
1  

A Comprehensive Review of Shortest Path Algorithms for 

Network Routing 
 

  

Abstract 

The rapid development of digital technology and the increasing interconnection of devices have made 

computer networks indispensable to modern life. Global data movement, communication, and 

applications like cloud computing, IoT, e-commerce, and smart cities are all made possible by these 

networks. Routing algorithms particularly shortest path algorithms are crucial for determining the most 

effective data transmission routes and are largely responsible for the dependability and efficiency of 

these networks. Because these algorithms maintain stability and reliability while lowering latency, 

costs, and energy consumption, they are crucial to network operation.  

Shortest path problem solving has long relied on fundamental algorithms with origins in graph theory, 

such as Bellman-Ford and Dijkstra's. Despite their successes, the growing complexity and dynamic 

nature of contemporary networks have exposed their shortcomings. Advanced approaches, including 

heuristic, hybrid, and AI-driven methods, have been developed to get around these challenges. 

Innovations like ant colony optimization and blockchain-based algorithms have improved computing 

efficiency, security, and adaptability. 

The Internet of Things, VANETs, and SDNs are just a few of the domains that use these algorithms; 

each has specific requirements, like real-time adaptation and energy efficiency. Reinforcement 

learning and prediction models driven by machine learning have further increased routing efficiency, 

while simulation tools such as Mininet and OMNeT++ have been essential for evaluating algorithm 

performance in practical scenarios. As emerging technologies like blockchain and quantum computing 

become more widely accepted, shortest path algorithms will continue to advance, ensuring their 

suitability in the rapidly evolving digital environment. This study, which looks at their development, 

applications, and possible future directions, emphasizes their importance in creating modern networks.  
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1. Introduction 

 

As digital technology has grown exponentially and gadgets have become increasingly networked, 

computer networks have become indispensable to modern life. These networks are essential for 

international communication and data transfer in a variety of applications, including cloud computing, 

e-commerce, the Internet of Things, and smart cities. The efficiency and reliability of these networks 

depend heavily on routing algorithms, and shortest path techniques are necessary to reach optimal 

performance. These algorithms determine optimal data transmission channels by reducing critical 

characteristics such as latency, cost, and energy consumption while maintaining network reliability 

and stability [1], [2]. Shortest path algorithms are based on the foundation of graph theory, which 

depicts networks as graphs composed of nodes (representing devices) and edges (representing 

connections). Basic algorithms such as Bellman-Ford [4] and Dijkstra's [3] were the first to tackle the 

single-source shortest path problem. Due to their efficiency and ease of use, these conventional 

techniques are still widely used today and have formed the basis of modern routing protocols. Bellman-

Ford, for instance, has proven to be robust in situations when edge weights are negative, and Dijkstra's 

technique is crucial for link-state routing protocols [4],]. With the increasing sophistication and 

breadth of networks, traditional shortest path approaches have faced challenges in handling resource 

constraints, large datasets, and shifting topologies. To address these problems, researchers have 

developed complex algorithms that incorporate heuristics, hybrid approaches, and artificial 

intelligence (AI). While ant colony optimization [6] takes advantage of natural foraging behavior to 

determine the optimal routes, block chain-based solutions enhance routing security by providing 

transparent and unchangeable path decisions [7]. With these advancements, algorithms may now adapt 

dynamically to changing network conditions and increase computational efficiency.  

 

Many diverse fields, each with its own set of requirements and restrictions, use the shortest path 

algorithm. In Internet of Things systems, energy-efficient algorithms are crucial for extending device 

lifetimes and ensuring sustainable network operation, as devices often have limited resources [8]. In a 

similar vein, real-time decision-making algorithms are required for vehicle ad hoc networks 

(VANETs) to manage high mobility and traffic. Software-defined networks (SDNs) benefit from 

adaptive routing algorithms because they can adjust routes dynamically in response to network 

congestion and traffic patterns [5]. Advances in AI have further changed the methods used for the 

shortest paths. Thanks to reinforcement learning (RL) models, routing algorithms can now adapt 

dynamically to changes in the network in real time, improving efficiency and reducing latency [10]. 

Additionally, machine learning (ML)-powered prediction models have simplified anticipatory 

congestion management by optimizing routing decisions even in highly dynamic scenarios [11]. 

Researchers have tested and assessed these algorithms in simulation environments such as Mininet 

and OMNeT++ [12], which allow them to see how well they perform in practical settings.  

There are still few problems despite these advancements. Modern network algorithms must be able to 

process vast volumes of real-time data, handle tremendous sizes, and adapt to shifting security threats. 

UNDER PEER REVIEW



3  

With billions of devices connecting simultaneously in scenarios like smart cities and industrial IoT, 

ensuring efficient and safe routing is a difficult undertaking. Strong security measures must also be 

included in routing algorithms to combat risks like data interception and route hijacking [7]. As the 

digital world evolves, the search for the best path algorithms is at the forefront of networking research. 

Future technologies such as quantum computing could revolutionize path optimization by facilitating 

faster and more scalable solutions. New decentralized and secure routing paradigms are being 

presented by blockchain technology. By overcoming current limitations and leveraging these 

developments, shortest path algorithms are poised to remain at the forefront of the development of 

both modern and future networks. This study investigates the concepts, historical development, and 

recent advancements in shortest path algorithms for network routing. Through the resolution of 

significant problems, the presentation of innovative solutions, and the discussion of practical 

applications, this book highlights the significance of these algorithms in assessing the dependability 

and effectiveness of contemporary computer networks.  

2. Background theory 

2.1 Shortest Path Algorithm Classification  

The three primary categories of shortest path algorithms are hybrid, heuristic, and classical. traditional 

algorithms, such as Floyd-Warshall, Johnson's, and Dijkstra's Bellman-Ford. Heuristic algorithms like 

Greedy Best-First Search, Ant Colony Optimization, and A*. The advantages of heuristic and classical 

approaches are combined in hybrid algorithms.  

2.1.1 classical Algorithms for the Shortest Path.  

Deterministic techniques known as classical algorithms ensure the best answers to shortest path issues. 

