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ABSTRACT 
 
Changes in fire regimes, climate change and land use practices threaten tree structural diversity 
and vegetation structure across spatial and temporal scales. Therefore, this study investigates 
the impacts of fire on the species dynamics, land cover changes and the vulnerability of trees 
ecosystem services. The research took place across the northern savanna ecoregions of 
Ghana, encompassing the Northern, Upper East, Upper West, Savannah, and North East 
regions. The study analyzed data collected between 2001 and 2022 using a combination of 
remotely sensed satellite data (MODIS NDVI, Sentinel-2 images) and field observation, 
involving collecting species data on 30 plots of land. A 30m x 30m plot was set across ten (10) 
communities, and tree heights and edaphic features were recorded for each plot. The results 
show a clear-cut reduction in forest cover and an increase in shrubby savannah and 
agroforestry types driven by recurring fires conversion to agriculture. The analysis revealed fire-
prone areas, including the rangelands and vegetation areas close to the settlement areas, as 
those most frequently hit by fires. Species composition analysis reveals high numbers of fire-
adapted species, including Vitellaria paradoxa and Parkiabiglobosa, in fire-affected areas and 
low numbers where fire-sensitive species dominate. The study also provided insights into the 
vulnerabilities of significant ecosystem services and products, such as water bodies, forests and 
farmlands that are ferociously threatened by fire. The findings stipulate the need to implement 
more comprehensive and complicated approaches to fire management, integrating human 
activities and fire and ecosystem services preservation within savannah ecosystems. 
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1. INTRODUCTION 
 
Fire regimes, the frequency, intensity, and seasonality in which fires occur form a big part in shaping the savannah 
ecosystem's structure and composition. Trees and grasses coexist in dynamic balance within these ecoregions, with fire 
playing a major role in the ecological driving of tree structural diversity, vegetation dynamics, and, thus, general 
ecosystem health. Savannahs are widely spread and cover about 20% of the Earth's surface; they are very sensitive to 
changes in fire regimes, which generally bring changes in biodiversity, carbon storage, and ecosystem services(Pausas & 
Keeley, 2019). Indeed, shifting fire regimes driven by climate change, land-use change, and agricultural development 
have strongly affected vegetation structure and species composition in areas like Southern Africa, Argentina, and 
Australia. For instance, more frequent and severe fires in the Argentine savannahs have reduced tree cover by 30% and 



 

 

shifted dominance from diverse, fire-sensitive trees to fire-tolerant ones (Crespo et al., 2023). In Australia, Bradstock et al. 
(2021) recorded that more severe fires have caused a 15% reduction in carbon storage and shifted toward homogenous, 
fire-resistant vegetation. The importance of region-specific assessments is underlined in these studies, forming the 
particular contribution of our research. 
In Africa, fire mediates the structural diversity of trees. For example, regions experiencing an increased fire frequency in 
Southern and Eastern Africa have witnessed a 25% to 40% reduction in tree cover. This affects the status of biodiversity 
and ecosystem services related to soil fertility and water regulation. In West Africa, fire regimes of the savannah 
ecosystems are also being modified. Malgwi et al. (2023) showed that savannah ecosystems in Nigeria had a very high 
loss of tree cover due to increased fire regimes that have been highly promoted by human activities related to slash-and-
burn agriculture and deforestation. Savannah ecosystems are fully fire-dependent and cover about 65% of the total land 
area within Ghana. In nature, wildfires represent an integral but nowadays more and more unpredictable disturbance 
factor in all the savannah ecoregions of Northern Ghana because of the complex interaction between natural and 
anthropogenic drivers: climate variability, land-use change, and policies on fire management. Fire long played the role of a 
natural process that balanced vegetation's woody and herbaceous components. However, recent changes in fire regimes 
raise questions regarding their implications for diversity in tree structure and vegetation dynamics. 
It is an important step in understanding the impact of fire regimes on tree structural diversity and vegetation dynamics 
within ecosystem management and conservation efforts (Veenendaal et al., 2020). Fire regimes, aside from determining 
the survival and resilience of native tree species, will impact broader ecological functioning in these fire-prone systems. 
For instance, frequent fires can promote the dominance of fire-adapted species at the expense of fire-sensitive ones, 
affecting tree size distributions, canopy cover, and the overall structure of the savannah vegetation cover (Scholes et al., 
2021). This process affects biodiversity conservation, habitat availability, and soil fertility to a considerable extent 
(Hoffmann et al., 2020).  
Recent studies have pointed out that altered fire regimes significantly affect the tree structural diversity and vegetation 
dynamics in most savannah ecoregions of Ghana, and adaptive management strategies are paramount. For example, 
Boateng et al. (2021) show that over the last decade, there has been a 20% increase in the frequency of fires, which is 
highly associated with agricultural expansion, deforestation, and increasing settlement. This shift has resulted in 
domination by fire-tolerant species such as Terminalia avicennioides and Vitellaria paradoxa while the fire-sensitive 
species decline. 
These variations threaten the structural diversity of the ecosystem and the services that emanate from them, including 
carbon sequestration, supporting biodiversity, and local livelihoods. For example, Siaw et al. (2022) identified fire 
suppression in agroforestry systems followed by 18% woody encroachment, reducing grassland biodiversity. Their finding 
showed that fire suppression disrupts the natural fire cycles critical for sustaining vegetation dynamics and that, in so 
doing, it has become the very cause of damage to land uses it was initially intended to protect; it points toward controlled 
burning as a means to rectify the balance between biodiversity conservation and agricultural needs. Anaba et al. (2023) 
cited this in a broader context to highlight that increased fire frequency and settlement growth have reduced carbon 
storage by 15%, changing the structural diversity of trees by weakening ecosystem resilience and compromising climatic 
regulation. This corresponds to global trends observed by Archibald and Hempson, 2022, who reported that climate 
change-driven increases in the intensity of fires are leading to a situation wherein fire-tolerant species are coming to 
dominate savannahs worldwide. Davies et al. (2023) established that fires in the dry season caused a 55% loss in 
aboveground biomass, with more significant effects on smaller trees and vegetation below 5 meters. Meanwhile, nuanced 
fire management strategies adopt fire frequency and seasonality to maintain heterogeneity in savannahs. 
In addition, while the ecological role and function of fire in African savannahs have been considered within wider contexts, 
there still is a gap in understanding how fire regimes interact with tree structural diversity in specific environmental and 
socioeconomic conditions that characterise savannah ecoregions in Ghana (Yankson & Armah, 2023). Such changes in 
the frequency and impact of wildfires, particularly with growing human populations and increasing agricultural use of these 
lands, will pose new challenges for land management and biodiversity conservation (Antwi et al., 2021). In this respect, 
region-specific research is urgently needed to explore how fire regimes influence tree diversity, vegetation dynamics, and 
resilience of savannah ecosystems. 
This study represents a concerted analysis of fire regimes and their impacts on tree structural diversity and vegetation 
dynamics in the savannahs of Northern Ghana. Integrating remote sensing data from the field-based ecological 
assessment offers fresh insights into the spatial and temporal patterns of fire-driven vegetation change and tree structural 
diversity, which covers how fire frequency, intensity, and seasonality drive differences in tree size classes and species 
composition. Recent advances in remote sensing technology and machine learning now provide unparalleled 
opportunities for monitoring and modelling fire events and their ecosystem consequences (Rajendiren & Suresh, 2023). 
Applying satellite-based remote sensing data like MODIS-NDVI has given better insight into how land use and fire 
regimes are interactive drivers of change in savannah vegetation structure and species composition (Hoffmann et al., 
2012; Toko & Sinsin, 2011). These tools have become increasingly indispensable for assessing the long-term health of 
vegetation and understanding spatial patterns of land degradation and recovery in fire-prone landscapes (Archibald & 
Hempson, 2016).  



