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Abstract
This paper elucidates the distribution law of integers that share a common divisor with an odd semiprime N = pq,
where p and q are odd primes satisfying λp < q < (λ+1)p, and λ is a positive integer. It demonstrates that within
the interval [1, N −1], the gaps between integers having p or q as a divisor exhibit symmetric behavior ranging
from 0 to p−1. Specifically, each gap value from 0 to p−2 appears exactly twice, while the gap value p−1 occurs
precisely q− p−1 times across p distinct subintervals. Among these p subintervals, q−λp−1 subintervals each
contain λ gaps of value p−1, while the remaining subintervals each contain λ−1 gaps of value p−1. These findings
are valuable and referable for developing methods to identify divisors of odd semiprimes.

Keywords: Integer Distribution; Gap; Congruence classes; Common Divisor; Semiprime.

2010 Mathematics Subject Classification:11B05, 11N25, 11A51.

UNDER PEER REVIEW

SDI 09
Typewritten text
Original Research Article



1 Introduction
This section introduces an open problem and briefly overviews the pertinent literature.

1.1 Problems From Observation
Given a semiprime N = 15, which consists of two divisors, 3 and 5; an examination of each integer from 3 to 14
reveals that the integers 3, 6, 9, and 12 are multiples of 3, whereas the integers 5 and 10 are multiples of 5. Using
the terminology defined in [1] and [2], the multiples of 3 are hosts of the divisor 3, the multiples of 5 are hosts of
the divisor 5, and each of these multiples is a host of N ’s divisors. Arranging all of these hosts in order results in a
sequence.

3, 5, 6,|, 9, 10, 12,

where the symbol | means the ’middle’ of the sequence.
Apparently, the hosts of 3, namely, 3, 6, 9, and 12, as well as those of 5, namely, 5 and 10, are symmetrically

distributed with respect to |. Employing the term ’gap’ to quantify the number of integers between two specified
integers reveals that pairs (5, 6) and (10, 9) exhibit a gap of 0, pairs (3, 5) and (12, 10) demonstrate a gap of 1, while
pair (6, 9) presents a gap of 2. Notably, since the pair (6, 9) is symmetric with respect to itself, it is easily found that
the pairs having the same gap are symmetrically distributed with respect to |. If N is changed to 119, which has
divisors of 7 and 17, the following host sequence is obtained

7, 14, 17, 21, 28, 34, 35, 42, 49, 51, 56, |, 63, 68, 70, 77, 84, 85, 91, 98, 102, 105, 112

It is clear that pairs (34, 35) and (85, 84) contribute to gap 0, (49, 51) and (70, 68) to gap 1, (14, 17) and (105, 102)
to gap 2, (17, 21) and (102, 98) to gap 3, (56,51) and (63,68) to gap 4, (28,34) and (91,85) to gap 5, while each of the
pairs (7,14), (21,28), (35,42), (42,49), (56,63), (70,77), (84 ,77), (98 ,91), and (112 ,105) produces gap 6. Furthermore,
those pairs having same gap exhibit symmetry with respect to |.

The phenomena mentioned above were first observed in [3] and then examined in papers [3] and [4]. Paper [3]
shows that there is a symmetric gap distribution between two hosts that have different divisors of the odd semiprime
N = pq and that there exists a gap 0. However, it did not address whether non-zero gaps, such as 1, 2, and so on,
could occur, but left it as an open problem. Paper [4] extends the investigation started in paper [3], focusing on
the maximum gaps. It proves that the maximum gap is p−1. By constructing a gap sequence under the condition
p < q < 2p and within the interval [1, N −1], it also demonstrates that the gap p−1 occurs symmetrically with high
frequency in an almost periodic manner, determined by the quotient of p divided by q−p. Clearly, paper [4] addressed
part of the question posed in [3]. Furthermore, it can be seen that the gap sequence constructed in [4] occasionally
misses some gaps of value p−1. For example, taking N = 493 obtains p = 17, q = 29, and all the hosts of p and q are
listed as follows.

17, 29, 34, 51, 58, 68, 85, 87, 102, 116, 119, 136, 145, 153, 170, 174, 187, 203, 204, 221, 232, 238, |, 255, 261,
272, 289, 290, 306, 319, 323, 340, 348, 357, 374, 377, 391, 406, 408, 425, 435, 442, 459, 464, 476.

It is evident that the gap sequence generated by [4] excludes 119, 136, as well as 357 and 374. Therefore, paper
[4] provides a preliminary assessment of the distribution of the maximum gaps, indicating that further refinement is
necessary.

A comprehensive understanding of the distribution of gaps among the divisors of N is essential for designing
effective algorithms aimed at identifying a host that encompasses these divisors, thereby facilitating the discovery
of a divisor of N and addressing the hard problem of integer factorization, as highlighted in references [3] and [4].
Paper [5] has made significant headway to develop such a search algorithm by integrating Lévy flight (LF) with local
search (LS) techniques. As elaborated in Section 4.5.2 of [5], both the initial point and the step length are critical
for optimizing the search efficiency. Those two factors that influence the search efficiency are intrinsically connected
to the distribution of gaps. Therefore, an in-depth understanding of the distribution is crucial for improving search
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algorithms. This paper thus builds upon the investigations conducted in references [3] and [4] to achieve more
thorough outcomes.

The paper is structured into four sections. Section 1 provides an introductory overview that articulates the
problem at hand and includes a brief review of relevant literature to demonstrate that this issue is indeed novel.
Section 2 delineates the symbols, notations, and previously established lemmas essential for subsequent sections;
Section 3 presents the main results along with their proofs and computational validations; finally, Section 4 offers
concluding remarks.

1.2 Brief Review of Relevant Literatures
The subject of this paper pertains to two significant issues in number theory: the exploration of gaps between integers
and the distribution of divisors of composite integers [6] [7]. The former has a historical lineage that spans several
centuries, primarily focusing on the investigation of gaps between prime numbers, within arithmetic progressions,
and across specific sets of integers. Early research on this topic is documented in references [8] [9] [10], while more
recent studies are presented in [11], [12], and [13]. In reference [8], D. R. Beath-Brown and H. Iwaniec analyzed the
differences between consecutive primes; J. Galambos and I. Katai, as noted in references [9] and [10], examined gaps
within particular sequences of integers characterized by positive density; Y. Brandon Wang and X. Wang, referenced
in study [11], established a symmetrical distribution concerning primes along with their associated gaps; B. Melvyn
Nathanson’s work cited as reference [12] focused on arithmetic progressions contained within sequences defined by
bounded gaps; finally, Y. Liu’s study mentioned as reference [13] provided estimates for bounded gaps among products
formed from distinct primes.