Examples include Bellman-Ford, which can handle distributed computations with negative weights, 

and Dijkstra's, which is appropriate for graphs with non-negative weights. They serve as the 

cornerstone of reliable and effective network routing.  

      A- The Dijkstra Algorithm  

Finding the shortest paths in network graphs is a common use of Dijkstra's Algorithm, a basic tool in 

computer networking. Its ability to determine the optimal data transmission routes while lowering 

characteristics like cost, latency, or resource consumption accounts for its significance in network 

routing. Edsger W. Dijkstra developed the method in 1959 with the goal of figuring out the shortest 

path between a single source node and each other node in a network with non-negative edge weights 

[3]. It is currently a basic part of many routing protocols due to its features, which enable reliable and 

efficient communication in a range of network scenarios [1]. In the context of network routing, 

networks are depicted as graphs, where nodes represent hardware such as switches or routers and edges 

represent links or connections between them. Each edge has a weight, which could represent latency, 

bandwidth use, or physical distance. Dijkstra's Algorithm finds the shortest path tree from the source 

node to all other nodes, allowing network devices to forward data packets along the most efficient 

paths [2].  
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Figure 1 - Shortest path Algorithms classification 

The method involves keeping a set of nodes with known shortest paths and another set of nodes that 

have not been visited. Initially, it assigns a distance of zero to the source node and an infinite distance 

to each subsequent node. Using a priority queue, it selects the unvisited node with the shortest distance, 

marking it as visited and updating the distances of its neighbors if a shorter path is found. This method 

is done recursively until all nodes are visited or the fastest path to a specific target node is found. The 

greedy technique expands the shortest paths at each step, ensuring optimal solutions for graphs with 

non-negative edge weights [2], [3]. Dijkstra's Algorithm is heavily utilized in network routing 

protocols, particularly link-state protocols such as Open Shortest Path First (OSPF). In OSPF, routers 

use Dijkstra's Algorithm to find the shortest path tree using link-state ads that show the current 

condition of the network. By providing routers with the optimal paths for forwarding data packets, this 

tree guarantees efficient and loop-free routing. Outside of OSPF, the technique serves as the 

foundation for traffic engineering applications and other network optimization initiatives, where it aids 

in dynamic traffic management to minimize congestion and optimize resource use [5]. The ability of 
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Dijkstra's Algorithm to generate reliable and deterministic results, ensuring consistent routing 

decisions, is one of its benefits in network routing. Its efficiency allows it to scale to medium-to-large 

networks, particularly when combined with complex data structures like Fibonacci heaps [13]. 

However, the method has certain limitations, especially in dynamic networks with dynamic topologies. 

Pathways must be fully recalculated by the program after changes in these settings, which can be 

computationally expensive. Furthermore, its limitation to graphs with non-negative edge weights 

limits its applicability in certain network scenarios where costs may fluctuate in an unpredictable way 

[9]. Despite these challenges, Dijkstra's Algorithm remains an essential tool for network routing 

because it forms the foundation of increasingly complex and adaptable routing systems. As 

demonstrated by its continued applicability in modern networking, it is a crucial algorithm for 

understanding and enhancing network communication [11][16].  

B-  Bellman-Ford algorithm 

The Bellman-Ford algorithm is a graph search technique that finds the shortest path between a specific 

source vertex and each other vertex in the graph. This method can be applied to both weighted and 

unweighted graphs. Similar to Dijkstra's shortest path algorithm, the Bellman-Ford method is 

guaranteed to find the shortest path in a graph. Bellman-Ford is more adaptable than Dijkstra's method 

since it can handle graphs with negative edge weights, even if it is slower. It is crucial to keep in mind 

that in a graph with a negative cycle, there isn't a shortest path. If the road continued to circle the 

negative cycle indefinitely, the cost would decrease even if the journey duration increased. Bellman-

Ford thus has the added advantage of being able to recognize negative cycles. Unlike Dijkstra's 

algorithm, which uses a greedy approach, Bellman-Ford uses a dynamic programming paradigm, 

iterating through all edges up to |V| - 1 times, where |V| is the number of vertices in the graph.  

By periodically relaxing each edge, the method continuously improves the shortest pathway 

estimations. This makes it particularly suitable for applications where negative weights might be 

present, such network routing and financial market arbitrage detection. However, because to its higher 

temporal complexity of O(VE), where V is the number of vertices and E is the number of edges, 

Bellman-Ford is usually only used when negative weights are present. Additionally, the algorithm's 

ability to detect negative weight cycles ensures its reliability in scenarios when they could lead to 

unstable calculations [4].  

B.1 How Bellman Ford's algorithm works 

Overestimating the distance between the first vertex and each successive vertex is how the Bellman 

Ford method works. It then iteratively relaxes those estimates by finding new paths that are shorter 

than the previously exaggerated paths. The Bellman-Ford technique is designed to find the shortest 

paths between a single source node and all other nodes, even when some edges in a network have 

negative weights. The method starts by setting the distance to the source node to zero and the distances 

to all other nodes to infinity, signifying that they are initially inaccessible. It then carefully examines 

each edge in the graph to see whether using an intermediary node may shorten the current path to a 

UNDER PEER REVIEW



6  

target node. If a shorter path is found, the distance to the destination node is updated. This process, 

known as relaxing, is carried out V−1V-1V−1 times, where VVV is the number of vertices in the 

graph, to ensure that all possible paths are considered.  

After the relaxation phases, the algorithm does a second pass across the edges to check for any 

additional distance modifications. If any distance can still be shortened, there is a negative weight 

cycle, suggesting that certain nodes lack a finite shortest path. The Bellman-Ford technique is helpful 

for graphs with negative weights since it can not only determine shortest paths but also detect negative 

weight cycles.  