 

 

The results of this study further underscore possible tradeoffs among fire suppression, land-use intensification, and critical 
ecosystem services conservation, which policymakers and practitioners badly need. The study's findings are placed within 
the context of broader fire ecology, and the study discusses what this potentially might mean for the management of 
savannahs in the wake of climate change and increasing human pressure. 
 
 
2. MATERIAL AND METHODS  
 
2.1 Study area 
This study was conducted in the entire northern savannah ecosystem zone of Ghana, specifically in the Upper West, 
Upper East, Northern, Savannah and North East regions and covers an area of approximately 65% of its total land area 
(Nsiah-Gyabaah, 1996). These savannahs are part of the larger Sudanian savannah belt stretching across West Africa 
and are broadly classified into two main types: the Guinea and the Sudan savannah. The Guinea savannah, also known 
as the Southern savannah woodland, occupies most of northern Ghana, extending from around 8°N latitude to about 
10°N. A higher tree density and diversity than the Sudan savannah characterises this ecosystem. Common tree species in 
this zone include Vitellaria paradoxa (shea), Parkiabiglobosa (dawadawa), Adansoniadigitata (baobab), and various 
Combretum and Terminalia species (Ampadu-Agyei, 1988). The herbaceous layer is dominated by perennial grasses 
such as Andropogongayanus and Hyparrhenia species. The Sudan savannah, found in the northernmost parts of Ghana 
above 10°N latitude, has a sparser tree cover and is dominated by drought-resistant species. Characteristic trees include 
Acacia species, Balanitesaegyptiaca, and Faidherbiaalbida. The grass layer in this zone is often composed of shorter 
annual species, reflecting the more arid conditions. 
 

 
Figure 1: Study area location: Northern savannah ecological zone with the five regions captured and a Google image 
showing how three plots are identified in each of the communities 
 
The study area's topography is undulating, coupled with some hills and isolated highlands over flat plains with an 
elevation of 150 to 300 meters above sea level (Smith et al., 2021). The drainage is dominated by seasonal rivers and 
streams drained into major river basins such as the White Volta, Black Volta, and Oti Rivers. Most of these rivers have 
flow regimes characterised by high flow during the rainy season and dry up or reduce to pools during the dry seasons, 



 

 

causing temporary water shortages (Kombat et al., 2023).  The dominant socio-economic activities in the Northern 
Savannah ecoregion include agriculture, rearing, and agroforestry systems. Farming primarily involves cultivating 
subsistence crops of millet, maize, sorghum, groundnuts, and yam and small-scale cash crop production of shea nuts and 
cotton. Besides farming, livestock herding, especially cattle, goats, and sheep, is widespread and supplements the few 
livelihoods available.  The area comprises ethnic groups, such as the Mole-Dagbane, Waala, Dagara, and Gurune, 
governed by traditional solid leadership structures. Festivals, farm rituals, and communal activities all play their role in 
reinforcing social cohesion (Owusu et al., 2022). Traditional agroforestry systems are a common means of managing 
natural resources, while many communities engage in activities related to fuelwood collection, charcoal making, and 
hunting. However, the region has several problems accompanying it, including poverty, lack of infrastructure, and 
vulnerability to climate variability, all of which impact the livelihood and cultural activities of the people. 
Climate plays a crucial role in shaping these savannah ecosystems. Ghana's northern savannahs are characterised by a 
single rainy season, typically lasting from May to October, followed by a prolonged dry season. Annual rainfall ranges 
from about 1000-1300 mm in the Guinea savannah to 600-900 mm in the Sudan savannah (Kwadwo Owusu & Waylen, 
2009). This rainfall pattern, combined with high temperatures and frequent fires, is instrumental in maintaining the 
savannah physiognomy. The Harmattan winds, which occur from December to early February, have a considerable effect 
on the temperatures in the region, which may vary between 14°C at night and 40°C during the day (Asante & Siaw, 
2019)These dry conditions and the strong Harmattan winds facilitate vegetation burning. Early dry season burns are 
usually done between November and January, whereas late season burning begins in February and ends in March.  
 

 
Figure 2: Average monthly temperature and humidity values of the study area from 1992 to 2022. Source of data: 
https://modis.gsfc.nasa.gov/data/ 
 
2.2. DATA COLLECTION AND PROCESSING 
2.2.1 MODIS NDVI image description and processing 
 
For the assessment of large-scale vegetation cover changes, MOD13Q1 (MODIS/Terra Vegetation Indices 16-Day L3 
Global 250m SIN Grid) NDVI data from the NASA Earth Observing System Data and Information System (EOSDIS) 
platform (available at: https://earthexplorer.usgs.gov/), was used. The MOD13Q1 product provides bi-weekly composite 
images at a spatial resolution of 250 meters. The 250-meter spatial resolution allowed for a detailed analysis of vegetation 
cover changes at regional and local scales, while the 16-day temporal resolution facilitated tracking of seasonal and 



 

 

interannual variability in vegetation cover between 2001 and 2022. MODIS NDVI data were selected according to cloud 
covering percentage of less than 10% and data availability in the dry season to reduce cloud effects, vegetation 
phenology and differences in soil moisture (Wu et al., 2021). Also, thirty (30) GPS ground truth points (UTM Zone 30N, 
WGS 84 at 3 m level of accuracy) were obtained from sample points of the identified land cover classes (forest (F), 
shrubby/woody savannah (SWS), Agroforestry/park/field lands (AF), waterbodies (WB), and human settlement (HS) 
during field visits across the study area. These GPS points were also used to validate the satellite-based vegetation 
indices. 
 