The second issue primarily concerns the distribution of an integer’s divisors within a specified interval or sequence.
The introductory section of reference [1] summarizes more recent studies, while early research can be found in
references [14] and [15]. In reference [14], Jean-Marie De Koninck looked at how far away certain divisors of an
integer are, while D. Berend and J. E. Harmse discussed how far away certain divisors of factorials are in reference
[15]. As noted in the literature list provided in reference [1], relevant research has continued due to its close
relationship with the study of integer factorization.

The issue addressed in this paper pertains to the gaps between integers that share a common divisor with a
specified composite integer. This matter is distinct from the two previously discussed topics, thus categorizing it as
an entirely separate area for exploration.

2 Preliminaries
This section delineates the essential symbols, notations, and previously established lemmas that are referenced in
subsequent analyses.

2.1 Terminologies, Symbols and Notations
Except for the symbols and notations introduced in [1], [2], [3], and [4], this paper uses symbol ∨−X to mean that

quantity X occurs or appears, symbol x ∧= S to mean that x is the least positive element of a specified integer set S,
and symbol evenb(x) to mean a function of integer x defined by

evenb(x)=
{

x, x mod 2= 0
x+1, x mod 2 6= 0 .

Symbols [a]m, Zm, Z∗
p, and (mZp)∗ are also additionally employed to convey the following meanings.

[a]m = {x ∈ Z|x ≡ a(mod m)},

Zm = {[0]m, [1]m, [2]m, ..., [m−1]m},

Z∗
p = {[1]p, [2]p, ..., [p−1]p},
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and
(mZp)∗ = {[m]p, [2m]p..., [(p−1)m]p},

where m > 1 is an integer, p > 2 is a prime, and (mZp)∗ is ordered.
For example, taking p = 11 and m = 3 results in

Z∗
11 = {[1]11, [2]11, [3]11, [4]11, [5]11, [6]11, [7]11, [8]11, [9]11, [10]11},

and
(3Z11)∗ = {[3]11, [6]11, [9]11, [12]11, [15]11, [18]11, [21]11, [24]11, [27]11, [30]11}.

2.2 Previously Proven Lemmas
The following two lemmas are established in references [3] and [4], respectively. They are directly cited in the
forthcoming sectons.

Lemma 1. (see in [3]). Let N = pq be an odd integer and IN = [1, N−1] be an integer interval, where p and q are odd
integers with 1< p < q and (p, q)= 1; then for each pair of hp and hq in IN satisfying 1< hp,hq < N−1

2 , it holds

ghq

hp = gN−hq

N−hp

Lemma 2. (see in [4]). Let N = pq be an odd integer and IN = [1, N−1] be an integer interval, where p and q are odd
integers with 1< p < q and (p, q)= 1; Assume hp ∈ IN and hq ∈ IN are hosts of p and q, respectively; then

0≤ ghq

hp ≤ p−2.

3 Main Results
This section introduces novel findings with rigorous proofs and comprehensive computational validations. It includes
six new lemmas, five corollaries, two theorems, and a series of computational tests. Specifically, Subsection 3.1 focuses
on the presentation of the new lemmas; Subsection 3.2 details the corollaries and theorems; Subsection 3.3 provides
the results of the computational tests; and Subsection 3.4 highlights the intriguing phenomena observed from these
tests. For ease of reference, Table 1 provides a comprehensive and intuitive summary of the relationships among the
theorems, corollaries, and lemmas, including Lemmas 1 and 2 previously list in Subsection 2.2.

Table 1: Theorems, corollaries, lemmas, and their logical relationships

Theorem 1 ←
Corollary 1 ← Lemmas 1, 2, 4, and 6
Corollary 3 ←
Lemma 5 ←

Theorem 2 ←
Corollary 2 ← Lemmas 3 and 4
Corollary 3 ←
Corollary 4 ← Lemma 7
Corollary 5 ← Lemmas 5, 7, and 8
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3.1 New Lemmas
Lemma 3. Let p and r be positive integers with p > 1 and 0< r < p. Then there is not an integer α with 1<α< p such
that αr ≥ p if r = 1; otherwise, α= ⌈ p

r
⌉

is the unique integer that enables αr ≥ p and (α−1)r < p.

Proof. Lemma 3.1 in [4] has proven that α= ⌈ p
r
⌉

is the smallest one that enables αr ≥ p and (α−1)r < p. Now assume
there is a β that enables βr ≥ p and (β−1)r < p. Then{

αr ≥ p
(β−1)r < p ⇔

{
αr ≥ p
−(β−1)r >−p ⇒αr− (β−1)r > 0⇔α>β+1,

which is contradictory to that α is the smallest one.

Lemma 4. Let p and q be two odd integers such that (p, q)= 1 and q =λp+r with integers r and λ satisfying 1< r < p
and λ≥ 1; then integer α= ⌈ p

r
⌉

enables (α−1)r < p, αr > p,

(α−1)λp < (α−1)q < (α−1)λp+ p (3.1)

and
αλp+ p <αq <αλp+2p. (3.2)

Proof. By Lemma 3, r ≥ 2 ensures α= ⌈ p
r
⌉

satisfying 1 < α< p−1, (α−1)r < p, and αr ≥ p. The condition (p, q) = 1
yields αr = ⌈ p

r
⌉

r > p because (p, q)= 1⇒ (p, r)= 1. Now prove α also satisfies (3.1) and (3.2). By αr > p, let αr = sp+t,
where integers s and t satisfy s ≥ 1 and 0< t < p; then

(α−1)q = (α−1)λp+ (α−1)r,0< (α−1)r < p (3.3)

and
αq =αλp+αr = (αλ+ s)p+ t,0< t < p. (3.4)

From (3.3), (3.1) surely holds. Next prove s = 1. In fact αr = sp+ t yields

(α−1)r = sp+ t− r (3.5)

Since 0< t < p and 1< r < p, it follows

−(p−2)≤ t− r ≤ p−3< p−2,

indicating by (3.5)
(α−1)r ≥ sp− p+2

If s > 1 ⇔ s ≥ 2, it deduces (α−1)r ≥ p+2, which is contradictory to 0 < (α−1)r < p. Accordingly, (3.4) becomes
αq = (αλ+1)p+ t with 0< t < p, identical to (3.2).

