
1

A Comprehensive Review of Shortest Path Algorithms for

Network Routing

Abstract

The rapid development of digital technology and the increasing interconnection of devices have made

computer networks indispensable to modern life. Global data movement, communication, and

applications like cloud computing, IoT, e-commerce, and smart cities are all made possible by these

networks. Routing algorithms particularly shortest path algorithms are crucial for determining the most

effective data transmission routes and are largely responsible for the dependability and efficiency of

these networks. Because these algorithms maintain stability and reliability while lowering latency,

costs, and energy consumption, they are crucial to network operation.

Shortest path problem solving has long relied on fundamental algorithms with origins in graph theory,

such as Bellman-Ford and Dijkstra's. Despite their successes, the growing complexity and dynamic

nature of contemporary networks have exposed their shortcomings. Advanced approaches, including

heuristic, hybrid, and AI-driven methods, have been developed to get around these challenges.

Innovations like ant colony optimization and blockchain-based algorithms have improved computing

efficiency, security, and adaptability.

The Internet of Things, VANETs, and SDNs are just a few of the domains that use these algorithms;

each has specific requirements, like real-time adaptation and energy efficiency. Reinforcement

learning and prediction models driven by machine learning have further increased routing efficiency,

while simulation tools such as Mininet and OMNeT++ have been essential for evaluating algorithm

performance in practical scenarios. As emerging technologies like blockchain and quantum computing

become more widely accepted, shortest path algorithms will continue to advance, ensuring their

suitability in the rapidly evolving digital environment. This study, which looks at their development,

applications, and possible future directions, emphasizes their importance in creating modern networks.

Keywords: Shortest Path Algorithms, Network Optimization, Dijkstra’s Algorithm, Bellman-Ford

Algorithm, Heuristic Algorithms, A*, Ant Colony Optimization (ACO), Hybrid Algorithms.

UNDER PEER REVIEW

mailto:haremshera@gmail.com
mailto:ibrahim.mahmood@auas.edu.krd

2

1. Introduction

As digital technology has grown exponentially and gadgets have become increasingly networked,

computer networks have become indispensable to modern life. These networks are essential for

international communication and data transfer in a variety of applications, including cloud computing,

e-commerce, the Internet of Things, and smart cities. The efficiency and reliability of these networks

depend heavily on routing algorithms, and shortest path techniques are necessary to reach optimal

performance. These algorithms determine optimal data transmission channels by reducing critical

characteristics such as latency, cost, and energy consumption while maintaining network reliability

and stability [1], [2]. Shortest path algorithms are based on the foundation of graph theory, which

depicts networks as graphs composed of nodes (representing devices) and edges (representing

connections). Basic algorithms such as Bellman-Ford [4] and Dijkstra's [3] were the first to tackle the

single-source shortest path problem. Due to their efficiency and ease of use, these conventional

techniques are still widely used today and have formed the basis of modern routing protocols. Bellman-

Ford, for instance, has proven to be robust in situations when edge weights are negative, and Dijkstra's

technique is crucial for link-state routing protocols [4],]. With the increasing sophistication and

breadth of networks, traditional shortest path approaches have faced challenges in handling resource

constraints, large datasets, and shifting topologies. To address these problems, researchers have

developed complex algorithms that incorporate heuristics, hybrid approaches, and artificial

intelligence (AI). While ant colony optimization [6] takes advantage of natural foraging behavior to

determine the optimal routes, block chain-based solutions enhance routing security by providing

transparent and unchangeable path decisions [7]. With these advancements, algorithms may now adapt

dynamically to changing network conditions and increase computational efficiency.

Many diverse fields, each with its own set of requirements and restrictions, use the shortest path

algorithm. In Internet of Things systems, energy-efficient algorithms are crucial for extending device

lifetimes and ensuring sustainable network operation, as devices often have limited resources [8]. In a

similar vein, real-time decision-making algorithms are required for vehicle ad hoc networks

(VANETs) to manage high mobility and traffic. Software-defined networks (SDNs) benefit from

adaptive routing algorithms because they can adjust routes dynamically in response to network

congestion and traffic patterns [5]. Advances in AI have further changed the methods used for the

shortest paths. Thanks to reinforcement learning (RL) models, routing algorithms can now adapt

dynamically to changes in the network in real time, improving efficiency and reducing latency [10].

Additionally, machine learning (ML)-powered prediction models have simplified anticipatory

congestion management by optimizing routing decisions even in highly dynamic scenarios [11].

Researchers have tested and assessed these algorithms in simulation environments such as Mininet

and OMNeT++ [12], which allow them to see how well they perform in practical settings.

There are still few problems despite these advancements. Modern network algorithms must be able to

process vast volumes of real-time data, handle tremendous sizes, and adapt to shifting security threats.

UNDER PEER REVIEW

3

With billions of devices connecting simultaneously in scenarios like smart cities and industrial IoT,

ensuring efficient and safe routing is a difficult undertaking. Strong security measures must also be

included in routing algorithms to combat risks like data interception and route hijacking [7]. As the

digital world evolves, the search for the best path algorithms is at the forefront of networking research.

Future technologies such as quantum computing could revolutionize path optimization by facilitating

faster and more scalable solutions. New decentralized and secure routing paradigms are being

presented by blockchain technology. By overcoming current limitations and leveraging these

developments, shortest path algorithms are poised to remain at the forefront of the development of

both modern and future networks. This study investigates the concepts, historical development, and

recent advancements in shortest path algorithms for network routing. Through the resolution of

significant problems, the presentation of innovative solutions, and the discussion of practical

applications, this book highlights the significance of these algorithms in assessing the dependability

and effectiveness of contemporary computer networks.

2. Background theory

2.1 Shortest Path Algorithm Classification

The three primary categories of shortest path algorithms are hybrid, heuristic, and classical. traditional

algorithms, such as Floyd-Warshall, Johnson's, and Dijkstra's Bellman-Ford. Heuristic algorithms like

Greedy Best-First Search, Ant Colony Optimization, and A*. The advantages of heuristic and classical

approaches are combined in hybrid algorithms.

2.1.1 classical Algorithms for the Shortest Path.

Deterministic techniques known as classical algorithms ensure the best answers to shortest path issues.

Examples include Bellman-Ford, which can handle distributed computations with negative weights,

and Dijkstra's, which is appropriate for graphs with non-negative weights. They serve as the

cornerstone of reliable and effective network routing.

 A- The Dijkstra Algorithm

Finding the shortest paths in network graphs is a common use of Dijkstra's Algorithm, a basic tool in

computer networking. Its ability to determine the optimal data transmission routes while lowering

characteristics like cost, latency, or resource consumption accounts for its significance in network

routing. Edsger W. Dijkstra developed the method in 1959 with the goal of figuring out the shortest

path between a single source node and each other node in a network with non-negative edge weights

[3]. It is currently a basic part of many routing protocols due to its features, which enable reliable and

efficient communication in a range of network scenarios [1]. In the context of network routing,

networks are depicted as graphs, where nodes represent hardware such as switches or routers and edges

represent links or connections between them. Each edge has a weight, which could represent latency,

bandwidth use, or physical distance. Dijkstra's Algorithm finds the shortest path tree from the source

node to all other nodes, allowing network devices to forward data packets along the most efficient

paths [2].

UNDER PEER REVIEW

4

Figure 1 - Shortest path Algorithms classification

The method involves keeping a set of nodes with known shortest paths and another set of nodes that

have not been visited. Initially, it assigns a distance of zero to the source node and an infinite distance

to each subsequent node. Using a priority queue, it selects the unvisited node with the shortest distance,

marking it as visited and updating the distances of its neighbors if a shorter path is found. This method

is done recursively until all nodes are visited or the fastest path to a specific target node is found. The

greedy technique expands the shortest paths at each step, ensuring optimal solutions for graphs with

non-negative edge weights [2], [3]. Dijkstra's Algorithm is heavily utilized in network routing

protocols, particularly link-state protocols such as Open Shortest Path First (OSPF). In OSPF, routers

use Dijkstra's Algorithm to find the shortest path tree using link-state ads that show the current

condition of the network. By providing routers with the optimal paths for forwarding data packets, this

tree guarantees efficient and loop-free routing. Outside of OSPF, the technique serves as the

foundation for traffic engineering applications and other network optimization initiatives, where it aids

in dynamic traffic management to minimize congestion and optimize resource use [5]. The ability of

Shortest Path Algorithms

Classical Heuristic Hybrid

Dijkstra’s
Bellman-

Ford

Floyd-

Warshall
Johnson’s

A*

Greedy

Best-First

Search

ACO

ML-Based

Path

finding

Dynamic

A*

GA-based

Path

finding

UNDER PEER REVIEW

5

Dijkstra's Algorithm to generate reliable and deterministic results, ensuring consistent routing

decisions, is one of its benefits in network routing. Its efficiency allows it to scale to medium-to-large

networks, particularly when combined with complex data structures like Fibonacci heaps [13].