By doing this repeatedly for all vertices, we can guarantee that the result is optimize 

 

 

Figure 2. example of  How Bellman Ford's algorithm work  

 

C-  The Floyd–Warshall algorithm 

The Floyd-Warshall algorithm is one method for figuring out the shortest paths between each pair of 

nodes in a network. It uses a dynamic programming technique to determine the shortest paths for the 

entire graph, progressively coming up with solutions to smaller subproblems. The method is applicable 

to both directed and undirected graphs, and is particularly effective for dense graphs. However, the 

graph must not have negative weight cycles because this would result in undefined shortest paths. The 

process begins by initializing a distance matrix, where each entry represents the shortest distance 

between two nodes. Any direct edge connecting two nodes has its weight put into the matrix. If there 
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isn't a direct edge, the distance is set to infinity, making the nodes initially inaccessible to one another. 

The distance to every node is set to zero since the shortest path between any two nodes is free. The 

core of the algorithm is its iterative process. Along the paths that connect each other pair of nodes, 

each node in the network is systematically considered as a potential intermediary node. For every pair 

of nodes, it assesses if using this intermediary node provides a shorter path than the one that is currently 

known to exist. In that case, the algorithm adjusts the distance matrix to take the new, shorter path into 

consideration. This process is carried out for every node serving as an intermediary point to ensure 

that all possible paths are considered. At the end of the process, the distance matrix contains the 

shortest paths between each pair of nodes. Additionally, if any diagonal member in the matrix becomes 

negative, the graph's weight cycle is shown as negative. This is because a negative cycle would render 

shortest path calculations invalid for some node pairs, allowing for an indefinitely decreasing path 

cost. Despite its straightforward methodology, the Floyd-Warshall algorithm is computationally 

difficult for large graphs, with a time complexity of O(N), where n is the number of nodes. 

Nonetheless, it is a helpful tool in scenarios like network routing and traffic flow analysis when 

understanding all pairs' shortest paths is essential because to its user-friendliness and ability to handle 

enormous graphs.  

D-  Johnson’s Algorithm 

Johnson's Algorithm is a technique for figuring out the shortest paths between each pair of nodes in a 

weighted graph. Because it combines the benefits of Bellman-Ford's and Dijkstra's algorithms, it 

works particularly well with sparse graphs. The unique feature of Johnson's Algorithm is that it can 

handle graphs with negative edge weights as long as there are no negative weight cycles. The algorithm 

first reweights the edges of the graph to eliminate negative weights. The Bellman-Ford algorithm is 

used to determine the "potential" value of each node, and then all of the graph's edge weights are 

adjusted. This reweighting ensures that all edge weights become non-negative while preserving the 

relative order of shortest pathways. The approach uses Dijkstra's algorithm to determine the shortest 

pathways from each node after reweighting. Since Dijkstra's algorithm works well for networks with 

non-negative weights, this technique allows Johnson's Algorithm to perform better for sparse graphs 

than other all-pairs shortest path techniques.  

The benefits and drawbacks of traditional shortest path methods are outlined in Table 1. Although it 

is ineffective with negative edges, Dijkstra's Algorithm works well with dense graphs and non-

negative weights. Bellman-Ford is slower and less effective for big, dense graphs, but it can handle 

negative weights and identify cycles. Floyd-Warshall has a high time and memory complexity for 

large graphs, yet it can detect cycles and calculate all-pairs shortest paths. Although Johnson's 

Algorithm works well for sparse networks with negative weights, its reweighting procedure makes it 

difficult to use.  
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Table 1. Advantages and Disadvantages of Classical Shortest path algorithms types. 

Algorithm Advantages Disadvantages 

Dijkstra’s Algorithm 

Efficient for graphs with non-negative 

weights. 
Cannot handle negative edge weights. 

Guarantees optimal solutions for single-

source shortest paths. 
Inefficient for very large or sparse graphs 

without optimizations. 
Suitable for dense graphs with non-negative 

weights. 

Bellman-Ford 

Algorithm 

Handles graphs with negative edge weights. 
Slower than Dijkstra’s (O(VE))for large 

graphs. 

Detects negative weight cycles. 

Inefficient for dense graphs. 

Suitable for distributed systems 

Floyd-Warshall 

Algorithm 

Computes all-pairs shortest paths in one 

execution. 

Inefficient for large graphs due to 

O(𝑉3)time complexity. 

Simple and easy to implement. 

Memory-intensive for dense graphs. 

Detects negative weight cycles. 

Johnson’s Algorithm 

Efficient for sparse graphs. 
Complex to implement due to 

reweighting. 

Handles negative weights without cycles. 

Requires extra computation for 

reweighting, adding overhead. Combines the benefits of Dijkstra’s and 

Bellman-Ford. 
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2.1.2 Heuristic Shortest Path Algorithms 

Heuristic shortest path algorithms are optimization methods that prioritize speed and efficiency above 

thorough exploration by using heuristic functions to direct the search for paths in a graph. Heuristic 

approaches aim to approximate optimal paths by making well-informed decisions based on expected 

costs, in contrast to classical algorithms that ensure exact answers. 

A-  A* Algorithm 

A popular heuristic-based approach for determining the shortest path between a source node and a 

target node in a graph is the A* algorithm. It works especially well in applications with wide search 

spaces, such game development, robotics, and navigation systems. The A* algorithm balances 

computational efficiency and optimality by combining the advantages of Greedy Best-First Search 

and Dijkstra's Algorithm. [13] 

A* achieves its performance by using a cost function to guide its search. The cost function is defined 

as: 

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) 

 𝑔(𝑛) is the actual cost from the start node to the current node 𝑛. 

 ℎ(𝑛)is the heuristic estimate of the cost from 𝑛 to the target node. 

The heuristic h(n) is a crucial component that establishes the algorithm's efficiency. It must be 

acceptable (never overstate the genuine cost) in order to guarantee optimal solutions. The method 

iteratively investigates nodes with the lowest f(n) value to ensure that the routes most likely to lead to 

the target are examined first. If the heuristic is well-designed, A* can significantly reduce the search 

space when compared to other shortest path algorithms. Because it enables the heuristic to be tailored 

for specific applications, A*'s versatility is highly valued by many. For example, in 2D grid navigation, 

the Manhattan or Euclidean distance is commonly used as a heuristic. However, the efficacy of the 

heuristic may decrease in cases where the graph is abnormally large or when the heuristic is poorly 

chosen [13].  