Lemma 5. Let p and q be odd integers such that (p, q) = 1 and λp < q < (λ+1)p with λ ≥ 1 being an integer. Then
there are evenb(λ) hosts of p that are symmetrically distributed between ( p−1

2 )q and ( p+1
2 )q; among all these evenb(λ)

hosts of p, there is not a host of q. Particularly, ( q−1
2 )p and ( q+1

2 )p are exact two hosts of p between ( p−1
2 )q and ( p+1

2 )q
if λ= 1.

Proof. The condition λp < q < (λ+1)p leads to λ=
⌊

q
p

⌋
because

λp < q < (λ+1)p ⇔ q =λp+ r,0< r < p ⇔λ=
⌊

q
p

⌋
.

To prove the first conclusion, consider an integer α that satisfies the following (3.6) given by

(
p−1

2
)q <αp < (

p+1
2

)q. (3.6)
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Then it follows
q− q

p
< 2α< q+ q

p

Note that, q−λ, q−λ+1, ..., q, ..., q+λ−1, and q+λ, totally 2λ+1 ones, are integers between q− q
p and q+ q

p ,
distributed symmetrically with respect to q. Obviously, there are evenb(λ) even integers between q−λ and q+λ,
among which each one can contribute a solution to α. Hence the first conclusion holds.

To prove the second conclusion, use proof by contradiction. Let hp
i be the host of p, where integer i satisfies

1≤ i ≤ evenb(λ); then

(
p−1

2
)q < hp

i < (
p+1

2
)q.

A host of q must be of the form αq with α≥ 1 being an integer. If there is an αq among the evenb(λ) hosts of p,
then ( p−1

2 )q <αq < ( p+1
2 )q, yielding

p−1
2

<α< p+1
2

⇔ p−1< 2α< p+1⇒ p = 2α,

leading to a contradiction to that p is odd.
In the particular case, λ = 1 ⇒ 1 < q

p < 2 ⇔
⌊

q
p

⌋
= 1; hence q−1, q, and q+1 are three integers to hold (3.6),

meaning α= q−1
2 and α= q+1

2 are the only two integers satisfying (3.6).

Lemma 6. Let a > 1 and b > 1 be two positive integers such that a > b and (a,b) = 1; then for an arbitrary positive
integer c satisfying 1 ≤ c ≤ b, the Diophantine equation ax− by = c has a unique integer solution (x, y) ∈ Z × Z that
satisfies 0< x ≤ b and 0< y< a. Particularly, x = b if and only if c = b.

Proof. The proof is composed of the following five parts.
(P1). x > 0⇔ y> 0. Otherwise, it is contradictory to ax−by= c under the condition a > b ≥ c ≥ 1.
(P2). x ≤ b ⇔ y < a. Use proof by contradiction. For an x ≤ b, assume y ≥ a; then it follows y ≥ a ⇒ by = ax− c ≥

ab ⇒ x ≥ b+ c
a > b, contradictory to x ≤ b. Similarly, for a y ≤ a−1 assuming x > b results in x > b ⇒ ax = by+ c >

ab ⇒ y> a− c
b , a contradiction.

(P3). Existence of 0 < x ≤ b and 0 < y < a. Referring to Section 2.4 of book [16], the condition (a,b) = 1 results in
the general solution of ax−by= c given by{

x = cx0 +bt
y= cy0 +at , t = 0,±1,±2, · · · . (3.7)

where (x0, y0) ∈ Z×Z is a solution of ax−by= 1.
Since (a,b)= 1, such (x0, y0) can always be found. Furthermore, by Lemma 3.3 of paper [3], a solution satisfying

0 < x0 < b,0 < y0 < a can also be found. Note that, taking − cx0
b < t ≤ 1− cx0

b in (3.7) yields 0 < x ≤ b and − c
b < y =

ax−c
b < ab−c

b = a− c
b . By 1 ≤ c ≤ b, it follows 0 < x ≤ b and 0 < y < a, taking into account the previously established

(P1) and (P2).
(P4). Uniqueness. Assume (x1, y1) ∈ Z×Z and (x2, y2) ∈ Z×Z are two solutions with 0< x1, x2 ≤ b and 0< y1, y2 <

a; then by (3.7)
x1 = cx0 +bt1, x2 = cx0 +bt2 ⇒ x1 − x2 = b(t1 − t2).

Since
0< x1, x2 ≤ b ⇒−(b−1)≤ x2 − x1 ≤ b−1

it follows

− (b−1)
b

≤ t2 − t1 ≤ b−1
b

⇒ t2 − t1 = 0.

(P5). The particular case. If c = b, direct calculations yield that x = b and y = a−1 contribute a solution. Now
assume x = b but c < b. Then ax−by= c ⇔ ab−by= c < b ⇒ y> a−1, contradictory to what is proved in (P2).
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Lemma 7. Given an odd prime p; let m be an integer with 1< m < p; then
(C1). The least positive representatives of (mZp)∗ are calculated by

e i = im−
⌊

im
p

⌋
p, i = 1,2, ..., p−1. (3.8)

(C2). The p− 1 representatives, e1, e2, ..., and ep−1, can be classified into m subsets; the k-th subset contains

nk =
⌈

(k+1)p
m

⌉
−

⌊
kp
m

⌋
−1 representatives calculated by

e j
k = ( j+

⌊
kp
m

⌋
)m−kp,k = 0,2, ...,m−1. (3.9)

where 1≤ j ≤ nk.
Thus it holds in the k-th subset

e j+1
k − e j

k = m, j = 1,2, ...,nk −1. (3.10)

Furthermore, it holds for 1≤ j ≤ nk
e j

k = e j+n0+n1+n2+...+nk−1 . (3.11)

(C3). The difference between the last element and the first element in the k-th subset is given by

enk
k − e1

k = (
⌈

(k+1)p
m

⌉
−

⌊
kp
m

⌋
−2)m,k = 0,1, ...,m−1. (3.12)

or equivalently

enk
k − e1

k =
{

(
⌊

(k+1)p
m

⌋
−

⌊
kp
m

⌋
−1)m,k = 0,1, ...,m−2

(
⌊ p

m
⌋−1)m,k = m−1

. (3.13)

And thus

p−2m < enk
k − e1

k <
{

p,k = 0,1, ...,m−2
p−m,k = m−1 (3.14)

(C4) The difference between the first element in the (k+1)-th subset and the last element in the k-th subset is given
by

enk
k − e1

k+1 = p−m,k = 0,1, ...,m−2. (3.15)

(C5). In the case 1 < m < p and regardless of the order, e1
0, e1

1, e1
2, ..., and e1

m−1 form the least positive complete
residue system modulo m, namely,

Zm = {e1
0, e1

1, ..., e1
m−1} (3.16)

Proof. Assume im = ki p+ r i with integers ki and r i satisfying ki ≥ 0 and 0< r i < p; then

[im]= [r i].