However, the method has certain limitations, especially in dynamic networks with dynamic topologies.

Pathways must be fully recalculated by the program after changes in these settings, which can be

computationally expensive. Furthermore, its limitation to graphs with non-negative edge weights

limits its applicability in certain network scenarios where costs may fluctuate in an unpredictable way

[9]. Despite these challenges, Dijkstra's Algorithm remains an essential tool for network routing

because it forms the foundation of increasingly complex and adaptable routing systems. As

demonstrated by its continued applicability in modern networking, it is a crucial algorithm for

understanding and enhancing network communication [11][16].

B- Bellman-Ford algorithm

The Bellman-Ford algorithm is a graph search technique that finds the shortest path between a specific

source vertex and each other vertex in the graph. This method can be applied to both weighted and

unweighted graphs. Similar to Dijkstra's shortest path algorithm, the Bellman-Ford method is

guaranteed to find the shortest path in a graph. Bellman-Ford is more adaptable than Dijkstra's method

since it can handle graphs with negative edge weights, even if it is slower. It is crucial to keep in mind

that in a graph with a negative cycle, there isn't a shortest path. If the road continued to circle the

negative cycle indefinitely, the cost would decrease even if the journey duration increased. Bellman-

Ford thus has the added advantage of being able to recognize negative cycles. Unlike Dijkstra's

algorithm, which uses a greedy approach, Bellman-Ford uses a dynamic programming paradigm,

iterating through all edges up to |V| - 1 times, where |V| is the number of vertices in the graph.

By periodically relaxing each edge, the method continuously improves the shortest pathway

estimations. This makes it particularly suitable for applications where negative weights might be

present, such network routing and financial market arbitrage detection. However, because to its higher

temporal complexity of O(VE), where V is the number of vertices and E is the number of edges,

Bellman-Ford is usually only used when negative weights are present. Additionally, the algorithm's

ability to detect negative weight cycles ensures its reliability in scenarios when they could lead to

unstable calculations [4].

B.1 How Bellman Ford's algorithm works

Overestimating the distance between the first vertex and each successive vertex is how the Bellman

Ford method works. It then iteratively relaxes those estimates by finding new paths that are shorter

than the previously exaggerated paths. The Bellman-Ford technique is designed to find the shortest

paths between a single source node and all other nodes, even when some edges in a network have

negative weights. The method starts by setting the distance to the source node to zero and the distances

to all other nodes to infinity, signifying that they are initially inaccessible. It then carefully examines

each edge in the graph to see whether using an intermediary node may shorten the current path to a

UNDER PEER REVIEW

6

target node. If a shorter path is found, the distance to the destination node is updated. This process,

known as relaxing, is carried out V−1V-1V−1 times, where VVV is the number of vertices in the

graph, to ensure that all possible paths are considered.

After the relaxation phases, the algorithm does a second pass across the edges to check for any

additional distance modifications. If any distance can still be shortened, there is a negative weight

cycle, suggesting that certain nodes lack a finite shortest path. The Bellman-Ford technique is helpful

for graphs with negative weights since it can not only determine shortest paths but also detect negative

weight cycles.

By doing this repeatedly for all vertices, we can guarantee that the result is optimize

Figure 2. example of How Bellman Ford's algorithm work

C- The Floyd–Warshall algorithm

The Floyd-Warshall algorithm is one method for figuring out the shortest paths between each pair of

nodes in a network. It uses a dynamic programming technique to determine the shortest paths for the

entire graph, progressively coming up with solutions to smaller subproblems. The method is applicable

to both directed and undirected graphs, and is particularly effective for dense graphs. However, the

graph must not have negative weight cycles because this would result in undefined shortest paths. The

process begins by initializing a distance matrix, where each entry represents the shortest distance

between two nodes. Any direct edge connecting two nodes has its weight put into the matrix. If there

UNDER PEER REVIEW

7

isn't a direct edge, the distance is set to infinity, making the nodes initially inaccessible to one another.

The distance to every node is set to zero since the shortest path between any two nodes is free. The

core of the algorithm is its iterative process. Along the paths that connect each other pair of nodes,

each node in the network is systematically considered as a potential intermediary node. For every pair

of nodes, it assesses if using this intermediary node provides a shorter path than the one that is currently

known to exist. In that case, the algorithm adjusts the distance matrix to take the new, shorter path into

consideration. This process is carried out for every node serving as an intermediary point to ensure

that all possible paths are considered. At the end of the process, the distance matrix contains the

shortest paths between each pair of nodes. Additionally, if any diagonal member in the matrix becomes

negative, the graph's weight cycle is shown as negative. This is because a negative cycle would render

shortest path calculations invalid for some node pairs, allowing for an indefinitely decreasing path

cost. Despite its straightforward methodology, the Floyd-Warshall algorithm is computationally

difficult for large graphs, with a time complexity of O(N), where n is the number of nodes.

Nonetheless, it is a helpful tool in scenarios like network routing and traffic flow analysis when

understanding all pairs' shortest paths is essential because to its user-friendliness and ability to handle

enormous graphs.

D- Johnson’s Algorithm

Johnson's Algorithm is a technique for figuring out the shortest paths between each pair of nodes in a

weighted graph. Because it combines the benefits of Bellman-Ford's and Dijkstra's algorithms, it

works particularly well with sparse graphs. The unique feature of Johnson's Algorithm is that it can

handle graphs with negative edge weights as long as there are no negative weight cycles. The algorithm

first reweights the edges of the graph to eliminate negative weights. The Bellman-Ford algorithm is

used to determine the "potential" value of each node, and then all of the graph's edge weights are

adjusted. This reweighting ensures that all edge weights become non-negative while preserving the

relative order of shortest pathways. The approach uses Dijkstra's algorithm to determine the shortest

pathways from each node after reweighting. Since Dijkstra's algorithm works well for networks with

non-negative weights, this technique allows Johnson's Algorithm to perform better for sparse graphs

than other all-pairs shortest path techniques.

The benefits and drawbacks of traditional shortest path methods are outlined in Table 1. Although it

is ineffective with negative edges, Dijkstra's Algorithm works well with dense graphs and non-

negative weights. Bellman-Ford is slower and less effective for big, dense graphs, but it can handle

negative weights and identify cycles. Floyd-Warshall has a high time and memory complexity for

large graphs, yet it can detect cycles and calculate all-pairs shortest paths. Although Johnson's

Algorithm works well for sparse networks with negative weights, its reweighting procedure makes it

difficult to use.

UNDER PEER REVIEW

8

Table 1. Advantages and Disadvantages of Classical Shortest path algorithms types.

Algorithm Advantages Disadvantages

Dijkstra’s Algorithm

Efficient for graphs with non-negative

weights.
Cannot handle negative edge weights.

Guarantees optimal solutions for single-

source shortest paths.
Inefficient for very large or sparse graphs

without optimizations.
Suitable for dense graphs with non-negative

weights.

Bellman-Ford

Algorithm

Handles graphs with negative edge weights.
Slower than Dijkstra’s (O(VE))for large

graphs.

Detects negative weight cycles.

Inefficient for dense graphs.

Suitable for distributed systems

Floyd-Warshall

Algorithm

Computes all-pairs shortest paths in one

execution.

Inefficient for large graphs due to

O(𝑉3)time complexity.

Simple and easy to implement.

Memory-intensive for dense graphs.

Detects negative weight cycles.

Johnson’s Algorithm

Efficient for sparse graphs.
Complex to implement due to

reweighting.

Handles negative weights without cycles.

Requires extra computation for

reweighting, adding overhead. Combines the benefits of Dijkstra’s and

Bellman-Ford.

UNDER PEER REVIEW

9

2.1.2 Heuristic Shortest Path Algorithms

Heuristic shortest path algorithms are optimization methods that prioritize speed and efficiency above

thorough exploration by using heuristic functions to direct the search for paths in a graph. Heuristic

approaches aim to approximate optimal paths by making well-informed decisions based on expected

costs, in contrast to classical algorithms that ensure exact answers.

A- A* Algorithm

A popular heuristic-based approach for determining the shortest path between a source node and a

target node in a graph is the A* algorithm. It works especially well in applications with wide search

spaces, such game development, robotics, and navigation systems. The A* algorithm balances

computational efficiency and optimality by combining the advantages of Greedy Best-First Search

and Dijkstra's Algorithm. [13]

A* achieves its performance by using a cost function to guide its search. The cost function is defined

as:

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)

 𝑔(𝑛) is the actual cost from the start node to the current node 𝑛.

 ℎ(𝑛)is the heuristic estimate of the cost from 𝑛 to the target node.