B-  Greedy Best-First Search algorithm 

Greedy Best-First Search is a heuristic-based pathfinding method that looks into nodes that seem to 

be closest to the objective based on a heuristic assessment. "Greedy" refers to its method of 

continuously choosing the node with the lowest heuristic value in an attempt to reach the goal as 

quickly as feasible. Unlike other algorithms, such as A* or Dijkstra's, which consider both the expected 

cost to the objective and the actual cost of accessing a node, Greedy Best-First Search alone employs 

the heuristic function to guide its decisions. The algorithm evaluates its neighbors based on their 

heuristic values, starting at the source node. After selecting the neighbor that appears to be closest to 

the goal, it moves to that node. During this process, the algorithm iteratively grows the node with the 

smallest estimated distance to the destination. Because of its simple, goal-oriented approach, the 

algorithm can often find a path to the objective quickly, especially in simple or well-structured graphs. 

However, because greedy best-first search disregards the actual cost of reaching a node, it does not 
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yield the shortest path. In other cases, the heuristic function may even select a longer, less optimal 

path if it produces estimates that are not correct. For example, in a graph with obstacles or detours, the 

algorithm can focus on a node that appears closer to the goal but takes a much longer path to get it. 

This method is particularly useful when speed is more important than precision. In video games, for 

instance, it is commonly employed to quickly guide characters toward a destination. Similarly, in early 

searches or scenarios with simple heuristics, it can provide a fast estimate of the desired path. Despite 

its shortcomings, Greedy Best-First Search is commended for its simplicity and speedy path discovery 

in large search fields.[13].  

C-  Ant Colony Optimization (ACO) algorithm 

Ant Colony Optimization (ACO) is a technique that was inspired by the way ants forage for food in 

the wild. In the wild, ants initially roam around aimlessly, but when they return to the colony after 

locating food, they leave behind pheromone trails. Other ants, who are more likely to follow paths 

with higher pheromone concentrations, pick up these tracks. Eventually, more ants prefer the shortest 

road since it gathers the most pheromone from frequent use. ACO computationally simulates this 

behavior to address complex optimization problems, especially those involving paths, such the 

traveling salesman problem or network routing [14].  

The algorithm initially visualizes the problem as a graph, where nodes represent decision points (e.g., 

cities on a route) and edges reflect relationships with associated costs (e.g., distances). The graph is 

traversed by artificial "ants" that construct solutions. Each ant makes probabilistic decisions on which 

path to follow next based on two factors: problem-specific heuristic information, such as the distance 

to the next node, and the quantity of pheromone on each edge, which reflects the cumulative 

desirability of that path. As the ants complete their journeys, the algorithm evaluates the quality of 

their solutions. The pheromone on less appealing paths is allowed to progressively fade away, while 

more pheromone is introduced to the edges of paths that lead to better solutions. This evaporation 

prevents the algorithm from becoming stuck in less-than-ideal solutions by reducing the influence of 

suboptimal paths. Over the course of numerous repetitions, the pheromone dynamics guide the ants 

toward more ideal solutions because shorter or better roads inherently accumulate more pheromone 

and draw in more ants. One of ACO's primary advantages is its ability to balance exploration and 

exploitation. At first, the ants' probabilistic decision-making process allows them to explore a range 

of options, but the pheromone reinforcement gradually focuses on the most promising solutions. As a 

result, ACO performs particularly effectively in problems with complex constraints or large search 

spaces. In the traveling salesman problem, for example, where the goal is to find the shortest route that 

visits every city exactly once, ACO can iteratively improve solutions by utilizing the collective 

behavior of the ants. In a similar vein, network routing can find efficient data transmission paths and 

adapt dynamically to network changes.  

All things considered, Ant Colony Optimization is an intriguing illustration of how strong 

computational methods can be inspired by natural systems. It is a powerful and adaptable tool for 

resolving optimization issues in a variety of fields since it can replicate the decentralized and self-

organizing behavior of actual ants [14].  
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Table 2 outlines the advantages and disadvantages of heuristic shortest path algorithms. A* guarantees 

optimal solutions with admissible heuristics but is memory-intensive and heavily reliant on heuristic 

quality. Greedy Best-First Search is fast and goal-oriented but may produce suboptimal paths and 

struggle with misleading heuristics. Ant Colony Optimization (ACO) excels in complex, dynamic 

problems but is computationally intensive and requires careful parameter tuning. 

Table 2. Advantages and Disadvantages of Heuristic Shortest Path Algorithms types. 

 

Algorithm Advantages Disadvantages 

A* 

Combines actual cost and heuristic for 

optimal solutions. 

Performance heavily depends on the 

quality of the heuristic. 

Guarantees shortest path if the heuristic 

is admissible and consistent. 

Memory-intensive for large graphs. 

Reduces search space compared to 

Dijkstra’s. 

Greedy Best-First Search 

Fast and goal-oriented, often reaching 

the target quickly. 
Does not guarantee shortest path. 

Simple to implement. 
Can get stuck in local minima if the 

heuristic is misleading. 

Ant Colony Optimization 

(ACO) 

Effective for complex optimization 

problems. 

Computationally expensive for large 

problems. 

Flexible and adaptable to dynamic 

environments. 
Performance depends on parameter 

tuning (e.g., pheromone evaporation 

rate). Avoids premature convergence by 

balancing exploration and exploitation. 