Because ki =
⌊

im
p

⌋
, it is known

r i = im−ki p = im−
⌊

im
p

⌋
p > 0,

which validates (3.8) and finishes proving the conclusion (C1).
Note that under the condition 0< i,m < p, specifying an m leads to

0=
⌊

m
p

⌋
≤

⌊
im
p

⌋
≤

⌊
(p−1)m

p

⌋
=

⌊
m− m

p

⌋
= m−1,

saying 0 ≤ ki ≤ m−1, namely, the p−1 values of
⌊

im
p

⌋
for 1 ≤ i ≤ p−1 generate m values of ki . Consequently, the

p−1 elements of (mZp)∗ can surely be classified into m subsets by ki = 0,1,2, ..., and m−1, resulting in that each
subset corresponds to one value of ki = 0,1,2, ..., and m−1.
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Now take an arbitrary integer k with 0≤ k ≤ m−1 to see which of the p−1 elements belongs to the k-th subset.
This merely needs to check which i satisfies

⌊
im
p

⌋
= k. Since⌊

im
p

⌋
= k ⇔ k ≤ im

p
< k+1⇔ kp ≤ im < (k+1)p ⇔ kp

m
≤ i < (k+1)p

m

it immediately follows ⌊
kp
m

⌋
+1≤ i ≤

⌈
(k+1)p

m

⌉
−1.

In fact, k = 0 yields
⌊

kp
m

⌋
+1= 1 and k = m−1 yields

⌈
(k+1)p

m

⌉
−1= p−1, which is consistent with 0< i < p. When

0< k < m−1, { kp
m }> 0 and { (k+1)p

m }> 0, leading to

kp
m

≤ i < (k+1)p
m

⇔
⌊

kp
m

⌋
+ {

kp
m

}≤ i <
⌊

(k+1)p
m

⌋
+ {

(k+1)p
m

}

indicating ⌊
kp
m

⌋
+1≤ i <

⌈
(k+1)p

m

⌉
because

⌈
(k+1)p

m

⌉
is the smallest integer bigger than

⌊
(k+1)p

m

⌋
+ { (k+1)p

m }.

Counted from
⌊

kp
m

⌋
+1 to

⌈
(k+1)p

m

⌉
−1, the total number of the representatives corresponding to k is given by

nk =
⌈

(k+1)p
m

⌉
−

⌊
kp
m

⌋
−1.

Letting j = i−
⌊

kp
m

⌋
knows that j changes from 1 to nk as i changes from

⌊
kp
m

⌋
+1 to

⌈
(k+1)p

m

⌉
−1. Hence (3.9)

holds. The formula (3.10) can be directly obtained by (3.9). The proof of (3.11) simply comes from the following
reasoning.

k = 0 : e j
0 = e j ,1≤ j ≤ n0

k = 1 : e j
1 = e j+n0 ,1≤ j ≤ n1

k = 2 : e j
2 = e j+n0+n1 ,1≤ j ≤ n2

k = 3 : e j
3 = e j+n0+n1+n2 ,1≤ j ≤ n3

......
k = s : e j

s = e j+n0+n1+n2+...+ns−1 ,1≤ j ≤ ns

Therefore, the conclusion (C2) has been established.
Now calculating directly by (3.9) shows

enk
k − e1

k = (
⌈

(k+1)p
m

⌉
−

⌊
kp
m

⌋
−2)m =

 (
⌊

(k+1)p
m

⌋
−

⌊
kp
m

⌋
−1)m,k = 0,1, ...,m−2

(p−
⌊

kp
m

⌋
−2)m,k = m−1

because k = m−1⇒
⌈

(k+1)p
m

⌉
= p otherwise

⌈
(k+1)p

m

⌉
=

⌊
(k+1)p

m

⌋
+1.

Note that, p−
⌊

(m−1)p
m

⌋
−2= p−⌊

p− p
m

⌋−2=−⌊− p
m

⌋−2; by (P16) in [17], it yields −⌊− p
m

⌋−2= ⌊ p
m

⌋−1, which
verifies (3.13), namely,

enk
k − e1

k =
{

(
⌊

(k+1)p
m

⌋
−

⌊
kp
m

⌋
−1)m,k = 0,1, ...,m−2

(
⌊ p

m
⌋−1)m,k = m−1

.

According to (P2) in [17], (3.12) yields for 0≤ k ≤ m−2

(
⌊ p

m

⌋
−1)m ≤ enk

k − e1
k ≤

⌊ p
m

⌋
m

which derives
p−2m < enk

k − e1
k < p (3.17)
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In fact, write p = km+ r with integers k ≥ 1 and 1≤ r ≤ m−1 because p is prime and 0< m < p; then it follows

{
p
m

}= r
m

≥ 1
m

By (P8) and (P9) in [17], it is known
p−2m+1≤

⌊ p
m

⌋
m < p

which validates (3.17).
For the case k = m−1, direct calculations by (P32) in [17] lead to

p−2m ≤ enk
k − e1

k = (
⌊ p

m

⌋
−1)m < p−m.

Therefore, the conclusion (C3) has been substantiated up to this point.
To prove the conclusion (C4), calculating directly enk

k and e1
k+1 yields

enk
k = (

⌈
(k+1)p

m

⌉
−1)m−kp

and

e1
k+1 = (1+

⌊
(k+1)p

m

⌋
)m− (k+1)p.

As a result,

enk
k − e1

k+1 = (
⌈

(k+1)p
m

⌉
−

⌊
(k+1)p

m

⌋
−2)m+ p = p−m,k = 0,1, ...,m−2,

validating (3.15).
To prove the conclusion (C5), choosing an arbitrary s ∈ {0,1,2, ...,m−1} and t ∈ {0,1,2, ...,m−1} leads to by (3.9)

e1
s − e1

t = (
⌊ sp

m

⌋
−

⌊
tp
m

⌋
)m+ (t− s)p,

which says
e1

s − e1
t ≡ (t− s)p(mod m).