The heuristic h(n) is a crucial component that establishes the algorithm's efficiency. It must be

acceptable (never overstate the genuine cost) in order to guarantee optimal solutions. The method

iteratively investigates nodes with the lowest f(n) value to ensure that the routes most likely to lead to

the target are examined first. If the heuristic is well-designed, A* can significantly reduce the search

space when compared to other shortest path algorithms. Because it enables the heuristic to be tailored

for specific applications, A*'s versatility is highly valued by many. For example, in 2D grid navigation,

the Manhattan or Euclidean distance is commonly used as a heuristic. However, the efficacy of the

heuristic may decrease in cases where the graph is abnormally large or when the heuristic is poorly

chosen [13].

B- Greedy Best-First Search algorithm

Greedy Best-First Search is a heuristic-based pathfinding method that looks into nodes that seem to

be closest to the objective based on a heuristic assessment. "Greedy" refers to its method of

continuously choosing the node with the lowest heuristic value in an attempt to reach the goal as

quickly as feasible. Unlike other algorithms, such as A* or Dijkstra's, which consider both the expected

cost to the objective and the actual cost of accessing a node, Greedy Best-First Search alone employs

the heuristic function to guide its decisions. The algorithm evaluates its neighbors based on their

heuristic values, starting at the source node. After selecting the neighbor that appears to be closest to

the goal, it moves to that node. During this process, the algorithm iteratively grows the node with the

smallest estimated distance to the destination. Because of its simple, goal-oriented approach, the

algorithm can often find a path to the objective quickly, especially in simple or well-structured graphs.

However, because greedy best-first search disregards the actual cost of reaching a node, it does not

UNDER PEER REVIEW

10

yield the shortest path. In other cases, the heuristic function may even select a longer, less optimal

path if it produces estimates that are not correct. For example, in a graph with obstacles or detours, the

algorithm can focus on a node that appears closer to the goal but takes a much longer path to get it.

This method is particularly useful when speed is more important than precision. In video games, for

instance, it is commonly employed to quickly guide characters toward a destination. Similarly, in early

searches or scenarios with simple heuristics, it can provide a fast estimate of the desired path. Despite

its shortcomings, Greedy Best-First Search is commended for its simplicity and speedy path discovery

in large search fields.[13].

C- Ant Colony Optimization (ACO) algorithm

Ant Colony Optimization (ACO) is a technique that was inspired by the way ants forage for food in

the wild. In the wild, ants initially roam around aimlessly, but when they return to the colony after

locating food, they leave behind pheromone trails. Other ants, who are more likely to follow paths

with higher pheromone concentrations, pick up these tracks. Eventually, more ants prefer the shortest

road since it gathers the most pheromone from frequent use. ACO computationally simulates this

behavior to address complex optimization problems, especially those involving paths, such the

traveling salesman problem or network routing [14].

The algorithm initially visualizes the problem as a graph, where nodes represent decision points (e.g.,

cities on a route) and edges reflect relationships with associated costs (e.g., distances). The graph is

traversed by artificial "ants" that construct solutions. Each ant makes probabilistic decisions on which

path to follow next based on two factors: problem-specific heuristic information, such as the distance

to the next node, and the quantity of pheromone on each edge, which reflects the cumulative

desirability of that path. As the ants complete their journeys, the algorithm evaluates the quality of

their solutions. The pheromone on less appealing paths is allowed to progressively fade away, while

more pheromone is introduced to the edges of paths that lead to better solutions. This evaporation

prevents the algorithm from becoming stuck in less-than-ideal solutions by reducing the influence of

suboptimal paths. Over the course of numerous repetitions, the pheromone dynamics guide the ants

toward more ideal solutions because shorter or better roads inherently accumulate more pheromone

and draw in more ants. One of ACO's primary advantages is its ability to balance exploration and

exploitation. At first, the ants' probabilistic decision-making process allows them to explore a range

of options, but the pheromone reinforcement gradually focuses on the most promising solutions. As a

result, ACO performs particularly effectively in problems with complex constraints or large search

spaces. In the traveling salesman problem, for example, where the goal is to find the shortest route that

visits every city exactly once, ACO can iteratively improve solutions by utilizing the collective

behavior of the ants. In a similar vein, network routing can find efficient data transmission paths and

adapt dynamically to network changes.

All things considered, Ant Colony Optimization is an intriguing illustration of how strong

computational methods can be inspired by natural systems. It is a powerful and adaptable tool for

resolving optimization issues in a variety of fields since it can replicate the decentralized and self-

organizing behavior of actual ants [14].

UNDER PEER REVIEW

11

Table 2 outlines the advantages and disadvantages of heuristic shortest path algorithms. A* guarantees

optimal solutions with admissible heuristics but is memory-intensive and heavily reliant on heuristic

quality. Greedy Best-First Search is fast and goal-oriented but may produce suboptimal paths and

struggle with misleading heuristics. Ant Colony Optimization (ACO) excels in complex, dynamic

problems but is computationally intensive and requires careful parameter tuning.

Table 2. Advantages and Disadvantages of Heuristic Shortest Path Algorithms types.

Algorithm Advantages Disadvantages

A*

Combines actual cost and heuristic for

optimal solutions.

Performance heavily depends on the

quality of the heuristic.

Guarantees shortest path if the heuristic

is admissible and consistent.

Memory-intensive for large graphs.

Reduces search space compared to

Dijkstra’s.

Greedy Best-First Search

Fast and goal-oriented, often reaching

the target quickly.
Does not guarantee shortest path.

Simple to implement.
Can get stuck in local minima if the

heuristic is misleading.

Ant Colony Optimization

(ACO)

Effective for complex optimization

problems.

Computationally expensive for large

problems.

Flexible and adaptable to dynamic

environments.
Performance depends on parameter

tuning (e.g., pheromone evaporation

rate). Avoids premature convergence by

balancing exploration and exploitation.

2.1.3 Hybrid Shortest Path Algorithms

Hybrid shortest path algorithms are an advanced class of optimization techniques that combine aspects

of heuristic and adaptive strategies like machine learning, genetic algorithms, or dynamic changes

with traditional deterministic approaches like Dijkstra's or Bellman-Ford. These algorithms combine

the best aspects of heuristic and classical methodologies to achieve the optimal balance between

computing efficiency, adaptability, and scalability. They are hence highly effective at addressing

difficult pathfinding problems in dynamic and uncertain scenarios.

UNDER PEER REVIEW

12

A- Machine Learning (ML)-Based Pathfinding

One of the best-known examples is the hybrid method called Machine Learning (ML)-Based

Pathfinding. This approach dynamically selects the optimal routes by utilizing prediction algorithms

that have been trained on massive amounts of data. Machine learning algorithms analyze both

historical data, such recurring traffic patterns, and real-time inputs, like the amount of congestion at

any given time, to produce well-informed routing decisions. For instance, ML-based algorithms in an

intelligent transportation system predict the quickest routes based on real-time traffic, weather, and

road closure data. Similarly, by adapting to shifting network conditions, including node failures or

bandwidth fluctuations, machine learning (ML) models in Internet of Things (IoT) networks enhance

data flow. By incorporating reinforcement learning (RL), a branch of machine learning that enables

the system to learn from past decisions and make more accurate predictions going forward, the system

can iteratively enhance its pathfinding tactics. However, the success of ML-based pathfinding depends

on the quality of the training data and the processing capacity available for real-time inference. [15]

B- Dynamic A*

Another crucial hybrid technique is dynamic A* (D*), a variant of the classic A* algorithm that adjusts

to modifications in network architecture or edge weights while it is being run. While traditional A*

operates on static graphs, D* is designed to adapt in real time. In autonomous robotics, for example,

when environmental factors can change abruptly, D* merely recalculates the portions of the path

affected by new obstacles or updated terrain costs. Instead of repeating the entire process, D* gradually

modifies the solution to maintain computing efficiency [17]. D* is particularly well-suited for dynamic

environments that require continuous adjustment, such urban navigation or disaster response

scenarios, because of this feature.

C- Genetic Algorithm (GA)-Based Pathfinding

Genetic Algorithm (GA)-Based Pathfinding is another instance of hybrid optimization that takes cues

from evolution and natural selection. In GA-based pathfinding, which uses a population of potential

solutions (paths) that evolves over time, more successful solutions are selected for reproduction and

less successful ones are rejected. Genetic operations that introduce variety and enable the exploration

of a vast solution space include mutation and crossover. For large and complex networks, such supply

chain optimization, logistics planning, and network routing, where the sheer number of variables and

constraints may render typical methods impractical, this approach performs very well. GA-based

methods require careful parameter tuning, including population size and mutation rate, to ensure

convergence to a perfect or nearly ideal solution [16].

UNDER PEER REVIEW

13

The advantages and disadvantages of hybrid shortest route methods are shown in Table 3. Although

ML-Based Pathfinding is computationally demanding and dependent on high-quality training data, it

can adjust to real-time conditions and learn from past data. Dynamic A* is less appropriate for static

graphs since it introduces complexity for incremental updates while updating pathways effectively in

changing settings. Although GA-Based Pathfinding avoids local optima and explores wide solution

spaces, it has a slow convergence rate and necessitates exact parameter tweaking.