Preprocessing of MODIS NDVI Image 
The original sinusoidal MODIS data projection was reprojected to the WGS 1984 coordinate system, as it is the current 
standard used by most geographic information systems or GIS datasets. Since MODIS data intrinsically have pixels 
affected by clouds, cloud masking was developed from the QA layers that come with such data (Dwyer & Schmidt, 2006). 
This ensured that only pixels free of clouds were retained for computation in NDVI. To refine data quality, atmospheric 
correction techniques, such as the 6S atmospheric correction model, were applied to reduce distortions due to aerosol 
and water vapour. This step increases the reliability of NDVI values. Later on, data clipping was done to focus on specific 
study areas, such as the Northern region, Upper West, Upper East, Savannah, and North East region. This type of spatial 
subsetting reduced the volume of the data and kept the analysis concentrated on the relevant geographic areas. In the 
case of computing NDVI, the precalculated values are obtained using a formula from the red (visible) and near-infrared 
(NIR) reflectance bands (Equation 1): 
ܫܸܦܰ = ேூோିோா

ேூோାோா
       (1) 

The NDVI values ranged from -1 to 1, with higher values indicating healthy and dense forest vegetation, while lower 
values corresponded to sparse vegetation, urban areas, water bodies, and bare land. NDVI values were followed by 
LULC classification, where vegetation cover was differentiated into various classes based on the NDVI values and other 
contextual information. These categories included Forest in dark green, Shrubby/Woody Savannah in light green, 
Agroforestry Parks/Fields/Fallow Land in yellow-green, Water Bodies in blue, and Human Settlements in orange. 
Generally, areas with forests had a high NDVI due to the high density of vegetation. At the same time, shrubby/woody 
savannah and agroforestry showed moderate NDVI values due to poor vegetation coverage. Non-vegetated surfaces like 
water bodies and human settlements did not tend to return high NDVI values.  
 
Testing of the Classified Images 
Images were validated using the accuracy metrics, which included Overall Accuracy (OA), Kappa Statistic (KS), and the 
Confusion Matrix (CM), to analyse and confirm their statistical accuracy. The statistical classification testing generated 
confusion matrices for every classified image using the sklearn library (from sci-kit in Python) to create confusion 
matrices. The overall accuracy (OA) was obtained by comparing the ratio of accurately classified pixels to the number of 
reference points of the entire image (Kamusoko, 2022). This metric gave a rough estimate of the degree of fit of the 
classified output data to the reference data and was computed from the following equation; 
 
ݕܿܽݎݑܿܿܣ	݈݈ܽݎ݁ݒܱ = ்௧	௧	௦௦௧௦

்௧	ே௨		ோ	௧௦
× 100    

Producer’s Accuracy was then calculated to determine how well each class in the actual field was classified in the image. 
It quantified the omission error that arises when a certain land cover type is classified into the wrong class (Kamusoko, 
2022). 
 

ݕܿܽݎݑܿܿܣ	ݏᇱݎ݁ܿݑ݀ݎܲ =
ݓܴ	݊݅	݂݀݁݅݅ݏݏ݈ܽܥ	ݕ݈ݐܿ݁ݎݎܥ

ݓܴ	݊݅	݈ܽݐܶ × 100			 
 
 
User’s Accuracy was computed to measure the likelihood of the pixel being correctly classified to the intended land cover 
class in the reference data (Kamusoko, 2022;Prasad, 2020). It is a measure of commission error whereby a pixel is either 
misclassified in an image or computed incorrectly in a matrix. 
 

ݕܿܽݎݑܿܿܣ	ݏ′ݎ݁ݏܷ =
݊݉ݑ݈ܥ	݊݅	݂݀݁݅݅ݏݏ݈ܽܥ	ݕ݈ݐܿ݁ݎݎܥ

݊݉ݑ݈ܥ	݊݅	݈ܽݐܶ × 100 
In addition, the Kappa Coefficient was computed to quantify the degree of agreement between classified data and 
reference data besides the chance variable. The Kappa coefficient varies from 0 to 1, where values closer to 1 indicate a 
higher level of compliance between the classification and actual ground truth (Prasad, 2020) 
 
 

ܽܽܭ =
ܲ − ܲ݁
1− ܲ݁  



 

 

Where: 
Po is the observed accuracy (same as overall accuracy),and Pe is the expected accuracy by chance. 
 
2.2.2. Land use and land cover classification 
For the study area, shape files were used to extract data on the various land covers: forest, shrubby/woody savannah, 
agroforestry lands, water, and human settlements for 2001, 2006, 2011, 2016, and 2022. The Semi-Automatic 
Classification Plugin (SCP) in QGIS was used to classify each pixel accurately before change detection, and the results 
were then exported to Excel for further analysis (Congedo, 2016). The SCP ‘Land Cover Change’ algorithm produced the 
transition matrices that described the changes in different land cover types, thereby pointing out the deforestation rate and 
how the agricultural lands have been expanding. The SCP “Classification Report” algorithm created Excel reports of the 
LULC class areas for each period to determine the change rate. The average annual rate of land cover change was 
calculated using the formula: 
 

ݎܽ݁ݕ݈݂ܽ݊݅ݐܽܽ݁ݎܣ − ݎܽ݁ݕ	݈ܽ݅ݐ݅݊݅	ݐܽ	ܽ݁ݎܣ
ݎܽ݁ݕ݈ܽ݅ݐ݅݊݅ݐܽܽ݁ݎܣ ×

1
ݏݎܽ݁ݕ݂ݎܾ݁݉ݑ݊ × 100 

This was used to calculate changes in forest cover, shrubby savannah, agroforestry lands, and human settlements. 
 
2.2.3. Statistical Methods 
Linear regression models were applied to each land cover type to assess changes over time. The slope of the regression 
line represents the rate of change per year, while the R-squared value indicates the proportion of variance explained by 
the model. 
 
2.3. Hotspot analysis of fire impact on vegetation using Sentinel-2 and MODIS NDVI 
A fire hot spot map was generated from a Sentinel-2 satellite image, and the vegetation types were extracted using NDVI 
indices. MODIS data for 2000-2021 was utilised to obtain historical fire occurrences as input for the study. The district 
capitals were georeferenced by overlaying layers derived from the administrative boundaries data layers. Supervised 
classification was done using satellite data to identify forests, water bodies, and agroforestry parklands. To increase 
classification accuracy, preprocessing steps were employed through atmospheric correction and cloud masking. The 
classification results obtained were validated using accuracy assessment techniques as described above. The spatial 
layers were appended using the QGIS open-source GIS, which was used to assess further the distribution of fire points 
with the land cover type and human settlement. An appropriate coordinate system and projection, WGS84, enhanced the 
spatial reference and accuracy. 
 