Since p is prime, 1 < m < p ⇒ (m, p) = 1. Hence s 6= t ⇔ e1
s 6≡ e1

t (mod m), indicating e1
0, e1

1, e1
2, ..., and e1

m−1 form the
least positive complete residue system modulo m.

Remark 1. By (3.11), it follows
enk

k = en0+n1+n2+...+nk (3.18)

and
e1

k+1 = en0+n1+n2+...+nk+1 (3.19)

Since 0≤ k ≤ m−2⇒
⌈

(k+1)p
m

⌉
=

⌊
(k+1)p

m

⌋
+1 and k = m−1⇒

⌈
(k+1)p

m

⌉
= p, it follows

nk =
⌈

(k+1)p
m

⌉
−

⌊
kp
m

⌋
−1=


⌊ p

m
⌋

,k = 0⌊
(k+1)p

m

⌋
−

⌊
kp
m

⌋
,k = 1,2, ...,m−2⌊ p

m
⌋

,k = m−1
.

Hence 
n0 = ⌊ p

m
⌋⌊ p

m
⌋≤ nk ≤ ⌊ p

m
⌋+1,k = 1,2, ...,m−2

nm−1 = ⌊ p
m

⌋ , (3.20)

k∑
j=0

n j =
k∑

j=0
(
⌊

( j+1)p
m

⌋
−

⌊
jp
m

⌋
)=

⌊
(k+1)p

m

⌋
,0≤ k ≤ m−2, (3.21)
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and
m−1∑
j=0

n j =
⌊ p

m

⌋
+

m−2∑
j=0

(
⌊

( j+1)p
m

⌋
−

⌊
jp
m

⌋
)=

⌊
(m−1)p

m

⌋
+

⌊ p
m

⌋
= p−1.

As a result, for 0≤ k ≤ m−2, it holds

enk
k = en0+n1+n2+...+nk

∧= [
⌊

(k+1)p
m

⌋
m]p (3.22)

and
e1

k+1 = en0+n1+n2+...+nk+1
∧= [(

⌊
(k+1)p

m

⌋
+1)m]p. (3.23)

Because 0≤ k ≤ m−2, it follows by (P32) in [17]⌊
(k+1)p

m

⌋
m < (k+1)p (3.24)

and
(k+1)p < (

⌊
(k+1)p

m

⌋
+1)m < (k+1)p+m. (3.25)

Lemma 8. Given an odd prime p; let q = λp+ r with q, r, and λ being integers such that (p, q) = 1, 1 < r < p, and
λ≥ 1; assume e j

∧= [ jm]p ∈ (mZp)∗ for integer j with 0< j < p. Then an α satisfying eα− eα+1 = p− r must enable{
αq < hp

hp +λp < (α+1)q < hp +λp+ p , (3.26)

where hp = (λα+1)p+
⌊
αr
p

⌋
p.

Proof. Let E = {e1, e2, ..., ep−1}. By Lemma 7, E can be grouped into r subsets. Without loss of generality, assume Gk
and Gk+1 are two adjacent subsets with 0≤ k ≤ r−2. Let eα represent the last element of Gk and eα+1 represent the
first element of Gk+1. Consequently, the conclusions (C2) and (C4) of Lemma 7 guarantee eα and eα+1 are the sole
qualified elements in Gk and Gk+1 that satisfy eα− eα+1 = p− r. By (C1) of Lemma 7,

eα =αr−
⌊
αr
p

⌋
p

and
eα+1 = (α+1)r−

⌊
(α+1)r

p

⌋
p

Hence
eα− eα+1 = (

⌊
(α+1)r

p

⌋
−

⌊
αr
p

⌋
)p− r.

The condition eα− eα+1 = p− r results in ⌊
(α+1)r

p

⌋
−

⌊
αr
p

⌋
= 1.

Now direct calculations show
αq =λαp+αr
=λαp+

⌊
αr
p

⌋
p+ eα

=λαp+
⌊
αr
p

⌋
p+ eα+1 + p− r

= (λα+1)p+ eα+1 +
⌊
αr
p

⌋
p− r

and
(α+1)q =λ(α+1)p+ (α+1)r
=λ(α+1)p+

⌊
(α+1)r

p

⌋
p+ eα+1

= (λα+1)p+ eα+1 + (
⌊
αr
p

⌋
+1)p+ (λ−1)p

= (λα+1)p+ eα+1 +
⌊
αr
p

⌋
p+λp

.
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Letting hp = (λα+1)p+
⌊
αr
p

⌋
p yields {

αq = hp + eα+1 − r
(α+1)q = hp + eα+1 +λp

By the conclusion (C5) of Lemma 7, eα+1 > 0 and eα+1 − r < 0; hence{
αq < hp

hp +λp < (α+1)q < hp +λp+ r < hp +λp+ p

which is just (3.26).

Remark 2. By Lemma 8, hp,hp + p,hp +2p, ..., and hp +λp are λ+1 hosts of p between αq and (α+1)q.

3.2 Corollaries and Theorems
Corollary 3.1. [From Lemmas 1, 4, and 6] Let N = pq be an odd integer and IN = [1, N −1] be an integer interval,
where p and q are odd integers with 1< p < q and (p, q)= 1; then for each integer α satisfying 0≤α≤ p−2, there exist
uniquely hp ∈ IN and hq ∈ IN such that

ghq

hp = gN−hq

N−hp =α

Proof. Referring to the proof of Theorem 4.2 in [3], the gap set Gp,q, which represents the gaps between the hosts of
p and those of q, can be calculated by

Gp,q = {xq− yp−1|1≤ x ≤ p−1,1≤ y≤ q−1,(x, y) ∈ Z×Z}

By Lemma 6, for an integer g satisfying 1≤ g ≤ p−1, the Diophantine equation xq− yp−1= g−1 always has a unique
solution (x, y) ∈ Z×Z with 0< x ≤ p−1 and 0< y≤ q−1. That is equivalent to stating that for any integer α satisfying
0≤α< p−2, the Diophantine equation xq− yp−1=α can always has a unique solution (x, y) ∈ Z×Z with respect to
0 < x ≤ p−1 and 0 < y ≤ q−1. Since 0 ≤ ghq

hp = xq− yp−1 ≤ p−2 exactly matches to 0 ≤α≤ p−2, by Lemma 4 there

exist uniquely hp ∈ IN and hq ∈ IN such that ghq

hp = α. In the end, the symmetric property (Lemma 1) validates the
proof.