Table 3. the advantages and disadvantages of different types of hybrid shortest path

algorithms:

Algorithm Type Advantages Disadvantages

ML-Based Pathfinding

-Adapts dynamically to real-time

conditions, such as traffic or

network changes.

Computationally intensive, requiring

substantial resources for training and

inference.

Learns from historical data to

improve accuracy over time.
Performance depends heavily on the

quality and volume of training data.
Handles complex, multi-variable

environments effectively.

Dynamic A*

Efficiently handles changes in

graph structure or edge weights

without recalculating from scratch.

Requires additional logic for

incremental updates, increasing

implementation complexity.

Maintains high computational

efficiency in dynamic

environments. Not ideal for static graphs due to

added overhead.
Suitable for real-time navigation

and robotics.

GA-Based Pathfinding

Capable of exploring large,

complex solution spaces.

Slow convergence in large-scale

problems due to the iterative nature.

Avoids local optima through

crossover and mutation. Requires careful parameter tuning

(e.g., mutation rate, population size) to

ensure efficiency. Flexible and adaptable to a wide

range of optimization problems.

UNDER PEER REVIEW

14

2.2 Performance Evaluation of Shortest Path Algorithms

The performance of shortest path algorithms is evaluated using benchmarks such as convergence time,

computational complexity, scalability, and fault tolerance, which makes it a crucial area of study.

Convergence time quantifies how quickly an algorithm stabilizes routing decisions after network

changes. Dijkstra's algorithm is renowned for its deterministic convergence, but heuristic approaches

such as A* concentrate on tenable routes to generate quicker answers in specific situations [9]. Another

important statistic is computational complexity. The complexity of Dijkstra's algorithm is O(V)^2,

however with sophisticated data structures like Fibonacci heaps, it can be lowered to O(V+E) log(V)

[13]. By eliminating pointless explorations, heuristic techniques such as A* further optimize this

process. Heuristic and hybrid algorithms outperform classical approaches in addressing the problem

of scalability, especially in large-scale networks [9]. Fault tolerance is essential in dynamic or

disrupted environments. While algorithms like Bellman-Ford are robust to changes in topology,

heuristic techniques excel at adapting to changing conditions. Simulation tools such as ns-3 and

OPNET have enabled the evaluation of these metrics under realistic conditions and have also provided

insight into the behavior of the algorithms in different scenarios [15].

2.3 Emerging Trends in Shortest Path Algorithms

Advances in technology have led to changes in algorithms for the shortest path. Machine learning and

artificial intelligence are increasingly being used to dynamically optimize routing decisions. For

example, by adaptively learning the optimal routes based on both history and current data,

reinforcement learning models improve flexibility in dynamic networks [11]. Thanks to Software-

Defined Networking's (SDN) centralized routing control, global shortest path optimization is now

feasible. SDN simplifies complex configurations and provides real-time traffic control capabilities,

making it a groundbreaking technique in modern networking [15]. Blockchain technology is also

changing the game in the domain of secure routing. By decentralizing power and ensuring the accuracy

of routing data, blockchain-based protocols minimize security vulnerabilities, particularly in IoT and

edge networks [6]. Additionally, IoT-specific energy-efficient algorithms address the unique

constraints of these devices by emphasizing minimal resource use [8].

2.4 Applications of Shortest Path Algorithms in Modern Networks

Shortest path algorithms, which offer efficient resource management, communication optimization,

and routing for a variety of applications, are at the heart of modern networks. These algorithms have

evolved to meet the needs of several situations, ranging from traditional wired networks to complex

IoT ecosystems and dynamic wireless systems. In traditional wired networks, protocols like RIP

(Routing Information Protocol) and OSPF (Open Shortest Path First) heavily rely on shortest path

algorithms to maintain optimal routing tables. For example, OSPF uses Dijkstra's algorithm to

determine the shortest path tree for each node, ensuring efficient and loop-free data delivery. Similar

to this, RIP finds the shortest paths using the Bellman-Ford algorithm and hop counts. These classical

methods are ideal for networks that are static or semi-static and have relatively few topology changes.

Node mobility, bandwidth limitations, and dynamic topologies make wireless network challenges

more complex. In this case, heuristic and hybrid algorithms work effectively and adapt quickly to

UNDER PEER REVIEW

15

changes. Mobile Ad-Hoc Networks (MANETs), for instance, use protocols such as AODV (Ad Hoc

On-Demand Distance Vector) to dynamically discover routes only when required. Energy-efficient

techniques, such as Ant Colony Optimization or Genetic techniques, are used by Wireless Sensor

Networks (WSNs) to enable reliable data transport and prolong the life of devices with limited

resources [18]. In the context of the Internet of Things and smart cities, shortest path algorithms are

especially made to deal with constraints like energy saving and adaptation. Algorithms that can predict

and dynamically adapt to network conditions are required since IoT networks usually have limited

resources. Due to their ability to learn from historical data and generate real-time routing decisions,

machine learning-based pathfinding algorithms are growing in popularity in these scenarios [19].

Applications such as traffic control in smart cities and public transportation depend on shortest path

algorithms. For instance, real-time navigation systems include algorithms like A* that dynamically

adjust to traffic conditions in order to provide the optimal travel routes. To optimize internal

communication, cloud computing and data center environments commonly employ shortest path

methods. These systems require efficient routing in order to balance traffic flows and lower latency.

Modern data center topologies, such as Clos networks or fat-tree designs, use algorithms like ECMP

(Equal-Cost Multi-Path) to effectively distribute traffic across multiple channels [20].

Autonomous systems, including self-driving automobiles, robotic swarms, and drones, use shortest

path algorithms to navigate and complete tasks. Algorithms like Dynamic A* (D*) are highly helpful

in this case because they can adapt to changes in the environment in real time, such as the presence of

obstacles or dynamic variations in goals. This adaptability ensures safe and efficient travel in

unpredictable situations. By selecting routes that maximize throughput and minimize latency, shortest

path algorithms optimize data flow in telecommunication networks. For example, MPLS

(Multiprotocol Label Switching) networks use shortest path techniques to establish efficient data

channels across big, interconnected systems. Critical infrastructure, such as electricity grids and

emergency response systems, can also benefit from these algorithms. Power networks use shortest

path algorithms to minimize transmission losses and ensure reliable distribution of electricity. During

emergencies, these algorithms help determine the optimal escape routes and prioritize the restoration

of communication networks. Moreover, shortest path methods are crucial to applications in artificial

intelligence and machine learning. They are used in recommendation systems to analyze relationships

in user-item graphs and in social network analysis to measure individual influence and connectedness

[20]. In these diverse applications, the value and versatility of shortest path approaches are

demonstrated. They enable systems to adapt, enhance, and function reliably even in complex and

dynamic environments. By combining classical, heuristic, and hybrid approaches, these algorithms

continue to encourage innovation and ensure the seamless operation of modern networks.

UNDER PEER REVIEW

16

3 Literature Review

S. Johnson and M. Keller, [13] suggested simulation tools to assess the effectiveness of shortest path

algorithms, like Mininet and OMNeT++. These tools offer accurate settings for testing fault tolerance,

scalability, and efficiency in a range of network scenarios. Their research emphasizes how crucial

simulation is for connecting theoretical models with practical applications.

R. Floyd, [14] presented techniques for dynamic programming to address all-pairs shortest path issues.

This seminal work established the foundation for contemporary algorithms used in traffic analysis and

worldwide connection by demonstrating effective processing in dense graphs. Floyd's approach

continues to have an impact on the development of comprehensive pathfinding applications.

M. L. Garcia and P. Martinez, [15] examined developments in shortest path algorithm simulation

methods with an emphasis on scalability in massive dynamic networks. Their work demonstrated how

simulations can be used to analyze algorithm performance under varying network loads, which makes

it possible to create reliable routing solutions.

M. A. Javaid, [16] gave a thorough explanation of Dijkstra's method, highlighting its effectiveness

and simplicity in static topologies. The algorithm's shortcomings in dynamic contexts were shown

by the analysis, which led to more investigation into adaptive techniques. Javaid's observations are

still applicable in situations involving organized networks.

X. Z. Wang, [17] compared the effectiveness of the Dijkstra, Bellman-Ford, and A* algorithms in

both static and dynamic networks. Wang provided helpful advice for choosing the best method for

particular network settings by identifying trade-offs between computing complexity, accuracy, and

flexibility.

J. Kleinberg and É. Tardos, [18] discussed sophisticated algorithmic techniques for shortest path

problems that are based on graphs. Their research demonstrated computationally effective and scalable

methods that are suited to the growing needs of contemporary networks. The study forms the basis for

creating novel routing strategies.

T. H. Cormen et al., [19] discussed the theoretical foundations and real-world applications of classic

algorithms like Bellman-Ford and Dijkstra's. Their research serves as a vital resource for

comprehending the mathematical underpinnings of shortest path algorithms and how they are

implemented.