2.4 Species Composition and Phytogeographic Analysis   

Vegetation measurements at the site included a structured and systematic vegetation inventory on 30 plots, where 
species composition and vegetation structure were documented. The species were categorised according to their fire 
tolerance and origin from three eco-geographical zones, including Guineo-Congolese and Sudanian. This classification 
provided a very rich analysis of how various species may be affected by a level of fire and anthropogenic impact. 

Tree height for tall trees was measured using a clinometer, while for smaller trees, it was a simple tape measure. 
Measurement was taken from the ground, which is the base of every tree, to its topmost branch. Measurements were 
conducted at random points within selected plots across the study area to capture the variability in tree height. The height 
data estimates the mean and variation of tree height among species and compares tree height of fire-tolerant and fire-
sensitive species. Similarly, a simple tape measured the circumference of the tree at DBH (1.3 meters, or approximately 
4.5 feet) above ground. Circumference was divided by π (3.1416) to calculate diameter. 
A Detrended Correspondence Analysis (DCA) and Canonical Component analysis (CCA) was conducted to assess the 
plant community structure further. This multivariate statistical method was used to determine the gradients concerning fire 
intensity and the influence of human disturbance. The DCA analysis helped recognise the relations between plant 
communities and identify fire-tolerant and fire-sensitive plant species within the disturbance gradients. This approach 
helped to understand how fire and human activities affect vegetation, especially in fire-dominated ecosystems like the 
Northern Savannah Ecological Zone. 
 
2.5. Fire effects on  savannah ecosystems  
An ecosystem impact/vulnerability map was developed to determine the vulnerability of the study area to the loss of 
ecosystems due to wildfire. The map was created using Sentinel-2 images because they offer a much higher spatial 
resolution, are multispectral, and have a high repeat frequency. The images used in this study were selected based on a 
cloud cover percentage below 10% to reduce cloud interference and vegetation changes. Table 1 summarises the general 
features of Sentinel-2 imagery, such as spatial and spectral resolutions, temporal revisit frequency, and large scene width, 
which allowed focusing on details of fire impact zones and performing time series analysis of post-fire ecosystem 



 

 

rehabilitation. The imagery was classified using supervised classification techniques with QGIS to develop the hotspot 
map. 
Table 1: Summary of Key Features - Sentinel-2 Imagery 
Feature Details 
Spatial Resolution 10 m (RGB and NIR), 20 m (Red Edge, 

SWIR), 60 m (Water Vapor) 
Spectral Resolution 13 spectral bands (VNIR and SWIR) 
Temporal Revisit Frequency 5 days (Sentinel-2A and 2B combined), 10 

days (single satellite) 

Scene Size 100 km x 100 km 
Radiometric Resolution 12-bit 
Processing Levels Level-1C (TOA), Level-2A (BOA) 
 
2.5.1 Preprocessing and processing of Sentinel-2 satellite image 
Sentinel-2 imagery for fire vulnerability assessment involves several steps to pre-process and process the data correctly 
to ensure data quality and accuracy. The data was derived from the European Space Agency’s Copernicus program, 
which offers high-resolution multispectral data for vegetation health, mapping of the land cover classification, and 
identifying wildfire risks. The data was downloaded with band resolutions of 10m, 20m, or 60m (Phiri et al., 2020). 
For analysis, the imagery was preprocessed using the Sen2Cor processor to perform atmospheric correction. This 
correction converts level-1C (top of atmosphere reflectance) data into level-2A ( bottom of atmosphere reflectance), 
eliminating interferences from aerosols and water vapour in the atmosphere. The obtained images were processed to 
exclude cloud-covered pixels using the Scene Classification Layer (SCL). After atmospheric correction and cloud 
masking, the images were resampled to maintain consistency, using the 10-meter resolution for wildfire analyses (Phiri et 
al., 2020). The data was then clipped to the area of study in Northern Ghana. Clipping reduces the processing space to 
only necessary places, making it efficient and accurate. For this assessment, two(2) important indices were calculated to 
assess vegetation health and moisture levels: Normalized Difference Vegetation Index (NDVI) in equation (1) above and  
Normalized Difference Water Index (NDWI): 

ܫܹܦܰ =
ܴܫܰ − ܴܫܹܵ
ܴܫܰ +  ܴܫܹܵ

NDWI is calculated using the Near-Infrared (Band 8) and Short-Wave Infrared (Band 11 or 12) bands to estimate 
vegetation moisture content. Lower NDWI values suggest dry conditions, making an area more susceptible to wildfire. 
The technique used in assessing wildfire vulnerability entails calculating vegetation indices and classifying the land use 
and land cover (LULC). This categorises the landscape into various vulnerability classes dependent on parameters like 
vegetation type and density, soil moisture and wildfire risk level. Zones were represented by green for forest reserves to 
signify low vulnerability and red for high vulnerability areas. Environmental variables, including fire frequency (derived 
from the MODIS data of 2001-2021) and species richness (from the field), are combined to measure ecosystem 
resilience. Population density and land use intensity are also mapped from census, remote sensing, and GIS data layers. 
The georeferenced variables are read into GIS software, normalised, and scaled to assign higher vulnerability scores to 
regions with greater fire risk and susceptibility to ecosystem degradation. 
 
3. RESULTS AND DISCUSSION 
 
Land Use Classification and Accuracy Assessment 
Five land use classes were identified: Forest(F), Shrubby/Woody Savannah(SWS), Agroforestry Parks/Fields/Fallow Land 
(APF), Water Bodies(WB), and Human Settlement (HS). The confusion matrix (Figure 3) and accuracy metrics (Table 2) 
The result shows that the performance of each land cover type was excellent. Each class, like Human Settlement, 
Shrubby/Woody Savannah, Agroforestry, Forest, and Water Bodies, was classified ideally, as shown by the diagonal 
elements in the confusion matrix with no misclassifications and no confusion between the different land cover types.   



 

 

 
Figure 3: Confusion Matrix for Land Cover Classification 
Specific to classification models, two accurate measurements that can be used are Producer’s Accuracy (PA) and User’s 
Accuracy (UA). Producer’s Accuracy determines the density of each land cover type in a classified image. At the same 
time, the User’s Accuracy quantifies the probability of an area belonging to a given class being classified. Since there are 
no false classifications in the above matrix, PA and UA would be 100, indicating that the model achieved optimal 
performance for all land cover types. 
However, to provide additional information about the model's accuracy and reliability, the accuracy metrics were 
computed and presented in  (Table 2) below; 
 
Table 2: Accuracy Assessment for Land Cover Classification 
C Overall 

Accuracy 
(%) 

Producer’s 
Accuracy 
(PA) 

User’s 
Accuracy 
(UA) 

Kappa 
Coefficient 

HS 100 1 1 1 

SWS 100 1 1 1 

AF 100 1 1 1 

F 100 1 1 1 

WB 100 1 1 1 

 
(Table 2) Shows outstanding performance in the additional land cover classification model metrics. The accuracy shows 
that the classification model was correctly classified in every land cover class. The Producer’s Accuracy (PA) was perfect 
for each class, indicating that all actual samples were correctly classified. Similarly, the User’s Accuracy (UA) for all land 
cover classes is shown to belong to their appropriate categories. The Kappa Coefficient also shows perfect agreement 
between actual and classified data and results that are better than would be expected by chance. These metrics validate 
the high reliability and precision of the classification model. 
 