 

2.1.3 Hybrid Shortest Path Algorithms 

Hybrid shortest path algorithms are an advanced class of optimization techniques that combine aspects 

of heuristic and adaptive strategies like machine learning, genetic algorithms, or dynamic changes 

with traditional deterministic approaches like Dijkstra's or Bellman-Ford. These algorithms combine 

the best aspects of heuristic and classical methodologies to achieve the optimal balance between 

computing efficiency, adaptability, and scalability. They are hence highly effective at addressing 

difficult pathfinding problems in dynamic and uncertain scenarios. 
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A-  Machine Learning (ML)-Based Pathfinding 

One of the best-known examples is the hybrid method called Machine Learning (ML)-Based 

Pathfinding. This approach dynamically selects the optimal routes by utilizing prediction algorithms 

that have been trained on massive amounts of data. Machine learning algorithms analyze both 

historical data, such recurring traffic patterns, and real-time inputs, like the amount of congestion at 

any given time, to produce well-informed routing decisions. For instance, ML-based algorithms in an 

intelligent transportation system predict the quickest routes based on real-time traffic, weather, and 

road closure data. Similarly, by adapting to shifting network conditions, including node failures or 

bandwidth fluctuations, machine learning (ML) models in Internet of Things (IoT) networks enhance 

data flow. By incorporating reinforcement learning (RL), a branch of machine learning that enables 

the system to learn from past decisions and make more accurate predictions going forward, the system 

can iteratively enhance its pathfinding tactics. However, the success of ML-based pathfinding depends 

on the quality of the training data and the processing capacity available for real-time inference. [15] 

B-  Dynamic A* 

Another crucial hybrid technique is dynamic A* (D*), a variant of the classic A* algorithm that adjusts 

to modifications in network architecture or edge weights while it is being run. While traditional A* 

operates on static graphs, D* is designed to adapt in real time. In autonomous robotics, for example, 

when environmental factors can change abruptly, D* merely recalculates the portions of the path 

affected by new obstacles or updated terrain costs. Instead of repeating the entire process, D* gradually 

modifies the solution to maintain computing efficiency [17]. D* is particularly well-suited for dynamic 

environments that require continuous adjustment, such urban navigation or disaster response 

scenarios, because of this feature. 

C-  Genetic Algorithm (GA)-Based Pathfinding 

Genetic Algorithm (GA)-Based Pathfinding is another instance of hybrid optimization that takes cues 

from evolution and natural selection. In GA-based pathfinding, which uses a population of potential 

solutions (paths) that evolves over time, more successful solutions are selected for reproduction and 

less successful ones are rejected. Genetic operations that introduce variety and enable the exploration 

of a vast solution space include mutation and crossover. For large and complex networks, such supply 

chain optimization, logistics planning, and network routing, where the sheer number of variables and 

constraints may render typical methods impractical, this approach performs very well. GA-based 

methods require careful parameter tuning, including population size and mutation rate, to ensure 

convergence to a perfect or nearly ideal solution [16].  
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The advantages and disadvantages of hybrid shortest route methods are shown in Table 3. Although 

ML-Based Pathfinding is computationally demanding and dependent on high-quality training data, it 

can adjust to real-time conditions and learn from past data. Dynamic A* is less appropriate for static 

graphs since it introduces complexity for incremental updates while updating pathways effectively in 

changing settings. Although GA-Based Pathfinding avoids local optima and explores wide solution 

spaces, it has a slow convergence rate and necessitates exact parameter tweaking.  

 

Table 3. the advantages and disadvantages of different types of hybrid shortest path 

algorithms: 

Algorithm Type Advantages Disadvantages 

ML-Based Pathfinding 

-Adapts dynamically to real-time 

conditions, such as traffic or 

network changes. 

Computationally intensive, requiring 

substantial resources for training and 

inference. 

Learns from historical data to 

improve accuracy over time. 
Performance depends heavily on the 

quality and volume of training data. 
Handles complex, multi-variable 

environments effectively. 

Dynamic A* 

Efficiently handles changes in 

graph structure or edge weights 

without recalculating from scratch. 

Requires additional logic for 

incremental updates, increasing 

implementation complexity. 

Maintains high computational 

efficiency in dynamic 

environments. Not ideal for static graphs due to 

added overhead. 
Suitable for real-time navigation 

and robotics. 

GA-Based Pathfinding 

Capable of exploring large, 

complex solution spaces. 

Slow convergence in large-scale 

problems due to the iterative nature. 

Avoids local optima through 

crossover and mutation. Requires careful parameter tuning 

(e.g., mutation rate, population size) to 

ensure efficiency. Flexible and adaptable to a wide 

range of optimization problems. 
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2.2 Performance Evaluation of Shortest Path Algorithms 

The performance of shortest path algorithms is evaluated using benchmarks such as convergence time, 

computational complexity, scalability, and fault tolerance, which makes it a crucial area of study. 

Convergence time quantifies how quickly an algorithm stabilizes routing decisions after network 

changes. Dijkstra's algorithm is renowned for its deterministic convergence, but heuristic approaches 

such as A* concentrate on tenable routes to generate quicker answers in specific situations [9]. Another 

important statistic is computational complexity. The complexity of Dijkstra's algorithm is O(V)^2, 

however with sophisticated data structures like Fibonacci heaps, it can be lowered to O(V+E) log(V) 

[13]. By eliminating pointless explorations, heuristic techniques such as A* further optimize this 

process. Heuristic and hybrid algorithms outperform classical approaches in addressing the problem 

of scalability, especially in large-scale networks [9]. Fault tolerance is essential in dynamic or 

disrupted environments. While algorithms like Bellman-Ford are robust to changes in topology, 

heuristic techniques excel at adapting to changing conditions. Simulation tools such as ns-3 and 

OPNET have enabled the evaluation of these metrics under realistic conditions and have also provided 

insight into the behavior of the algorithms in different scenarios [15].  

2.3 Emerging Trends in Shortest Path Algorithms 

Advances in technology have led to changes in algorithms for the shortest path. Machine learning and 

artificial intelligence are increasingly being used to dynamically optimize routing decisions. For 

example, by adaptively learning the optimal routes based on both history and current data, 

reinforcement learning models improve flexibility in dynamic networks [11]. Thanks to Software-

Defined Networking's (SDN) centralized routing control, global shortest path optimization is now 

feasible. SDN simplifies complex configurations and provides real-time traffic control capabilities, 

making it a groundbreaking technique in modern networking [15]. Blockchain technology is also 

changing the game in the domain of secure routing. By decentralizing power and ensuring the accuracy 

of routing data, blockchain-based protocols minimize security vulnerabilities, particularly in IoT and 

edge networks [6]. Additionally, IoT-specific energy-efficient algorithms address the unique 

constraints of these devices by emphasizing minimal resource use [8].  

