT with DNN and SVM offered strong performance 

and faster computation, making them viable for time-sensitive applications. The MDBCN model 

performed well in precision but struggled with seizure recall and had long computation times. 

Random Forest and XGBClassifier demonstrated solid performance with quick processing times, 

suitable for practical use. 

On the second dataset, the Voting Classifier again outperformed others, while DWT with DNN 

maintained high performance and speed. MDBCN showed lower seizure recall but high 

precision, and CNN's computation time remained a drawback. 

Future work should focus on improving computational efficiency for models like CNN, developing hybrid 
models for better precision and speed, and exploring real-world clinical applications. Expanding datasets 
and integrating models with edge computing and real-time monitoring systems could enhance seizure 
detection and patient care. 
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