Land use and land cover dynamics in the study area 
(Figure 4) reveals the distribution of LULC for 2001, 2006, 2011, 2016, and 2021 in northern Ghana. The details revealed 
certain discernible fluctuations throughout the years. The change in forest cover decreased steadily between 2001 and 
2022. By 2022, there was a significant reduction, possibly due to deforestation, land conversion, or fire incidents. On the 
other hand, shrubby savannah increased consistently at the expense of the forest areas. This vegetation type dominated 
much of the landscape in 2022, indicating widespread degradation and conversion resulting from human activities and 
climate change. Agroforestry surface areas have increased over time. This reflects an intensification of agriculture and 
increased pressure on land for food production. However, water bodies in the entire period do not show any appreciable 
change, with only minor changes in the levels of the major rivers and reservoirs. The level of small water bodies could 



 

 

change due to conditions such as drought or flood. Human settlements show a conspicuous increase between 2001 and 
2022 because of increases in urbanisation and population. 
 

 
Figure 4: Land Cover Classification Maps for 2001, 2006, 2011, 2016 and 2021 Using MODIS NDVI Data. 
 
 
(Table 3) below are the changes in land cover from 2001 to 2022 across five major LULC classes: Forest, 
Shrubby/Woody Savannah, Agroforestry parks/Fields/Fallow lands, Water Bodies, and Human Settlement. It was 
observed that a loss of 10.86% in forest cover and a reduction of 38.82% in Shrubby/Woody Savannah were observed. 
Agroforestry parks/Fields/Fallow lands increased by a factor of 145.17% owing to increased agricultural as well as 
agroforestry activities. Water Bodies increased by 170.76%, probably because of changes in environmental conditions 
and land-use policies relevant to water bodies' conservation, whether artificial or natural. Human settlements increased 
significantly, with a strength of 177.12%, reflecting the region's rapid population growth and urbanisation. These findings 
demonstrate the dynamic nature of land-use change in Northern Ghana, which has an important bearing on ecosystem 
services, biodiversity, and natural resource management. The high rise in agroforestry and settlement areas might reflect 
the socio-economic pressures and shifting priorities of land use, while the loss of forest and savannah causes 
environmental concern. 
 
Table 3: Changes in land cover types (Forest, Shrubby/Woody Savannah, Agroforestry parks/Fields/Fallow lands, Water 
Bodies, and Human Settlement) from 2001 to 2022 
Land cover 2001 2006 2011 2016 2022 Percentage 

Change 
(2001-
2022) 

Forest 23718.33 23988.55 17648.43 30699.47 21141.42 -10.8647 

Shrubby/Woody 
Savannah 

57225.12 55633.51 47348.64 40049.35 35009.2 -38.822 

Agroforestry 
parks/Fields/Fallow lands 

15121.92 15750.15 28676.64 23293.56 37074.08 145.1679 

WaterBodies 995.365 1092.645 1843.686 1961.839 2695.078 170.7628 

Human Settlement 643.9349 1239.463 2186.646 1699.988 1784.454 177.1171 

 



 

 

Assessing Land cover Changes over time 
The regression analysis (Table 4) results reveal some characteristics of the trends in land cover change over the 21 
years. Shrubby/Woody Savannah decreased considerably with a negative slope of -1152.6 and an R-square value of 
0.97, showing a solid decreasing trend. In contrast, Agroforestry parks/Fields/Fallow lands had a positive trend with a 
slope of 998.3 and an R-square of 0.79. At the same time, water bodies have also consistently increased from 82.4 
square kilometres to 0.95 R-square. These changes demonstrate trends that reflect the continued land-use change 
impelled by agricultural expansion, deforestation, and the growth of urban areas. 
 
Table 4: Regression analysis of land cover types 
Land Cover Type Slope Intercept R-

squared 

Forest 20.26453 -17316.8 0.00121 

Shrubby/Woody Savannah -1152.6 2365161 0.968933 

Agroforestry parks/Fields/Fallow 
lands 

998.2626 -
1983722 

0.793284 

WaterBodies 82.42414 -164054 0.946757 

Human Settlement 51.62988 -102327 0.518379 

 
Fire Hotspot and Vegetation Dynamics 
(Figure 5) shows the fire occurrences in the northern Ghana savannah zone, with high concentrations of fire points mainly 
in areas classified as rangeland (orange) and vegetation (green). Fire points clustered in these locations suggest that 
wildfires are one of the significant land-use issues in the study area. The hotspot also reveals that crop and vegetative 
lands are prone to fire, possibly driven by agricultural activities, dry conditions, or traditional land-clearing practices. The 
noticeable fire points around human settlements also suggest the proximity of fire events to human-populated areas. The 
built-up areas are mainly concentrated around the district capitals and are less affected than the rural rangelands and 
vegetative areas. Forest cover showed very few fire points, indicating that these zones are either less prone to wildfires or 
better managed regarding fire control. However, fire points near forest areas could threaten biodiversity and forest 
resources. Similarly, water bodies show restrained fire points, probably because wet conditions minimize the chances of 
fire outbreaks. 
 



 

 

 
 
Figure 5: Fire Points(Hotspot) and Land Cover Distribution in Northern Ghana 
 
Species Composition and Phytogeographic Analysis   
(Figures 6, 7 and 8) present the Species Composition and Phytogeographic Analysis, which gives valuable information on 
the floristic structure and ecological adaptation of species in the study area. A total of 123 species from 102 genera and 
38 families were recorded, with the highest family, Fabaceae, constituting about 23% of the total number of species 
recorded. Fabaceae dominance is derived from a competitive advantage over others, as it is nitrogen-fixing, solving the 
problem of poor soil nutrient conditions characterised by savannahs. Key species, including Vitellaria paradoxa, 
Parkiabiglobosa, Anogeissusleiocarpus, and Diospyros mespiliformis, dominated the spectrum, with Vitellaria paradoxa 
constituting the highest relative frequency at 14%. These species have thick bark and a deep rooting system, and 
they can resprout, ensuring a better adaptation to the frequent fire events that have characterised the landscape. 
 