 

2.4 Applications of Shortest Path Algorithms in Modern Networks 

Shortest path algorithms, which offer efficient resource management, communication optimization, 

and routing for a variety of applications, are at the heart of modern networks. These algorithms have 

evolved to meet the needs of several situations, ranging from traditional wired networks to complex 

IoT ecosystems and dynamic wireless systems. In traditional wired networks, protocols like RIP 

(Routing Information Protocol) and OSPF (Open Shortest Path First) heavily rely on shortest path 

algorithms to maintain optimal routing tables. For example, OSPF uses Dijkstra's algorithm to 

determine the shortest path tree for each node, ensuring efficient and loop-free data delivery. Similar 

to this, RIP finds the shortest paths using the Bellman-Ford algorithm and hop counts. These classical 

methods are ideal for networks that are static or semi-static and have relatively few topology changes. 

Node mobility, bandwidth limitations, and dynamic topologies make wireless network challenges 

more complex. In this case, heuristic and hybrid algorithms work effectively and adapt quickly to 
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changes. Mobile Ad-Hoc Networks (MANETs), for instance, use protocols such as AODV (Ad Hoc 

On-Demand Distance Vector) to dynamically discover routes only when required. Energy-efficient 

techniques, such as Ant Colony Optimization or Genetic techniques, are used by Wireless Sensor 

Networks (WSNs) to enable reliable data transport and prolong the life of devices with limited 

resources [18]. In the context of the Internet of Things and smart cities, shortest path algorithms are 

especially made to deal with constraints like energy saving and adaptation. Algorithms that can predict 

and dynamically adapt to network conditions are required since IoT networks usually have limited 

resources. Due to their ability to learn from historical data and generate real-time routing decisions, 

machine learning-based pathfinding algorithms are growing in popularity in these scenarios [19]. 

Applications such as traffic control in smart cities and public transportation depend on shortest path 

algorithms. For instance, real-time navigation systems include algorithms like A* that dynamically 

adjust to traffic conditions in order to provide the optimal travel routes. To optimize internal 

communication, cloud computing and data center environments commonly employ shortest path 

methods. These systems require efficient routing in order to balance traffic flows and lower latency. 

Modern data center topologies, such as Clos networks or fat-tree designs, use algorithms like ECMP 

(Equal-Cost Multi-Path) to effectively distribute traffic across multiple channels [20].  

 

Autonomous systems, including self-driving automobiles, robotic swarms, and drones, use shortest 

path algorithms to navigate and complete tasks. Algorithms like Dynamic A* (D*) are highly helpful 

in this case because they can adapt to changes in the environment in real time, such as the presence of 

obstacles or dynamic variations in goals. This adaptability ensures safe and efficient travel in 

unpredictable situations. By selecting routes that maximize throughput and minimize latency, shortest 

path algorithms optimize data flow in telecommunication networks. For example, MPLS 

(Multiprotocol Label Switching) networks use shortest path techniques to establish efficient data 

channels across big, interconnected systems. Critical infrastructure, such as electricity grids and 

emergency response systems, can also benefit from these algorithms. Power networks use shortest 

path algorithms to minimize transmission losses and ensure reliable distribution of electricity. During 

emergencies, these algorithms help determine the optimal escape routes and prioritize the restoration 

of communication networks. Moreover, shortest path methods are crucial to applications in artificial 

intelligence and machine learning. They are used in recommendation systems to analyze relationships 

in user-item graphs and in social network analysis to measure individual influence and connectedness 

[20]. In these diverse applications, the value and versatility of shortest path approaches are 

demonstrated. They enable systems to adapt, enhance, and function reliably even in complex and 

dynamic environments. By combining classical, heuristic, and hybrid approaches, these algorithms 

continue to encourage innovation and ensure the seamless operation of modern networks.  
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3 Literature Review 

S. Johnson and M. Keller, [13] suggested simulation tools to assess the effectiveness of shortest path 

algorithms, like Mininet and OMNeT++. These tools offer accurate settings for testing fault tolerance, 

scalability, and efficiency in a range of network scenarios. Their research emphasizes how crucial 

simulation is for connecting theoretical models with practical applications. 

R. Floyd, [14] presented techniques for dynamic programming to address all-pairs shortest path issues. 

This seminal work established the foundation for contemporary algorithms used in traffic analysis and 

worldwide connection by demonstrating effective processing in dense graphs. Floyd's approach 

continues to have an impact on the development of comprehensive pathfinding applications. 

M. L. Garcia and P. Martinez, [15] examined developments in shortest path algorithm simulation 

methods with an emphasis on scalability in massive dynamic networks. Their work demonstrated how 

simulations can be used to analyze algorithm performance under varying network loads, which makes 

it possible to create reliable routing solutions. 

M. A. Javaid, [16] gave a thorough explanation of Dijkstra's method, highlighting its effectiveness 

and simplicity in static topologies. The algorithm's shortcomings in dynamic contexts were shown 

by the analysis, which led to more investigation into adaptive techniques. Javaid's observations are 

still applicable in situations involving organized networks. 

X. Z. Wang, [17] compared the effectiveness of the Dijkstra, Bellman-Ford, and A* algorithms in 

both static and dynamic networks. Wang provided helpful advice for choosing the best method for 

particular network settings by identifying trade-offs between computing complexity, accuracy, and 

flexibility. 

J. Kleinberg and É. Tardos, [18] discussed sophisticated algorithmic techniques for shortest path 

problems that are based on graphs. Their research demonstrated computationally effective and scalable 

methods that are suited to the growing needs of contemporary networks. The study forms the basis for 

creating novel routing strategies. 

T. H. Cormen et al., [19] discussed the theoretical foundations and real-world applications of classic 

algorithms like Bellman-Ford and Dijkstra's. Their research serves as a vital resource for 

comprehending the mathematical underpinnings of shortest path algorithms and how they are 

implemented. 