Corollary 3.2. [From Lemmas 3 and 4] Given two odd integers p and q such that (p, q) = 1, q = λp+ r with integers
r and λ satisfying 1 < r < p and λ ≥ 1; let α = ⌈ p

r
⌉

and β be an integer with 1 < β < α. Then there are λ hosts of p
between (β−1)q and βq, whereas there are λ+1 hosts of p between (α−1)q and αq.

Proof. Calculating directly by q =λp+ r and 1< r < p yields{
(β−1)q =λ(β−1)p+ (β−1)r
βq =λβp+βr ⇒

{
λ(β−1)p < (β−1)q <λ(β−1)p+ p
λβp <βq <λβp+ p ,

indicating (β−1)q is between λ(β−1)p and λ(β−1)p+ p while βq is between λβp and λβp+ p, as illustrated with
Figure 1.

Figure 1: (β−1)q, βq and their related hosts of p

Hence λ(β−1)p+ p,λ(β−1)p+2p, ..., and λβp are λ hosts of p between (β−1)q and βq.
By Lemma 4, α= ⌈ p

r
⌉

yields (3.1) and (3.2). The positions of (α−1)q and αq along with their related hosts of p
can be illustrated with Figure 2.

This time, λ(α−1)p+ p,λ(α−1)p+2p, ..., and λαp+ p are λ+1 hosts of p between (α−1)q and αq. And this
concludes the proof of the corollary.
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Figure 2: (α−1)q, αq and their related hosts of p

Corollary 3.3. Given an odd integer N = pq, where p and q are odd integers such that (p, q) = 1 and q = λp+1with
λ≥ 1 being an integer; let IN = [1, N −1] be an integer interval; Then

(i). G0 occurs symmetrically twice in IN ; one occurrence is situated between λp and q, while the other is positioned
between λ(p−1)p and (p−1)q.

(ii). Gp−1 occurs λ−1 times in each of the p integer intervals [p,λp], [ jq, ( j+1)q], and [((p−1)λ+1)p, (q−1)p],
where integer j satisfies 1≤ j ≤ p−2. Hence it totally occurs q− p−1 times symmetrically in IN .

Proof. Consider an arbitrary positive integer 0<α< p and

αq =αλp+αr. (3.27)

If r = 1, then αq = αλp+α lies between αλp and (αλ+1)p, resulting in Gα−1 occurring from αλp to αq and
Gp−α−1 appearing from αq to (αλ+1)p, as illustrated with Figure 3.

Figure 3: αq =αλp+α lies between αλp and (αλ+1)p

Accordingly, this time α = 1 or α = p−1 yields G0 to appear between αλp and (αλ+1)p, finishing proving the
conclusion (i).

Since p, 2p, ..., and λp are λ hosts of p in [p,λp], Gp−1 surely occurs λ−1 times in the interval. Note that,
(p−1)q and (q−1)p are respectively the biggest hosts of q and p in IN . Since

(q−1)p− (p−1)q = q− p = (λ−1)p+1> 0,

it is known there exist hosts of p following (p−1)q.
Because (p−1)λp < (p−1)q = (p−1)λp+ p−1 < ((p−1)λ+1)p, integer ((p−1)λ+1)p is the smallest host of p

bigger than (p−1)q. Hence ((p−1)λ+1)p, ((p−1)λ+2)p, ..., and ((p−1)λ+λ)p are all the hosts of p following (p−1)q.
Since ((p−1)λ+λ)p = (λp)p = (q−1)p, interval [((p−1)λ+1)p, (q−1)p] surely contains λ hosts of p and thus Gp−1

occurs λ−1 times in it. Referring to the proof of Corollary 3.2 for the β-case, there always exist λ hosts of p between
arbitrary two adjacent hosts of q. The total number of the intervals is p and the total number of the occurrences is
(λ−1)p = q− p−1.

Remark 3. Seen in the proof, ((p−1)λ+1)p, ((p−1)λ+2)p, ..., and ((p−1)λ+λ)p are all the hosts of p in interval
[(p−1)q, (q−1)p] owning to

[(p−1)λ+1)p, (q−1)p]⊆ [(p−1)q, (q−1)p]. (3.28)

Theorem 3.4. Let N = pq be an odd integer and IN = [1, N−1] be an integer interval, where p and q are odd integers
with 1< p < q and (p, q)= 1; then the gaps between two hosts of N’s divisors in IN range symmetrically from 0 to p−1.

Proof. By Lemma 5, Gp−1 occurs symmetrically between ( p−1
2 )q and ( p+1

2 )q. By Corollary 3.1, the gaps between
hosts of p and hosts of q range symmetrically from 0 to p−2. By Corollary 3.3, Gp−1 totally occurs q− p−1 times
symmetrically in IN . Consequently, all the gaps range symmetrically from 0 to p−1.
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Corollary 3.5. [From Lemmas 3 and 7]. Given an odd integer N = pq, where p and q are odd integers such that
(p, q)= 1 and λp < q < (λ+1)p with λ≥ 1 being an integer; let r = q−λp > 1 and IN = [1, N −1] be an integer interval;
assume Ξ is a set defined by

Ξ= {r, (
⌊ p

r

⌋
+1)r− p, ..., (

⌊
jp
r

⌋
+1)r− jp, ..., (

⌊
(r−1)p

r

⌋
+1)r− (r−1)p} (3.29)

Then Ξ contains two elements to identify where G0 appears and the two elements are symmetrically distributed
with respect to the middle | of IN .

Proof. Write q by q =λp+ r with 1< r < p; then (p, r)= 1 owning to (p, q)= 1, and thus an arbitrary integer 0<α< p
yields αq =αλp+αr. By Lemma 3 α= ⌈ p

r
⌉
enables (α−1)r < p and αr > p. Let αr =λ1 p+r1 with λ1 ≥ 1 and 0< r1 < p

being integers turns αq to be
αq = (αλ+λ1)p+ r1 (3.30)

meaning αq to lie between (αλ+λ1)p and (αλ+λ1 +1)p, as illustrated with Figure 4.