 

 

 
 
Figure 6: Frequency Distribution of Plant families 
 

 
 
Figure 7: Frequency Distribution of Plant Species 
 
(Figure 8) Compares the frequency percentage of various phytogeographic types between burned and non-burned areas. 
It illustrates the domination of vegetation by species of Guineo-Congolese/Sudanese-Zambezi (GC-SZ) and Sudanese-
Zambezi (SZ) regions, accounting for 41.64% and 29.91%, respectively, of the raw spectra. Species belonging to these 
regions are adapted to the transitional savannah environment, where fire plays an important role in the maintenance of 
the structure of the ecosystem. Species belonging to the Guinean-Congolese(GC) region generally occur in more humid 
forests and are less represented due to their sensitivity to fire. Introduced species(I) were moderately represented and 
showed evidence of fire.  Other types, such as Guineo-Congolese (GC), Afro-Tropical (AT), and Sudano-Guinean (SG), 
are poorly represented. The data gives insight into how different vegetation types respond to fire disturbance. 
Occurrence 
 



 

 

 
 
Figure 8: Distribution of Phytogeographic Types in Burned (SP BRUT) and Non-Burned (SP POND) Areas 
 
Detrended Correspondence Analysis (DCA) 
In this context, DCA in (Figure 9) provided insight into species distribution patterns along fire intensity and human 
disturbance gradients. The DCA identified three major plant groups, G1 (open forest), G2 (mosaic shrubby/tree savannah 
and dry forest), and G3 (wooded/tree savannah), indicative of different levels of exposure to fire and deforestation. Open 
Forest Group occurred primarily in sites with relatively low fire frequencies and is dominated by these fire-sensitive 
species that thrive in undisturbed environments. A second group, representing a Mosaic of Shrubby/Tree Savannah and 
Dry Forest, occupied the areas exposed to moderate fire disturbances. The species of this group combined fire tolerance 
features with adaptations typical of transitional ecosystems in between forest and savannah. Finally, the areas of 
Wooded/Tree Savannahs were dominated by highly fire-tolerant species. Such species are represented mainly by 
resprouting or fire-resistant species, primarily adapted to regeneration after fire events. The DCA analysis strongly 
outlined ecological diversity among species, highly influenced by their resilience and adaptation to fire disturbance and 
human activities.  
The Canonical Correspondence Analysis (CCA) in Figure 10 examined the interaction of species distribution, fire regimes, 
and environmental factors such as elevation, proximity to water bodies, and soil types. This CCA showed significant 
correlations between the fire occurrence and these environmental variables, giving more profound insights into how fire 
shapes plant communities. While the higher elevations tended to have fewer fires, probably because of their 
inaccessibility and denser natural vegetation, the frequency of fires was more significant in the lower elevations where 
human activity is concentrated, prompted by agricultural pursuits and the expansion of settlements. Water bodies, 
especially riverine environments with moist soils, acted as natural firebreaks, buffering fire spread. However, the 
expansion of agriculture into the riparian zones reduced this buffering effect and allowed the fires to penetrate previously 
fire-protected areas. The soil type was also a determining factor in the fire response; sandy soils were more fire-prone, 
supporting fire-adapted species, and clay-loamy soils sustained fewer fires, sustaining the less fire-tolerant species. 



 

 

 

 
Figure 9: Detrended Correspondence Analysis (DCA) of Plant Communities and Disturbance  
 



 

 

Figure 10: Canonical Correspondence Analysis (CCA) of Environmental Variables and Species Distribution 
 
Vulnerability of Northern Ghana Savannah Ecosystems 
(Figure 11) below shows how water bodies are exposed to wildfires as a primary ecosystem service. The spatial analysis 
of wildfire occurrences shows vast variations in fire activities relative to the proximity to water bodies. Waterbodies' 
proximity was categorised using a gradient showing an increase in distance away from both major and minor rivers. Areas 
closer to water bodies (darker blue) show fewer fire occurrences, while areas farther away (lighter blue) indicate a high 
number of fires. This pattern directly correlates with the exposure of water bodies to fires; the farther away from water 
bodies, the more exposed. 
According to the vulnerability map( Figure 12), very high-vulnerability areas are visualised as red and have a severe 
environmental threat,  mainly connected with alternative ecosystems, such as water supply and agricultural productivity. 
Where high vulnerability is concentrated near large forest preserves and major rivers, it presupposes these ecosystems' 
critical role in service provisioning. The orange areas (high vulnerability) face higher risks associated with several factors, 
including human activities and natural conditions, such as proximity to fire-prone zones and water bodies. The yellow 
represents a moderate vulnerability and faces moderate risks to ecosystem services, particularly farmlands and forests. 
While the exposure in these zones to the risk of wildfires and environmental degradation could be high, resilience and 
adaptive capacity might still be developed, thus dampening the overall impact. Low vulnerability areas (purple) tend to be 
less affected by fire incidences or environmental degradation, suggesting stronger ecosystem resilience or reduced 
human pressures. 
 

 
 
Figure 11: The distribution of fire points within the river network  



 

 

 
Figure 12: Wildfire Susceptibility Map of Northern Ghana: Depicting the varying levels of fire risk across the region, 
categorized from very low to very high susceptibility, with major rivers, minor rivers, and forest reserves marked for 
reference." 
 
Discussion 
 
Accuracy of Remote Sensing and Classification Techniques in land classification and Vegetation Change 
dynamics 
This study's high accuracy of the MODIS NDVI-based land classification is central to understanding vegetation change in 
the northern savannah of Ghana. In confirmation of the robustness of the MODIS NDVI method, the Confusion Matrix 
ensured that all five land cover classifications, namely, Forest (F), Shrubby/Woody Savannah (SWS), Agroforestry Parks 
(AF), Water Bodies (WB), and Human Settlements (HS), were classified with 100% accuracy. Indeed, according to (Lu & 
Weng, 2007)), high-resolution remote sensing significantly advances classification accuracy in complex ecosystems. The 
Overall Accuracy(OA) is 100%, and the Kappa Coefficient equals 1.0, which testifies that the model was efficient and 
reliable in recognising land cover types and minimising random classification errors, as supported by (Congalton & Green, 
2008). The metrics also allow precision in land cover transitions essential to fire management and land use sustainability, 
particularly in fire-prone areas where change is driven by wildfires and human activities, as observed by (Backer et al., 
2004). 
Besides, the Producer’s Accuracy (PA) and User’s Accuracy (UA) were perfect for all the land cover types, demonstrating 
the model's high performance in precisely representing and capturing the land cover classes. The ability of the model to 
distinguish between Shrubby/Woody Savannah and Agroforestry Parks is fundamental for understanding the effects of 
fire, even though the NDVI values are similar, as stated by (Pettorelli et al., 2005). The study observed changes in land 
cover classes between 2001 and 2022, with a reduction in forest cover, indicating the impact of wildfires and human 
activities. These findings confirm Hoffmann et al. (2012), who noted that remote sensing is an ideal methodology for 
monitoring vegetation change in fire-impacted areas. It further iterates that remote sensing effectively identifies fire-prone 
areas to inform fire management strategies. The accuracy of such classifications is vital for urban planning wildfire 
vulnerability and risk mitigation in areas with increasing human settlements (Roy et al., 2008; Giglio & Roy, 2020). Overall, 



 

 

the studydemonstrates the reliability of MODIS NDVI for monitoring vegetation changes and supports its application in fire 
management and land use planning to conserve savannah ecosystems in Northern Ghana. 
 