A. Orda, [20] models that address congestion and delay in time-dependent networks for shortest path 

computation. The study offered ideas for enhancing routing in both static and dynamic systems by 

introducing adaptive techniques for real-time traffic and dynamic network situations. 

K. R. Chowdhury and I. F. Akyildiz, [21] created a routing protocol that optimizes spectrum 

consumption for cognitive radio ad hoc networks by utilizing shortest path methods. Their research 

showed how flexible shortest path techniques may be in controlling limited network resources and 

improving overall effectiveness. 
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X. Yang and D. Medhi, [22] examined improvements to network virtualization shortest path 

techniques. In order to guarantee scalability and effective resource allocation, they addressed the 

difficulties in handling changing topologies and virtualized resources and offered solutions. 

M. Al-Karaki and A. Kamal, [23] Reviewed routing techniques in wireless sensor networks, 

emphasizing energy-efficient shortest path algorithms. Their research helped to ensure the 

sustainability of WSNs by addressing the need for dependable communication with resource 

conservation in limited devices. 

X. Sun et al., [24] presented secure routing systems for Internet of Things networks based on 

blockchain technology. The study made sure that shortest path calculations were transparent, 

trustworthy, and impervious to manipulation by incorporating blockchain technology. The potential 

of decentralized security solutions in network routing is demonstrated by their methodology. 

R. Xu, H. Zhou, and Y. Zhang, [25] presented a framework for adaptive shortest path routing in 

complicated networks using reinforcement learning. Their methodology reduces latency and increases 

routing efficiency by dynamically adapting to changes in real time. This AI-powered method 

establishes a standard for contemporary routing methods. 

A. Goyal et al., [26] created a graph-based model for dynamic shortest path computing that combines 

deep learning and reinforcement learning. The study showed flexibility in large-scale networks and 

decreased processing cost. Their research highlights how AI might improve routing efficiency. 

B. Lee et al., [27] created a hybrid shortest path algorithm that combines swarm intelligence and 

heuristic techniques for VANETs. Their program outperformed conventional techniques in terms of 

efficiency and adaptability by optimizing routing in crowded situations by utilizing real-time traffic 

data. 

C. Zhang et al., [28] suggested a multi-objective optimization paradigm for Internet of Things systems 

that balances dependability, latency, and energy usage. Through the use of a genetic algorithm with 

Pareto optimality, their work made it possible to route data effectively in situations with limited 

resources. 

D. Wang et al., [29] addressed k-shortest path issues in extensive road networks by using graph 

attention networks (GATs). Their model showed promise for urban traffic management systems where 

effective routing is essential and increased prediction accuracy. 

E. Chen et al., [30] created a machine learning-based adaptive shortest path technique for SDNs that 

can dynamically anticipate and reduce congestion. Their method improved network utilization and 

throughput, which helped SDNs scale. 

F. Liu et al., [31] suggested a shortest path technique that runs faster on a GPU for real-time smart 

city applications. Their approach greatly decreased processing time by employing CUDA to parallelize 

computations, allowing for effective pathfinding in large-scale graphs. 
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G. Roy et al., [32] presented a hybrid routing algorithm for MANETs that combines Bellman-Ford 

and Dijkstra's advantages. Their method improved stability and computational efficiency by 

dynamically switching between algorithms according to network conditions. 

H. Xu et al., [33] discussed shortest path calculations in wireless sensor networks that take energy 

efficiency into account. The model extended network lifetime by optimizing routes while taking 

energy consumption and replenishment rates into account by incorporating a reinforcement learning 

framework. 

I. Singh et al., [34] suggested a real-time shortest path algorithm that uses reinforcement learning to 

adjust to traffic circumstances in real time for intelligent transportation systems. The algorithm 

demonstrated its efficacy in contemporary traffic networks by drastically lowering average trip times. 

J. Patel et al., [35] created a shortest path algorithm for high-dimensional networks that is inspired by 

quantum mechanics. Their approach showed excellent scalability and computational efficiency by 

mimicking quantum annealing processes, providing creative answers to challenging routing problems. 

Table 4 provides an overview of the evaluated literature. A thorough summary of numerous studies 

on shortest path algorithms and their uses in various network contexts is given in this table. It 

emphasizes significant innovations, approaches, and methods used to tackle issues like scalability, 

resource restrictions, and dynamic environments. Table 8, which arranges this corpus of work, is a 

useful resource for comprehending developments in shortest path calculations, such as traditional 

algorithms, heuristic techniques, and reinforcement learning frameworks. 

Table 4. Summarization of Literature review 

Reference Focus/Topic Key Contributions Algorithm(s) Used 

[21] 
Simulation tools 

(OMNeT++, Mininet) 

Evaluated performance of shortest path 

algorithms under varying network conditions, 

highlighting the role of simulation in bridging 

theory and practice. 

Dijkstra’s, Bellman-

Ford 

[22] 

Dynamic programming 

for all-pairs shortest 

paths 

Introduced efficient computation methods for 

dense graphs, laying foundational work for 

modern pathfinding algorithms. 

Floyd-Warshall 

[23] 

Advances in simulation 

techniques for dynamic 

networks 

Highlighted the role of simulations in 

analyzing algorithm scalability and robustness 

under dynamic network loads. 

Heuristic and 

simulation-based 

approaches 
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[24] 
Analysis of Dijkstra’s 

algorithm 

Emphasized its simplicity and efficiency in 

static networks while identifying limitations in 

dynamic environments. 

Dijkstra’s 

[25] 

Comparative study of 

Dijkstra, Bellman-Ford, 

and A* algorithms 

Evaluated trade-offs in computational 

complexity, accuracy, and adaptability for 

static and dynamic networks. 

Dijkstra’s, Bellman-

Ford, A* 

[26] 
Advanced graph-based 

algorithmic strategies 

Discussed scalable, efficient solutions tailored 

for modern network demands, serving as a 

cornerstone for innovative routing approaches. 

Graph-based algorithms 

(general strategies) 

[27] 
Review of classical 

algorithms 

Detailed theoretical and practical applications 

of Dijkstra’s and Bellman-Ford algorithms. 