A. Orda, [20] models that address congestion and delay in time-dependent networks for shortest path

computation. The study offered ideas for enhancing routing in both static and dynamic systems by

introducing adaptive techniques for real-time traffic and dynamic network situations.

K. R. Chowdhury and I. F. Akyildiz, [21] created a routing protocol that optimizes spectrum

consumption for cognitive radio ad hoc networks by utilizing shortest path methods. Their research

showed how flexible shortest path techniques may be in controlling limited network resources and

improving overall effectiveness.

UNDER PEER REVIEW

17

X. Yang and D. Medhi, [22] examined improvements to network virtualization shortest path

techniques. In order to guarantee scalability and effective resource allocation, they addressed the

difficulties in handling changing topologies and virtualized resources and offered solutions.

M. Al-Karaki and A. Kamal, [23] Reviewed routing techniques in wireless sensor networks,

emphasizing energy-efficient shortest path algorithms. Their research helped to ensure the

sustainability of WSNs by addressing the need for dependable communication with resource

conservation in limited devices.

X. Sun et al., [24] presented secure routing systems for Internet of Things networks based on

blockchain technology. The study made sure that shortest path calculations were transparent,

trustworthy, and impervious to manipulation by incorporating blockchain technology. The potential

of decentralized security solutions in network routing is demonstrated by their methodology.

R. Xu, H. Zhou, and Y. Zhang, [25] presented a framework for adaptive shortest path routing in

complicated networks using reinforcement learning. Their methodology reduces latency and increases

routing efficiency by dynamically adapting to changes in real time. This AI-powered method

establishes a standard for contemporary routing methods.

A. Goyal et al., [26] created a graph-based model for dynamic shortest path computing that combines

deep learning and reinforcement learning. The study showed flexibility in large-scale networks and

decreased processing cost. Their research highlights how AI might improve routing efficiency.

B. Lee et al., [27] created a hybrid shortest path algorithm that combines swarm intelligence and

heuristic techniques for VANETs. Their program outperformed conventional techniques in terms of

efficiency and adaptability by optimizing routing in crowded situations by utilizing real-time traffic

data.

C. Zhang et al., [28] suggested a multi-objective optimization paradigm for Internet of Things systems

that balances dependability, latency, and energy usage. Through the use of a genetic algorithm with

Pareto optimality, their work made it possible to route data effectively in situations with limited

resources.

D. Wang et al., [29] addressed k-shortest path issues in extensive road networks by using graph

attention networks (GATs). Their model showed promise for urban traffic management systems where

effective routing is essential and increased prediction accuracy.

E. Chen et al., [30] created a machine learning-based adaptive shortest path technique for SDNs that

can dynamically anticipate and reduce congestion. Their method improved network utilization and

throughput, which helped SDNs scale.

F. Liu et al., [31] suggested a shortest path technique that runs faster on a GPU for real-time smart

city applications. Their approach greatly decreased processing time by employing CUDA to parallelize

computations, allowing for effective pathfinding in large-scale graphs.

UNDER PEER REVIEW

18

G. Roy et al., [32] presented a hybrid routing algorithm for MANETs that combines Bellman-Ford

and Dijkstra's advantages. Their method improved stability and computational efficiency by

dynamically switching between algorithms according to network conditions.

H. Xu et al., [33] discussed shortest path calculations in wireless sensor networks that take energy

efficiency into account. The model extended network lifetime by optimizing routes while taking

energy consumption and replenishment rates into account by incorporating a reinforcement learning

framework.

I. Singh et al., [34] suggested a real-time shortest path algorithm that uses reinforcement learning to

adjust to traffic circumstances in real time for intelligent transportation systems. The algorithm

demonstrated its efficacy in contemporary traffic networks by drastically lowering average trip times.

J. Patel et al., [35] created a shortest path algorithm for high-dimensional networks that is inspired by

quantum mechanics. Their approach showed excellent scalability and computational efficiency by

mimicking quantum annealing processes, providing creative answers to challenging routing problems.

Table 4 provides an overview of the evaluated literature. A thorough summary of numerous studies

on shortest path algorithms and their uses in various network contexts is given in this table. It

emphasizes significant innovations, approaches, and methods used to tackle issues like scalability,

resource restrictions, and dynamic environments. Table 8, which arranges this corpus of work, is a

useful resource for comprehending developments in shortest path calculations, such as traditional

algorithms, heuristic techniques, and reinforcement learning frameworks.

Table 4. Summarization of Literature review

Reference Focus/Topic Key Contributions Algorithm(s) Used

[21]
Simulation tools

(OMNeT++, Mininet)

Evaluated performance of shortest path

algorithms under varying network conditions,

highlighting the role of simulation in bridging

theory and practice.

Dijkstra’s, Bellman-

Ford

[22]

Dynamic programming

for all-pairs shortest

paths

Introduced efficient computation methods for

dense graphs, laying foundational work for

modern pathfinding algorithms.

Floyd-Warshall

[23]

Advances in simulation

techniques for dynamic

networks

Highlighted the role of simulations in

analyzing algorithm scalability and robustness

under dynamic network loads.

Heuristic and

simulation-based

approaches

UNDER PEER REVIEW

19

[24]
Analysis of Dijkstra’s

algorithm

Emphasized its simplicity and efficiency in

static networks while identifying limitations in

dynamic environments.

Dijkstra’s

[25]

Comparative study of

Dijkstra, Bellman-Ford,

and A* algorithms

Evaluated trade-offs in computational

complexity, accuracy, and adaptability for

static and dynamic networks.

Dijkstra’s, Bellman-

Ford, A*

[26]
Advanced graph-based

algorithmic strategies

Discussed scalable, efficient solutions tailored

for modern network demands, serving as a

cornerstone for innovative routing approaches.

Graph-based algorithms

(general strategies)

[27]
Review of classical

algorithms

Detailed theoretical and practical applications

of Dijkstra’s and Bellman-Ford algorithms.

Dijkstra’s, Bellman-

Ford

[28]
Time-dependent shortest

paths

Proposed models addressing latency and

congestion in real-time dynamic networks.

Time-dependent

variations of shortest

path algorithms

[29]
Routing in cognitive

radio ad hoc networks

Optimized spectrum usage using shortest path

algorithms, enhancing adaptability and

efficiency in resource-constrained

environments.

Dijkstra’s, heuristic-

based algorithms

[30]
Enhancements for

network virtualization

Proposed solutions for managing dynamic

topologies and virtualized resources, ensuring

scalability.

Hybrid algorithms

[31]

Energy-efficient routing

in wireless sensor

networks

Addressed resource conservation in

constrained devices while ensuring reliable

communication.

Energy-aware shortest

path algorithms

[32]
Blockchain-based

routing protocols for IoT

Ensured transparency, trust, and resistance to

tampering in shortest path computations,

enhancing security in network routing.

Blockchain-enhanced

shortest path algorithms

UNDER PEER REVIEW

20

[33]
Reinforcement learning

for adaptive routing

Developed an AI-driven framework for

dynamically adjusting routes in complex

networks, improving efficiency and reducing

latency.

Reinforcement learning-

based shortest path

algorithms

[34]

Graph-based models

integrating deep and

reinforcement learning

Demonstrated adaptability in dynamic

networks while reducing computational

overhead.

Deep learning and

reinforcement learning

[35]
Hybrid algorithm for

VANETs

Combined heuristic and swarm intelligence

methods for efficient routing in congested

scenarios.

Swarm intelligence and

heuristic algorithms

[36]

Multi-objective

optimization for IoT

systems

Balanced energy consumption, latency, and

reliability using genetic algorithms and Pareto

optimality.

Genetic algorithms

[37]

Graph Attention

Networks (GATs) for k-

shortest paths

Improved prediction accuracy for urban traffic

management in large-scale road networks.

Graph attention

networks (GATs)

[38]
Adaptive algorithms for

SDNs

Incorporated machine learning to dynamically

predict and mitigate congestion, enhancing

scalability.

Machine learning-based

shortest path algorithms

[39]
GPU-accelerated

shortest path algorithm

Reduced processing time significantly for real-

time applications in smart cities through

CUDA parallelization.

Parallelized shortest

path algorithms (GPU-

based)

[40]
Hybrid routing for

MANETs

Dynamically switched between Dijkstra’s and

Bellman-Ford algorithms based on network

conditions, improving stability and efficiency.

Dijkstra’s, Bellman-

Ford

[41]
Energy-aware routing in

WSNs

Optimized routes considering energy

consumption and replenishment, extending

network lifetime using reinforcement learning.

Energy-aware and

reinforcement learning

algorithms

[42]
Real-time shortest path

algorithm for ITS

Leveraged reinforcement learning to

dynamically adapt to traffic conditions,

significantly reducing travel times.

Reinforcement learning-

based algorithms

[43]
Quantum-inspired

shortest path algorithms

Demonstrated superior scalability and

efficiency for complex, high-dimensional

networks using quantum annealing processes.