Figure 4: αq lies between (αλ+λ1)p and (αλ+λ1 +1)p

This time, Gr1−1 occurs between (αλ+λ1)p and αq, whereas Gp−r1−1 occurs between αq and (αλ+λ1 +1)p.
Continuing such process finally obtains

∨−Gg−1 ⇔αr ≡ g(mod p),0< g < p (3.31)

Since any time Gg−1 occurs, Gp−g−1 must simultaneously appears; it follows

∨−Gg−1 ⇔
{

αr ≡ g(mod p)
αr ≡ p− g(mod p) ,0< g < p (3.32)

Now let α take 1,2, ..., and p−1 in (3.27); then a set Λ is obtained by

Λ= {1r,2r, ..., (p−1)r}. (3.33)

As indicated in (3.31), knowing when G0 occurs is equivalent to knowing what α makes αr ≡ 1(mod p) or αr ≡
p−1(mod p). Consequently, the problem is turned to ascertain the existence of the residue classes [1]p and [p−1]p
within (rZp)∗ = {[r]p, [2r]p, ..., [(p−1)r]p}. By the conclusion (C2) of Lemma 7, (rZp)∗ can be divided into r subsets,
say,

(rZp)∗ =Λ0 ∪Λ1 ∪·· ·∪Λr−1, (3.34)

where the k-th subset Λk contains nk =
⌈

(k+1)p
r

⌉
−

⌊
kp
r

⌋
−1 elements calculated by

Λk = {(
⌊

kp
r

⌋
+1)r−kp, (

⌊
kp
r

⌋
+2)r−kp, · · · , (

⌈
(k+1)p

r

⌉
−1)r−kp}, (3.35)

in which the j-th element is calculated by

e j
k = ( j+

⌊
kp
r

⌋
)r−kp,k = 0,2, ..., r−1,

where 1≤ j ≤ nk.
It is seen that the set Ξ is actually formed by taking the first element from each of Λ0,Λ1, ..., and Λr−1, namely,

Ξ= {r, (
⌊ p

r

⌋
+1)r− p, ..., (

⌊
jp
r

⌋
+1)r− jp, ..., (

⌊
(r−1)p

r

⌋
+1)r− (r−1)p} (3.36)

According to the conclusion (C5) of Lemma 7, Ξ constitutes the least positive complete residue system modulo r.
Consequently, two elements, 1 ∈Ξ and r−1 ∈Ξ, can determine the locations where G0 occurs. By virtue of symmetry,
the occurrences G0 is symmetrically distributed in IN .
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Remark 4. By (3.32),
∨−G0 ⇔αr ≡±1(mod p) (3.37)

which is equivalent to
∨−G0 ⇔α(q−λp)≡±1(mod p)⇔αq ≡±1(mod p)

indicating α is a solution of x in the Diophantine equation xq− yp = ±1. This perfectly matches to the assertions
made in Lemma 6.

Corollary 3.6. [From Lemmas 5, 7, and 8]. Given an odd integer N = pq, where p and q are odd integers such that
(p, q)= 1 and λp < q < (λ+1)p with λ≥ 1 being an integer; let r = q−λp > 1 and IN = [1, N −1] be an integer interval;
assume Θ is a set defined by

Θ= {(
⌈ p

r

⌉
−1)r, (

⌈
2p
r

⌉
−1)r− p, ..., (

⌈
( j+1)p

r

⌉
−1)r− jp, ..., (p−

⌈ p
r

⌉
)r− (r−2)p}. (3.38)

Then Gp−1 occurs q− p−1 times symmetrically in IN and all the q− p−1 occurrences are distributed in p integer
intervals [p,λp], [ jq, ( j +1)q], and [(p−1)λ+1)p, (q−1)p], where integer j satisfies 1 ≤ j ≤ p−2. Among all the p
intervals, there exist r−1 ones, each of which is associated with a distinct element of Θ and in which Gp−1 occurs λ

times, whereas in the other ones Gp−1 occurs λ−1 times.

Proof. First prove that Gp−1occurs λ−1 times in each of [p,λp] and [((p−1)λ+1)p, (q−1)p]. In fact, write q =λp+r
with 1< r < p; then q lies between λp and (λ+1)p, resulting in Gp−1 occurring λ−1 times from p to λp, as illustrated
with Figure 5. The symmetric property ensures that the same situation occurs from ((p−1)λ+1)p to (q−1)p.

Figure 5: q =λp+ r lies between λp and (λ+1)p

By Corollary 3.2, there are λ or λ+1 hosts of p between two adjacent hosts of q. To know when they occur λ+1
times, still use the sets Λ and (rZp)∗ defined in (3.33) and (3.34). Consider the k-th subset Λk given by

Λk = {e1
k, e2

k, ..., enk
k },

where the last element enk
k is calculated by enk

k = (
⌈

(k+1)p
r

⌉
−1)r−kp.

For convenience, let elast
k represent enk

k . By the conclusion (C4) of Lemma 7,

elast
k − e1

k+1 = p− r,0≤ k ≤ r−2.

Referring to (3.22), let αk =
⌈

(k+1)p
r

⌉
− 1 =

⌊
(k+1)p

r

⌋
for k = 0,1, ..., r − 2 so as to obtain r − 1 integer interval

[αk q, (αk +1)q]. Since Θ = {elast
0 , elast

1 , ..., elast
r−2 }, each of its elements is uniquely associated with such an interval,

whose total number is r−1. By Lemma 8, Gp−1 occurs λ times in each of these intervals. Meanwhile, for 0≤ k ≤ r−1
each element but for elast

k in Λk accomplishes an interval in which Gp−1 occurs λ−1 times. The number of all these
intervals is

nλ−1
I =

r−1∑
i=0

(nk −1).

By (3.21),
r−1∑
j=0

n j = p−1, resulting in

nλ−1
I =

r−1∑
i=0

(nk −1)= p− r−1.
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Hence including [p,λp] and [(p−1)λ+1)p, (q−1)p], there are p− r+1 intervals in each of which Gp−1 occurs
λ−1 times. As a result, including the r−1 ones where Gp−1 occurs λ times, the total number of the intervals where
Gp−1 occurs is p and the total number of the times that Gp−1 occurs is calculated by

nGp−1 = (r−1)λ+ (p− r+1)(λ−1)= pλ+ r− p−1= q− p−1.

Finally, the symmetric property ensures that Corollary 3.6 holds.

Theorem 3.7. Given an odd integer N = pq, where p and q are odd integers such that (p, q)= 1 and λp < q < (λ+1)p
with λ being a positive integer; let IN = [1, N −1] be an integer interval. Then in IN , each of G0,G1, ..., and Gp−2

occurs symmetrically twice, while Gp−1 symmetrically occurs q− p−1 times in p distinct subintervals. Furthermore,
among the p subintervals, there are r−1 ones in each of which Gp−1 occurs λ times, whereas it occurs λ−1 times in
each of the rest p− r+1 ones, where r = q−λp.