Land Use and Land Cover (LULC) Changes 
Some of the transitions observed between land cover classes in the northern savannah of Ghana are the outright decline 
in forest cover and the increase in shrubby/woody savannah and agroforestry areas. Significantly, this study recorded a 
reduction in the forest cover from 2001 to 2022 due to recurring wildfires and increased human activities leading to the 
expansion of agricultural lands and settlements. The trend of forest decline agrees with other works, such as (Kalfas et al., 
2024), who also reported that fire and land use changes negatively affect similar environmental forest ecosystems. An 
increase in shrubby/woody savannah and agroforestry classes represents a change in vegetation structure with relevant 
implications for biodiversity and ecosystem services. Shrubby savannahs, due to repeated fires and deteriorated lands, 
typically support fewer species than forests. This shift might reduce species that rely on dense forest habitats for their 
existence, further threatening the region's biodiversity. (Petermann & Buzhdygan, 2021) observed similar patterns, with 
fire-dominated grassland ecosystems leading to much-simplified vegetation structures with reduced biodiversity. Further, 
the shift from forest to shrubby savannah has implications for other ecosystem services, such as carbon sequestration. 
Forests are essential in sequestering CO2, which causes global warming and climate change. When forest composition is 
reduced, the region's potential for carbon storage is significantly reduced. (Pettorelli et al., 2005) note that high-density fire 
events and changes in land cover, particularly in dense forests, lead to carbon emissions and increased climate change 
effects. 
In contrast, the increase in the agroforestry areas is evidence of increased agricultural activities, possibly encouraged by 
increased demand for food and challenging economic situations. Besides that, improved soil fertility and sources of 
income for villagers could be some positive impacts caused by agroforestry systems. Nevertheless, these developments 
also mean increased tension on land resources, accelerating soil degradation and a drop in long-term agricultural 
productivity. Studies by Yaro (2008) indicate that agricultural land expansion at unsustainable levels in savannah 
ecosystems may cause soil fertility loss and threaten future agricultural output and food security. The observed land 
transitions indicate trade-offs between the changes in land use and ecosystem services. This reduction in forest cover will 
inadvertently reduce water regulation and biodiversity conservation. At the same time, the increase in agroforestry areas 
could improve agricultural productivity in the short term but at the cost of ecosystem resilience in the longer term. Boateng 
(2017) states that a proper balance between land use demands and the preservation of ecosystem services is crucial for 
environmental sustainability and agricultural productivity. Changes in land cover indicate that fire management and land 
use planning should go hand in hand to protect the remaining forests and support sustainable agricultural practices. This 
agroforestry area can continue supporting biodiversity and agricultural productivity with minimum negative impacts on 
ecosystem services through a balanced agriculture expansion and conservation approach. 
 
Fire Hotspots and Vegetation Dynamics: 
Spatial distribution showed that fire occurrences in the northern savannahs of Ghana were highly concentrated in 
rangeland and vegetation areas, especially around human settlement areas. This trend is highly related to land use 
activities like livestock grazing, agriculture, and land clearing. Similar findings by (Croker et al., 2023) highlight that these 
two practices, grazing and traditional farming methods, contribute significantly to fire occurrences in the savannah 
ecosystem. Fire is a land management tool used in rangelands. However, under repeated fires, vegetation degrades and 
may convert dense forests to shrubby savannahs or grasslands with biodiversity losses and carbon sequestration (Bond & 
Keeley, 2005).  Agricultural expansion and urbanisation in most areas have led to highly concentrated fire activity around 
human settlements. Land clearing for farms and buildings increases the tendency for fires to occur, forming a clustered 
distribution pattern around human settlement areas as Laris, (2002) states. Climate conditions such as the extensive dry 
season and Harmattan winds also tend to enhance fire activity, as observed by Owusu and Waylen, (2013). Dry seasons 
increase the flammability of vegetation and promote incidents of fire. Fire incidents occurring closer to water bodies are 
also ecologically relevant, as water bodies tend to create natural firebreaks and are typically unaffected. According to 
(Swaine, 1992), the encroachment of agriculture into riparian zones can compromise this natural buffer and allow fires to 
spread into previously protected areas. Fewer fire incidents around significant water bodies were recorded due in part to 
moisture content; however, human activities can alter this protective dynamic. 
Fire impacts on vegetation recovery and degradation are complex. While regenerative fire is essential in fire-prone 
ecosystems like the northern savannah, frequent anthropogenic fires prevent full vegetation recovery and create 
conditions for long-term degradation. Hoffmann et al. (2012) noted that fire frequency changes species composition by 
favouring fire-tolerant species at the expense of fire-sensitive ones. Over the last two decades, the frequent fire 
disturbances in rangeland have increasingly led to forest loss in the study area, following the global trends of reduced 
ecosystem resilience to frequent fire disturbances (Pettorelli et al., 2005). 
 
Fire and Vegetation Dynamics: Species Composition, Ecological Gradients, and Environmental Factors 
The phytogeographic analysis and the species composition in the northern savannah indicate that fire-tolerant species, 
such as Vitellaria paradoxa (shea), Parkiabiglobosa (dawadawa), and Diospyros mespiliformis proliferate under fire-prone 



 