Quantum-inspired

shortest path algorithms

UNDER PEER REVIEW

21

4. Discussion

The ability of shortest path algorithms to strike a balance between computing efficiency and

adaptability while dealing with intricate network routing problems is among their most alluring

features. The deterministic nature and dependability of classical algorithms, such Dijkstra's and

Bellman-Ford, in static networks are highlighted by research conducted by [3] and [4]. Bellman-Ford

expands the applicability of Dijkstra's method to include situations with negative edge weights, while

Dijkstra's approach is especially praised for its effectiveness in graphs with non-negative weights.

Their shortcomings, however, become apparent in dynamic networks where real-time flexibility is

impeded by the requirement for recalculations. We believe that while classical algorithms are very

useful for clearly specified, static issues, they are not flexible enough for contemporary, dynamic

systems. By bringing flexibility and heuristic-driven efficiency, heuristic algorithms such as A and

Ant Colony Optimization (ACO)*, on the other hand, provide creative solutions. According to [13],

A* is perfect for applications like robotics and navigation because it combines heuristic forecasts with

actual costs to guarantee optimal solutions. However, ACO, which was evaluated by [14], uses

biological inspiration to optimize pathways in large-scale, adaptive networks in a dynamic manner.

Although these algorithms perform exceptionally well in dynamic contexts, their generalizability may

be constrained by their dependence on heuristic quality (for A*) and computing complexity (for ACO).

For dynamic and large-scale systems, we believe heuristic algorithms offer a substantial advance over

conventional approaches; yet, they still need to be carefully tuned to reach their full potential.

Shortest path optimization has gone further with the introduction of hybrid algorithms, which combine

the advantages of heuristic and classical methods. For instance, Dynamic A*, which was examined by

[17], greatly increases the efficiency of real-time navigation systems by including incremental updates

to adaptively recalculate just affected courses. Similarly, reinforcement learning is used in machine

learning (ML)-based pathfinding, as discussed in [19] and [25], to dynamically forecast the best routes.

ML-based techniques provide unmatched scalability and flexibility, and they perform very well in

high-dimensional and data-rich environments. However, they are difficult to apply in systems with

limited resources due to their need on large amounts of training data and computational power. Since

hybrid algorithms combine the flexibility of heuristic and machine learning-driven techniques with

the accuracy of traditional methods, we believe they are the way of the future for shortest path

optimization. The possibility of sustainability in shortest path algorithms is another fascinating

analogy. Energy-efficient routing, fueled by algorithms like ACO and ML-based models, can lower

power consumption in IoT networks, according to studies like [32] and [38]. These developments are

in line with network management's increasing demand for sustainable technologies. Heuristic and

hybrid techniques incorporate energy conservation, which makes them more applicable in

contemporary applications than classical algorithms, which only concentrate on path optimization. We

believe that this emphasis on sustainability not only makes these algorithms more useful, but also

guarantees that they are in line with more general environmental objectives.

UNDER PEER REVIEW

22

Although these algorithms have advanced, there are still difficulties in putting them into practice.

Concerns including interpretability, scalability, and the moral ramifications of automated decision-

making are highlighted in research by [35] and [37]. For instance, despite their strength, ML-based

algorithms have a "black-box" aspect that makes it challenging to comprehend or justify their choices.

On the other hand, while traditional algorithms such as Dijkstra's are more visible, they are not as

flexible as machine learning-based solutions. For researchers and practitioners, striking a balance

between transparency and adaptability continues to be a crucial task.

4.1 Comparing the differences between Shortest path algorithms types

Table 5 compares Classical, Heuristic, and Hybrid shortest path algorithms, focusing on their strengths

and applications. Classical algorithms like Dijkstra’s and Bellman-Ford guarantee accuracy but

struggle with dynamic graphs and large-scale problems due to their computational intensity. Heuristic

algorithms like A* and ACO prioritize efficiency by guiding the search with approximations but may

produce suboptimal paths if the heuristic is flawed. Hybrid algorithms combine the precision of

classical methods with the adaptability of heuristics or machine learning, excelling in dynamic and

complex environments, though they are computationally demanding. Each category fits specific use

cases, from static graph analysis to real-time navigation in IoT systems. The choice depends on the

trade-offs between accuracy, efficiency, and adaptability.

Table 5. Comparing the differences between Classical, Heuristic, and Hybrid shortest path

algorithms:

Aspect Classical Algorithms Heuristic Algorithms Hybrid Algorithms

Approach

Deterministic and

mathematically grounded

methods that guarantee optimal

solutions.

Use approximations and

heuristics to guide the search,

improving efficiency.

Combine deterministic

methods with heuristic or

adaptive techniques for

better performance.

Types
Dijkstra’s, Bellman-Ford,

Floyd-Warshall

A*, Greedy Best-First Search,

Ant Colony Optimization

(ACO)

Machine Learning-Based

Pathfinding, Dynamic A*,

Genetic Algorithm (GA)-

Based Pathfinding

Optimality
Guarantees the shortest path

under specified conditions.

Often provides near-optimal

paths but does not guarantee

the shortest path.

Balances between optimality

and efficiency, often

achieving near-optimal

solutions.

UNDER PEER REVIEW

23

Efficiency

Can be computationally

expensive for large graphs or

dynamic environments.

More efficient due to heuristic-

driven search, reducing

unnecessary exploration.

Achieves high efficiency by

combining classical precision

with heuristic adaptability.

Adaptability

Less adaptable to dynamic

changes; requires

recomputation if graph

changes.

Can adapt to dynamic

conditions but depends heavily

on the heuristic used.

Highly adaptable to dynamic

environments, often capable

of real-time updates.

Complexity

Moderate complexity, often

𝑂(𝑉) 𝑜𝑟 𝑂(𝑉2)depending on

the algorithm.

Complexity depends on the

heuristic; typically lower for

static graphs.

Higher complexity due to

combining methods but

offers better scalability and

adaptability.

Search Strategy

Exhaustive exploration of all

possible paths to guarantee

correctness.

Focuses on the most promising

paths based on heuristic

estimates.

Integrates heuristic guidance

with deterministic

calculations or adaptive

learning.

Memory Usage
Requires significant memory

for storing all paths and costs.

Requires less memory due to

reduced search space.

Memory-intensive due to

combined techniques and

storage of additional learning

parameters.

Applications

Network routing, static graph

analysis, distributed

computations.

Navigation systems, robotics,

dynamic routing, and games.

Complex optimization

problems, real-time

navigation, IoT networks,

and multi-agent systems.

Key Strengths

Accuracy and reliability; well-

suited for static and well-

defined problems.

Speed and efficiency,

especially in large search

spaces or dynamic

environments.

Flexibility, scalability, and

adaptability to changing

conditions.

Key

Weaknesses

Poor adaptability to dynamic

graphs and computationally

intensive for large-scale

problems.

Heuristic quality impacts

solution quality; suboptimal

paths are possible.

Higher computational and

implementation complexity

due to combining methods.

UNDER PEER REVIEW

24

4.2 Comparing the differences between Classical algorithms types

Table 6 compares four shortest-path algorithms based on their purpose, edge weight handling,

complexity, and use cases. While Dijkstra's Algorithm performs best on sparse graphs with non-

negative weights, Bellman-Ford handles graphs with negative weights and detects negative cycles.

Floyd-Warshall efficiently determines all-pairs shortest paths for dense graphs, despite its processing

demands. For sparse networks that require all-pairs shortest paths, Johnson's Algorithm combines the

Bellman-Ford and Dijkstra algorithms. Each algorithm has pros and cons, and the requirements and

graph topology determine which algorithms are applicable.

4.3 Comparing between Heuristic Shortest Path Algorithms types.

Based on their methodology, effectiveness, and use cases, A*, Greedy Best-First Search, and Ant

Colony Optimization (ACO) are contrasted in Table 7. Although A* is memory-intensive, it

guarantees optimal pathways with accepted heuristics by striking a balance between actual costs and

heuristics. For speed, Greedy Best-First Search just uses heuristics, but it runs the risk of choosing

less-than-ideal routes. ACO is computationally demanding yet excels at complicated, dynamic

situations thanks to its use of pheromones and probabilistic exploration. Greedy is best for quick, easy

searches, A* is best for optimal navigation, and ACO is best for large-scale optimization such as

network routing and TSP. ACO stands out for its parallelism, which uses several agents to conduct

exploration.

Table 6. Comparing the differences between Dijkstra’s Algorithm, Bellman-Ford Algorithm, Floyd-

Warshall Algorithm, and Johnson’s Algorithm:

Aspect Dijkstra’s Algorithm
Bellman-Ford

Algorithm

Floyd-Warshall

Algorithm

Johnson’s

Algorithm

Purpose

Finds the shortest path

from a single source to all

nodes.

Finds the shortest

path from a single

source to all

nodes.

Finds the shortest

paths between all

pairs of nodes.