Proof. Corollaries 3.3, 3.5, and 3.6 directly induce this theorem.

3.3 Computational Tests
The outcomes of the lemmas, corollaries, and theorems were evaluated using Maple software. The corresponding
Maple script programs are available in reference [18]. Here present several examples of these evaluations.

Example 1. Take N = 115; then p = 5, q = 23, λ= 4, r = 3, and q−p−1= 17. The computed results are as follows.
1). Hosts of p and q are as follows:
5, 10, 15, 20, 23, 25, 30, 35, 40, 45, 46, 50, 55, | ,60, 65, 69, 70, 75, 80, 85, 90, 92, 95, 100, 105, 110.
2). There are 5 hosts of p following 23 and 69, respectively.
3). In [1,114], there are 5 subintervals each of which contains 3 or 4 gaps of values 4; among the 5 subintervals,

2 ones contain 4 gaps of value 4 each. All the gaps are symmetrically distributed in [1,114].
4). The distribution of all the gaps is illustrated with Figure 6, which is exactly consistent with Theorem 3.7.
Example 2. Take N = 923; then p = 13, q = 71, λ= 5, r = 6, and q− p−1= 57. Computed results are as follows.
1). Hosts of p and q are as follows:

13, 26, 39, 52, 65, 71, 78, 91, 104, 117, 130, 142, 143, 156, 169, 182, 195, 208, 213, 221, 234, 247, 260, 273, 284,
286, 299, 312, 325, 338, 351, 355, 364, 377, 390, 403, 416, 426, 429, 442, 455, |, 468, 481, 494, 497, 507, 520,
533, 546, 559, 568, 572, 585, 598, 611, 624, 637, 639, 650, 663, 676, 689, 702, 710, 715, 728, 741, 754, 767, 780,
781, 793, 806, 819, 832, 845, 852, 858, 871, 884, 897, 910.

2). There 6 hosts of p following 142,284,436,568, and 710, respectively.
3). In [1,922], there are 13 subintervals each of which contains 4 or 5 gaps of value 12; among the 13 subintervals,

5 ones contain 5 gaps of value 12 each. All the gaps are symmetrically distributed in [1,922].
4). The distribution of all the gaps is depicted with Figure 7, which is exactly consistent with Theorem 3.7.
Example 3. Take N = 495; then p = 11, q = 45, λ= 4, r = 1, and q− p−1= 33. Computed results are as follows.
1). Hosts of p and q are as follows:

11, 22, 33, 44, 45, 55, 66, 77, 88, 90, 99, 110, 121, 132, 135, 143, 154, 165, 176, 180, 187, 198, 209, 220, 225, 231,
242, |,253, 264, 270, 275, 286, 297, 308, 315, 319, 330, 341, 352, 360, 363, 374, 385, 396, 405, 407, 418, 429,
440, 450, 451, 462, 473, 484.

2). In [1,494], G10 occurs 33 times across 11 subintervals; each of the 11 subintervals contains 3 occurrences. All
the gaps are symmetrically distributed in [1,494].

3). The distribution of all the gaps is depicted with Figure 8, which is exactly consistent with Corollary 3 and
Theorem 3.7.

Example 4. Take N = 493; then p = 17, q = 29, λ= 1, r = 12, and q− p−1= 11. Computed results are as follows.
1). Hosts of p and q are as follows:
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Figure 6: Gap distribution of hosts hosting 5 and 23

Figure 7: Gap distribution of hosts hosting 13 and 71
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Figure 8: Gap distribution of hosts hosting 11 and 45

17, 29, 34, 51, 58, 68, 85, 87, 102, 116, 119, 136, 145, 153, 170, 174, 187, 203, 204, 221, 232, 238, |,255, 261,
272, 289, 290, 306, 319, 323, 340, 348, 357, 374, 377, 391, 406, 408, 425, 435, 442, 459, 464, 476.

2). In [1,492], G16 occurs 11 times and all the gaps are symmetrically distributed.
3). The distribution of all gaps is illustrated in Figure 9, which aligns precisely with Corollary 3 and Theorem

3.7.

3.4 An Intriguing Phenomenon For Further Exploration
An intriguing phenomenon has been observed in the computer tests, as illustrated in Figures 10, 11, and 12. These
figures are derived from cases that q = λp±1 and q = αp±3, where λ,α > 1. The case q = 2p±1, including that
depicted in Figure 8, exhibits a prominent X shape for the gaps smaller than p−1. The case q = αp±3 emerges
several Xs. In fact, tests shows that q = αp±1 also exhibits a big X. This phenomenon is surely worth to have an
exploration, as another mathematical problem.

4 Conclusion and Future Work
Understanding the distribution of divisors of an odd integer within a specified interval is undoubtedly advantageous
for developing effective algorithms to identify the divisors of an unfactorized odd integer. This paper completes
the investigation to discover such distributions. The corollaries and theorems established herein unveil a novel
symmetric and nearly periodic characteristic among hosts of semiprime’s divisors, indicating that the distribution
of the hosts hosting a semiprime’s divisors exhibits local accumulation amidst global sparsity. When extended to
general composite odd integers, this distribution proves beneficial in narrowing down ranges for identifying specific
expected divisors of unfactorized composite integers.
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Figure 9: Gap distribution of hosts hosting 17 and 29

By the way, the phenomenon observed during computational tests presents an intriguing problem for future
research endeavors of interest. It is hoped to be addressed by emerging researchers in due course.

Disclaimer (Artificial Intelligence)
Author(s) hereby declare that NO generative AI technologies such as Large Language Models (ChatGPT,
COPILOT, etc) and text-to-image generators have been used during writing or editing of this manuscript.
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(a) p = 13 and q = 27 (b) p = 13 and q = 79

(c) p = 23 and q = 47 (d) p = 23 and q = 93

Figure 10: Big X in the case of q =λp+1
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(a) p = 13 and q = 25 (b) p = 13 and q = 77

(c) p = 23 and q = 45 (d) p = 23 and q = 91

Figure 11: Big X in the case of q =λp−1
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(a) p = 47 and q = 97 (b) p = 53 and q = 109

(c) p = 47 and q = 91 (d) p = 53 and q = 103

Figure 12: Several Xs in the case of q =λp±3
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