 

conditions due to their adaptive attributes of thick bark, deep roots, and resultant sprouting. These species thrive in the 
savannah fire regime, exacerbated by natural causes and human land clearing and agriculture activities. In support, 
 (2005) noted that fire-adapted species possess specific characteristics that allow them to survive frequent disturbances 
caused by fire in savannahs. This is due to their ecological adaptations, which give them an advantage over fire-sensitive 
species. Hoffmann et al. (2012) mentioned that eliminating the fire-sensitive species from fire-prone landscapes results in 
the floristic composition shift in this savannah. 
The Detrended Correspondence Analysis (DCA) identified three main vegetation groups along the fire and deforestation 
gradients: the Open Forest Group, the Mosaic of Shrubby/Tree Savannah and Dry Forest, and the Wooded/Tree 
Savannahs. The Open Forest Group includes fire-sensitive pioneer species that happen to survive in low frequencies of 
fires but have been declining with the rise and increasing frequency of fires.  As explained by Pettorelli et al. (2005), fire-
sensitive species are usually confined to fire-protected areas. The Mosaic of Shrubby/Tree Savannah and Dry Forest is a 
transitional ecosystem with coexisting fire-tolerant and fire-sensitive species. However, the domination of fire-tolerant 
species increases with increasing disturbance due to fires. Wooded/Tree Savannahs were dominated by fire-tolerant 
species that can withstand frequent and intense fires, and their domination increased with increasing fire intensity. 
According to Bond and Keeley, (2005), fire regulates the relative dominance between woody and herbaceous vegetation 
in savannahs. 
Canonical Correspondence Analysis (CCA) revealed that environmental variables like elevation, distance to water, and 
soil type are significant in explaining fire regimes within the northern savannahs, which agrees with global observations. 
For example, Pettorelli et al. (2005) assess that fire frequencies tend to be lower at high elevations because of reduced 
human activities and sometimes microclimatic conditions. Human activities and expansion of agriculture in lower 
elevations and riparian zones thus foster fire risk in fire-prone regions such as California and Australia. Another essential 
factor influencing fire frequency concerns soil type: the sandier the soils, the quicker they dry out, and hence, the more 
frequent the fires occur in Australia and parts of Southern Africa (Bradstock et al., 2012). This interaction between fire 
intensity, human disturbances, and these other environmental factors improves the performance of fire-tolerant species at 
the expense of fire-sensitive species. This more general pattern has implications for biodiversity and ecosystem services. 
In summary, these patterns underscore how fire management strategies must be tailored analogously to account for 
human and environmental drivers of fire risk. These patterns underscore the need for tailored fire management strategies 
that account for both human and environmental drivers of fires. 
 
Fire-Induced Vulnerability of Ecosystems in Ghana’s Northern Savannah zone 
From the spatial relation between wildfires and water bodies in the savannah ecosystems of Northern Ghana, an inverse 
correlation may be seen in that areas closer to water bodies have fewer incidences of fire. Water bodies can be 
considered a natural firebreak, which limits the number of wildfire occurrences within their surroundings with reduced 
intensity of the wildfires. This also calls for the conservation of water bodies, as they serve a vital function in mitigating fire 
risks and protecting the surrounding ecosystem. Other studies have identified that not only rivers and lakes provide a 
natural barrier against wildfire but have again raised calls for these bodies of water to be treated in a conservation effort 
with intensified fire mitigation. (Caroni et al., 2024; Kraaij et al., 2013). 
The vulnerabilitymap identifies the classes of the area by wildfireexposure. It shows that the areas of very high 
vulnerability, such as forest preserves and major rivers, have extreme threats to key ecosystems, including water supply 
and agricultural productivity. Wildfires can seriously degrade ecosystems by reducing water quality and affecting 
vegetation dynamics and biodiversity. Because of the proximity to fire-prone zones, high-vulnerability areas usually 
associated with human activities like agriculture are highly vulnerable. Land-use change increases wildfire vulnerability 
and enhances ecosystem degradation, similar to what is recorded in other analyses of fire-prone ecosystems. 
Moderate-vulnerability areas represent potential for resilience since these zones are less exposed to the most severe 
wildfire risks and thus may have greater capacity to recover and adapt. In this regard, implementing adaptive 
management practices, such as community-based fire management and sustainable land-use strategies, may reduce 
vulnerability in these regions. Local knowledge in rural savannahs globally has been critical in implementing effective fire 
mitigation, thereby improving resilience with community fire management. Other ways include implementing more fire-
resistant agroforestry systems to reduce the incidence of wildfire spread and maintaining ecosystem functionality for 
productive agriculture. 
These maps further indicate that areas with high human activities, like agricultural expansion and settlement growth, tend 
to be highly prone to wildfires. These human-induced pressures, added to natural fire-prone conditions, exacerbate fire 
risks and degradation of ecosystem services. Indeed, a study by (Jolly et al., 2015)Bowman et al. (2021) has shown that 
agricultural practices like slash-and-burn techniques greatly heighten fire incidences and further degrade ecosystems. In 
sum, integrated land-use planning and adopting fire management strategies will be highly important in addressing 
combined pressures that reduce wildfire risks, hence protecting ecosystem services in Northern Ghana.  
These findings highlight the need for area-targeted fire management strategies that give prominence to highly vulnerable 
areas with critical roles in ecosystem service provision. Policies for conservation should be directed at promoting a natural 
firebreak role for water bodies and practising firebreak systems in high-risk zones near forests and rivers. According to 
Staver et al. (2022), when complemented by community-based fire management practices, early fire detection 



 

 

technologies at a smaller scale could result in fewer fire incidences that would contribute to more sensitive ecosystems. 
Moreover, sustainable agriculture and land-use planning could reduce the risk of human-induced wildfires in the most 
vulnerable areas, thereby increasing ecosystem resilience. 
 
 
4. CONCLUSION 
 
This study has highlighted how fire regimes influence land cover change, species composition, and ecosystem services 
vulnerability in the northern part of Savannah, Ghana. The result points to a decreased forest cover with an expanding 
shrubby savannah and agroforestry system driven primarily by recurring fire incidents and human activities like 
agricultural expansion and land clearing. Fire-prone zones were identified in rangelands and near settlements, where 
traditional practices for land clearing with livestock grazing and a dry season climate support frequent fire outbreaks. 
Analysis of species composition also indicated that fire-tolerant species, such as Vitellaria paradoxa (shea) and 
Parkiabiglobosa (dawadawa), dominate the savannahs. In contrast, fire-sensitive species are threatened and can lead to 
decreased biodiversity and an altered vegetation structure. The vulnerability assessment analysis indicated that critical 
ecosystem services, such as water bodies, forests, and farmlands, are increasingly subjected to fire-induced degradation. 
Water bodies, which serve as fire breaks, have been compromised due to increased human activities encroaching upon 
riparian zones. The forests and farmlands are vulnerable, with frequent fires reducing soil fertility and vegetation recovery. 
The findings indicate that immediate action is required to address these concerns through targeted management 
strategies. 
Remote sensing technologies such as the MODIS NDVI and Sentinel-2 imagery must be increased to enhance vegetation 
change, fire patterns, and ecosystem health monitoring. Integrating these tools with ground-based observations will aid in 
identifying fire hotspots and assessing the impact of fire on vegetation dynamics and ecosystem services over time. 
Continuous use of remote sensing is fundamental to providing timely and efficient fire management. The involvement of 
local communities in Sustainable land-use planning can balance agricultural expansion with the conservation of forests 
and other vital ecosystems. This will encourage agroforestry practice that combines agricultural productivity with 
environmental conservation, thereby reducing pressures on remaining forested areas and improving the resilience of 
ecosystems to fire and other disturbances. 
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