Finds the shortest

paths between all

pairs of nodes.

Edge Weights
Non-negative weights

only.

Handles both

positive and

negative weights.

Handles both

positive and

negative weights

(no negative

cycles).

Handles both positive

and negative weights

(no negative cycles).

Cycle Detection
Does not detect negative

weight cycles.

Detects negative

weight cycles.

Detects negative

weight cycles.

Detects negative

weight cycles during

reweighting.

Time Complexity

𝑂(𝑉2 + 𝐸)

OR 𝑂((𝑉 + 𝐸) log 𝑉)

 With priority queue.

𝑂(𝑉𝐸)
𝑂(𝑉3)

𝑂(𝑉𝐸 + 𝑉2𝐿𝑜𝑔 𝑉)

UNDER PEER REVIEW

25

Graph Type

Best for sparse graphs

with non-negative

weights.

Works for any

weighted graph

(without negative

cycles).

Suitable for dense

graphs.

Best for sparse

graphs.

Space Complexity

𝑂(𝑉 + 𝐸)
for adjacency list

implementation.

𝑂(𝑉 + 𝐸)
for adjacency list

implementation.

𝑂(𝑉2)

due to the distance

matrix.

𝑂(𝑉2)

due to reweighting

and distance matrix.

Approach Greedy algorithm.

Dynamic

programming with

edge relaxation.

Dynamic

programming with

incremental

updates.

Combines Bellman-

Ford for reweighting

and Dijkstra’s for

pathfinding.

Use Case

Best for routing in static

networks with non-

negative weights.

Used for

distributed

systems or graphs

with negative

weights.

Used for dense

graphs or when

all-pairs shortest

paths are required.

Efficient for sparse

graphs and all-pairs

shortest paths.

Implementation

Complexity
Simple to implement.

Relatively simple

to implement.

Simple but

computationally

intensive.

Complex due to

reweighting and

multiple algorithms.

Table 7. Comparing between A*, Greedy Best-First Search, Floyd-Warshall Algorithm, and Ant

Colony Optimization (ACO):

Aspect A* Greedy Best-First Search
Ant Colony Optimization

(ACO)

Approach

Combines actual cost

𝑔(𝑛)and heuristic estimate

ℎ(𝑛)to find the shortest path.

Relies solely on the

heuristic estimate ℎ(𝑛)to

guide the search.

Uses pheromone trails and

heuristic information for

probabilistic pathfinding.

Optimality

Guarantees the shortest path

if the heuristic is admissible

and consistent.

Does not guarantee the

shortest path, as it only

focuses on the immediate

goal.

Does not always guarantee the

shortest path but often finds

near-optimal solutions.

Search Strategy

Expands nodes based on

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)
balancing exploration and

exploitation.

Expands nodes based on

the smallest heuristic value

ℎ(𝑛)favoring goal-directed

paths.

Explores multiple paths

probabilistically and reinforces

better solutions with

pheromones.

UNDER PEER REVIEW

26

Complexity

Memory-intensive for large

graphs due to maintaining

open and closed lists.

Requires less memory

compared to A* but may

explore irrelevant paths.

Computationally intensive for

large-scale problems due to

multiple iterations and

pheromone updates.

Performance

Highly efficient with a well-

designed heuristic, reducing

unnecessary exploration.

Faster in simple graphs but

prone to getting stuck in

suboptimal paths if the

heuristic is misleading.

Balances exploration and

exploitation, making it

effective for complex, dynamic

problems.

Heuristic

Dependency

Strongly depends on the

heuristic for efficiency but

guarantees correctness with

admissible heuristics.

Fully relies on the

heuristic, making its

accuracy critical to the

algorithm’s success.

Partially dependent on

heuristic; pheromone dynamics

compensate for heuristic

weaknesses.

Parallelism
Sequential, typically

processes one path at a time.

Sequential, focusing on

one path at a time.

Highly parallelizable, as

multiple ants can explore paths

simultaneously.

Applications

Used in navigation, robotics,

and scenarios requiring

optimal paths.

Common in quick

pathfinding, like video

games, where speed is

more critical than

accuracy.

Ideal for complex optimization

problems, such as TSP,

network routing, and dynamic

systems.

4.4 Comparing between Hybird Shortest Path Algorithms types.

Table 8 contrasts the use cases, complexity, and flexibility of ML-Based Pathfinding, Dynamic A*,

and GA-Based Pathfinding. ML-Based Pathfinding uses machine learning to forecast the best routes;

it works well in dynamic settings but needs a lot of training data and processing power. Dynamic A*

adds overhead for static issues but ensures optimality in real-time scenarios such as robot navigation

by incrementally adapting to graph changes. Despite its delayed convergence and need on parameter

tuning, GA-Based Pathfinding effectively explores vast, complicated networks by applying

evolutionary principles. Dynamic A* is effective in adaptive scenarios, GA flourishes in large-scale,

intricate optimization tasks, and ML shines in high-dimensional domains.

UNDER PEER REVIEW

27

Table 8. Comparing the differences between ML-Based Pathfinding, Dynamic A*, and GA-Based

Pathfinding:

Aspect ML-Based Pathfinding Dynamic A* GA-Based Pathfinding

Approach

Uses machine learning

models (e.g., neural

networks, reinforcement

learning) to predict optimal

paths based on historical

and real-time data.

Extends the A* algorithm to

handle changes in graph

topology or edge weights

during execution, adapting

incrementally.

Uses principles of natural

selection (mutation,

crossover, and selection) to

evolve paths toward an

optimal solution.

Adaptability

Highly adaptive to dynamic

environments by learning

from data and adjusting in

real-time.

Adapts dynamically to changes

in the graph without

recalculating the entire path.

Adaptive through population

evolution but less responsive

to real-time changes

compared to ML or Dynamic

A*.

Optimality

Provides near-optimal

solutions, depending on the

quality of training data and

model accuracy.

Guarantees optimality in

dynamic environments if

changes are handled correctly.

Does not guarantee the

shortest path but can find

near-optimal solutions for

complex problems.

Complexity

Computationally intensive

due to model training and

inference requirements.

Moderate complexity; efficient

in dynamic graphs but requires

additional logic for

incremental updates.

Computationally expensive

for large problems due to

iterative evolution and

evaluation of populations.

Key Limitation

Requires high-quality

training data and

computational resources for

training and inference.

Less effective for static graphs

due to additional overhead for

incremental updates.

Convergence can be slow,

and performance depends on

carefully tuned parameters.

Search Space

Learns to optimize in high-

dimensional and multi-

variable spaces.

Focuses only on portions of the

graph affected by changes,

reducing unnecessary

recalculations.

Explores large search spaces

by evolving solutions,

making it suitable for highly

complex networks.

Parallelism

Parallelizable for prediction

tasks, especially when using

distributed machine

learning.

Sequential but efficient in

focusing only on relevant

graph changes.

Highly parallelizable, as

multiple solutions

(populations) can be evolved

simultaneously.

UNDER PEER REVIEW

28

Applications

Intelligent transportation

systems.

Dynamic environments like

robot navigation or urban

exploration.

 Logistics and supply chain

optimization.

Real-time IoT network

optimization.
Disaster response and adaptive

routing.

 Network routing for large,

complex systems.

-Autonomous navigation

(e.g., drones, vehicles).

 Scheduling and resource

allocation.

Heuristic

Dependency

Relies on predictive models

rather than explicit

heuristics.

Requires a heuristic to estimate

path costs, similar to standard

A*.

No explicit heuristic;

solutions evolve based on

fitness evaluation.

When comparing shortest path algorithms, traditional techniques such as Bellman-Ford and Dijkstra's

are effective and dependable in static situations but ineffective in dynamic, adaptive networks. Greater

flexibility and scalability are provided by heuristic algorithms like A* and ACO, which perform well

in dynamic systems but need careful tweaking. Lastly, by fusing accuracy with flexibility and

sustainability, hybrid algorithms such as Dynamic A* and ML-based models offer the most reliable

results. We believe that hybrid algorithms, particularly those based on machine learning, provide the

most promising way forward. They are perfect for complex, dynamic systems because they provide

scalability and flexibility that are unrivaled by heuristic and classical approaches. But in the end, the

particular application will determine which algorithm is best, taking sustainability, adaptability, and

computational efficiency into account.

Conclusion
In network optimization, shortest path techniques are essential for striking a balance between

scalability, flexibility, and efficiency. Traditional algorithms, such Bellman-Ford and Dijkstra's,

function well in static networks but poorly in dynamic ones. Although they mostly rely on heuristic

quality, heuristic approaches such as A* and Ant Colony Optimization effectively and adaptably

handle these problems. Precision and flexibility are combined in hybrid techniques, such as Dynamic

A* and machine learning-based algorithms, which perform well in complicated and dynamic situations

but demand a large amount of processing power. Hybrid approaches that combine the advantages of

machine learning, heuristic, and classical methods are the way of the future for shortest path

algorithms. Promising avenues for enhancing security, scalability, and computational efficiency are

provided by emerging technologies like blockchain and quantum computing. These developments will

guarantee that shortest path algorithms remain relevant in meeting the needs of contemporary networks

by redefining their function. These algorithms will continue to play a crucial role in facilitating

effective, flexible, and dependable network communication across a range of applications by

overcoming present constraints and integrating sustainability.

UNDER PEER REVIEW

29

References

[1] A. S. Tanenbaum and D. J. Wetherall, Computer Networks, 5th ed., Upper Saddle River, NJ, USA:

Prentice Hall, 2011.

[2] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach, 8th ed., Boston, MA,

USA: Pearson, 2020.

[3] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik, vol.

1, no. 1, pp. 269–271, Dec. 1959.

[4] R. Bellman, “On a routing problem,” Quarterly of Applied Mathematics, vol. 16, no. 1, pp. 87–90,

1958.

[5] D. Medhi and K. Ramasamy, Network Routing: Algorithms, Protocols, and Architectures, 2nd ed.,

San Francisco, CA, USA: Morgan Kaufmann, 2017.

[6] H. Hussein, A. G. Bitar, and N. A. Odeh, “Ant colony optimization for shortest path routing,” IEEE

Transactions on Networking, vol. 27, no. 3, pp. 10–20, Mar. 2021.

[7] J. Smith, T. Lee, and R. Khan, “Blockchain-based secure routing protocols,” IEEE Internet of

Things Journal, vol. 5, no. 4, pp. 15–23, Jul. 2020.

[8] J. Brown, M. Patel, and A. Jones, “Energy-efficient shortest path algorithms for IoT systems,”

IEEE Transactions on Green Computing, vol. 8, no. 2, pp. 112–121, May 2019.

[9] Y. Li, W. Zhou, and K. Chen, “Reinforcement learning for dynamic network routing optimization,”

IEEE Access, vol. 9, pp. 112345–112359, Aug. 2023.

[10] R. W. Floyd, “Algorithm 97: Shortest path,” Communications of the ACM, vol. 5, no. 6, pp. 345–

346, Jun. 1962.

[11] R. Zhang, L. Wang, and Q. Liu, “Machine learning in shortest path routing: A survey,” IEEE

Communications Surveys & Tutorials, vol. 23, no. 4, pp. 201–222, Dec. 2023.

[12] C. Huitema, Routing in the Internet. Upper Saddle River, NJ, USA: Prentice Hall, 1995.

 [13] P. E. Hart, N. J. Nilsson, and B. Raphael, "A formal basis for the heuristic determination of

minimum cost paths," IEEE Transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–

107, Jul. 1968.

[14] M. Dorigo and T. Stützle, Ant Colony Optimization. Cambridge, MA: MIT Press, 2004.

[15] R. E. Korf, "Artificial Intelligence Search Algorithms," Annual Review of Computer Science, vol.

2, no. 1, pp. 167–194, 1987.

UNDER PEER REVIEW

SDI 09
Typewritten text
COMPETING INTERESTS DISCLAIMER:Authors have declared that they have no known competing financial interests OR non-financial interests OR personal relationships that could have appeared to influence the work reported in this paper.

Editor-85
Highlight

30

[16] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed. Upper Saddle River,

NJ: Pearson, 2010.

[17] J. Kennedy and R. C. Eberhart, "Swarm Intelligence," Handbook of Nature-Inspired and

Innovative Computing, Springer, pp. 187–219, 2006.

[18] C. Perkins, E. Belding-Royer, and S. Das, "Ad hoc On-Demand Distance Vector (AODV)

Routing," RFC 3561, Jul. 2003.

[19] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd ed., Cambridge,

MA: MIT Press, 2018.

[20] M. Al-Fares, A. Loukissas, and A. Vahdat, "A Scalable, Commodity Data Center Network

Architecture," in Proceedings of the ACM SIGCOMM Conference on Data Communication, 2008, pp.

63–74.

[21] S. Johnson and M. Keller, “Simulation tools for evaluating shortest path algorithms,” IEEE

Transactions on Network Science and Engineering, vol. 6, no. 1, pp. 12–21, Jan. 2020.

[22] R. Floyd, “Dynamic programming methods for shortest paths,” Operations Research Journal,

vol. 2, no. 4, pp. 155–161, Oct. 1962.

[23] M. L. Garcia and P. Martinez, “Advances in simulation for shortest path algorithms,” Simulation

and Modeling Journal, vol. 4, no. 3, pp. 45–56, Sep. 2022.

[24] M. A. Javaid, "Understanding Dijkstra’s Algorithm," Member Vendor Advisory Council,

CompTIA.

[25] X. Z. Wang, “The Comparison of Three Algorithms in Shortest Path Issue,” in First International

Conference on Advanced Algorithms and Control Engineering, IOP Conf. Series: Journal of Physics:

Conf. Series, vol. 1087, no. 2, pp. 022011, 2018. doi:10.1088/1719-6596/1087/2/022011.

[26] J. Kleinberg and É. Tardos, Algorithm Design. Boston, MA: Pearson, 2006.

[27] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 3rd ed.

Cambridge, MA: MIT Press, 2009.

[28] A. Orda, "Shortest-path and minimum-delay algorithms in networks with time-dependent edge-

length," J. ACM, vol. 14, no. 3, pp. 607–625, 1990.

[29] K. R. Chowdhury and I. F. Akyildiz, "CRP: A routing protocol for cognitive radio ad hoc

networks," IEEE J. Sel. Areas Commun., vol. 29, no. 4, pp. 794–804, 2011.

[30] X. Yang and D. Medhi, "Routing in network virtualization: Enhancements and challenges," IEEE

Commun. Mag., vol. 48, no. 7, pp. 128–135, Jul. 2010.

UNDER PEER REVIEW

31

[31] M. Al-Karaki and A. Kamal, "Routing techniques in wireless sensor networks: A survey," IEEE

Wireless Commun., vol. 11, no. 6, pp. 6–28, Dec. 2004.

[32] X. Sun, Y. Liu, and G. Zhu, "Blockchain-based secure shortest path routing in decentralized IoT

networks," IEEE Trans. Ind. Informat., vol. 16, no. 6, pp. 1926–1935, Jun. 2020.

[33] R. Xu, H. Zhou, and Y. Zhang, "Reinforcement learning for adaptive shortest path routing in

complex networks," IEEE Access, vol. 9, pp. 120164–120175, 2021.

[34] A. Goyal, S. Sharma, and R. Mehta, "A graph-based model integrating deep learning for shortest

path computation in dynamic networks," J. Netw. Syst., vol. 12, no. 4, pp. 123–135, 2023.

[35] B. Lee, H. Kim, and J. Park, "A hybrid shortest path algorithm combining A* with swarm

intelligence heuristic for VANETs," in Proc. Veh. Technol. Conf. (VTC), 2022, pp. 456–462.

[36] C. Zhang, F. Li, and K. Wong, "Multi-objective optimization framework for shortest path routing

in IoT networks," IEEE Internet Things J., vol. 9, no. 2, pp. 78–89, Feb. 2023.

[37] D. Wang, X. Liu, and Y. Zhao, "A deep learning-based approach for k-shortest paths in large-

scale road networks using graph attention networks," IEEE Trans. Intell. Transp. Syst., vol. 25, no. 3,

pp. 467–478, Mar. 2023.

[38] E. Chen, W. Huang, and T. Lin, "Adaptive shortest path algorithm for SDN environments," IEEE

Trans. Netw. Serv. Manage., vol. 10, no. 1, pp. 55–65, 2023.

[39] F. Liu, M. Wang, and S. Xu, "GPU-accelerated shortest path algorithm designed for real-time

applications in smart cities," IEEE Access, vol. 11, pp. 3324–3335, 2023.

[40] G. Roy, A. Sinha, and P. Das, "A hybrid algorithm for routing in MANETs combining Dijkstra’s

and Bellman-Ford," in Proc. Int. Conf. Mobile Ad Hoc Netw., 2023, pp. 78–85.

[41] H. Xu, Z. Yang, and L. Wei, "Energy-aware shortest path computation in energy-harvesting

wireless sensor networks," IEEE Wireless Commun. Lett., vol. 12, no. 2, pp. 45–50, Feb. 2023.

[42] I. Singh, P. Nair, and K. Patel, "Real-time shortest path algorithm for intelligent transportation

systems using deep reinforcement learning," IEEE Trans. Intell. Transp. Syst., vol. 26, no. 1, pp. 112–

123, Jan. 2024.

[43] J. Patel, R. Sharma, and M. Gupta, "Quantum-inspired shortest path algorithm for high-

dimensional networks," Quantum Inf. Process., vol. 20, no. 6, pp. 456–470, 2

UNDER PEER REVIEW

32

UNDER PEER REVIEW

33

UNDER PEER REVIEW