Dijkstra’s, Bellman-

Ford 

[28] 
Time-dependent shortest 

paths 

Proposed models addressing latency and 

congestion in real-time dynamic networks. 

Time-dependent 

variations of shortest 

path algorithms 

[29] 
Routing in cognitive 

radio ad hoc networks 

Optimized spectrum usage using shortest path 

algorithms, enhancing adaptability and 

efficiency in resource-constrained 

environments. 

Dijkstra’s, heuristic-

based algorithms 

[30] 
Enhancements for 

network virtualization 

Proposed solutions for managing dynamic 

topologies and virtualized resources, ensuring 

scalability. 

Hybrid algorithms 

[31] 

Energy-efficient routing 

in wireless sensor 

networks 

Addressed resource conservation in 

constrained devices while ensuring reliable 

communication. 

Energy-aware shortest 

path algorithms 

[32] 
Blockchain-based 

routing protocols for IoT 

Ensured transparency, trust, and resistance to 

tampering in shortest path computations, 

enhancing security in network routing. 

Blockchain-enhanced 

shortest path algorithms 
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[33] 
Reinforcement learning 

for adaptive routing 

Developed an AI-driven framework for 

dynamically adjusting routes in complex 

networks, improving efficiency and reducing 

latency. 

Reinforcement learning-

based shortest path 

algorithms 

[34] 

Graph-based models 

integrating deep and 

reinforcement learning 

Demonstrated adaptability in dynamic 

networks while reducing computational 

overhead. 

Deep learning and 

reinforcement learning 

[35] 
Hybrid algorithm for 

VANETs 

Combined heuristic and swarm intelligence 

methods for efficient routing in congested 

scenarios. 

Swarm intelligence and 

heuristic algorithms 

[36] 

Multi-objective 

optimization for IoT 

systems 

Balanced energy consumption, latency, and 

reliability using genetic algorithms and Pareto 

optimality. 

Genetic algorithms 

[37] 

Graph Attention 

Networks (GATs) for k-

shortest paths 

Improved prediction accuracy for urban traffic 

management in large-scale road networks. 

Graph attention 

networks (GATs) 

[38] 
Adaptive algorithms for 

SDNs 

Incorporated machine learning to dynamically 

predict and mitigate congestion, enhancing 

scalability. 

Machine learning-based 

shortest path algorithms 

[39] 
GPU-accelerated 

shortest path algorithm 

Reduced processing time significantly for real-

time applications in smart cities through 

CUDA parallelization. 

Parallelized shortest 

path algorithms (GPU-

based) 

[40] 
Hybrid routing for 

MANETs 

Dynamically switched between Dijkstra’s and 

Bellman-Ford algorithms based on network 

conditions, improving stability and efficiency. 

Dijkstra’s, Bellman-

Ford 

[41] 
Energy-aware routing in 

WSNs 

Optimized routes considering energy 

consumption and replenishment, extending 

network lifetime using reinforcement learning. 

Energy-aware and 

reinforcement learning 

algorithms 

[42] 
Real-time shortest path 

algorithm for ITS 

Leveraged reinforcement learning to 

dynamically adapt to traffic conditions, 

significantly reducing travel times. 

Reinforcement learning-

based algorithms 

[43] 
Quantum-inspired 

shortest path algorithms 

Demonstrated superior scalability and 

efficiency for complex, high-dimensional 

networks using quantum annealing processes. 

Quantum-inspired 

shortest path algorithms 
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4. Discussion 
 

The ability of shortest path algorithms to strike a balance between computing efficiency and 

adaptability while dealing with intricate network routing problems is among their most alluring 

features. The deterministic nature and dependability of classical algorithms, such Dijkstra's and 

Bellman-Ford, in static networks are highlighted by research conducted by [3] and [4]. Bellman-Ford 

expands the applicability of Dijkstra's method to include situations with negative edge weights, while 

Dijkstra's approach is especially praised for its effectiveness in graphs with non-negative weights. 

Their shortcomings, however, become apparent in dynamic networks where real-time flexibility is 

impeded by the requirement for recalculations. We believe that while classical algorithms are very 

useful for clearly specified, static issues, they are not flexible enough for contemporary, dynamic 

systems. By bringing flexibility and heuristic-driven efficiency, heuristic algorithms such as A and 

Ant Colony Optimization (ACO)*, on the other hand, provide creative solutions. According to [13], 

A* is perfect for applications like robotics and navigation because it combines heuristic forecasts with 

actual costs to guarantee optimal solutions. However, ACO, which was evaluated by [14], uses 

biological inspiration to optimize pathways in large-scale, adaptive networks in a dynamic manner. 

Although these algorithms perform exceptionally well in dynamic contexts, their generalizability may 

be constrained by their dependence on heuristic quality (for A*) and computing complexity (for ACO). 

For dynamic and large-scale systems, we believe heuristic algorithms offer a substantial advance over 

conventional approaches; yet, they still need to be carefully tuned to reach their full potential. 

 

Shortest path optimization has gone further with the introduction of hybrid algorithms, which combine 

the advantages of heuristic and classical methods. For instance, Dynamic A*, which was examined by 

[17], greatly increases the efficiency of real-time navigation systems by including incremental updates 

to adaptively recalculate just affected courses. Similarly, reinforcement learning is used in machine 

learning (ML)-based pathfinding, as discussed in [19] and [25], to dynamically forecast the best routes. 

ML-based techniques provide unmatched scalability and flexibility, and they perform very well in 

high-dimensional and data-rich environments. However, they are difficult to apply in systems with 

limited resources due to their need on large amounts of training data and computational power. Since 

hybrid algorithms combine the flexibility of heuristic and machine learning-driven techniques with 

the accuracy of traditional methods, we believe they are the way of the future for shortest path 

optimization. The possibility of sustainability in shortest path algorithms is another fascinating 

analogy. Energy-efficient routing, fueled by algorithms like ACO and ML-based models, can lower 

power consumption in IoT networks, according to studies like [32] and [38]. These developments are 

in line with network management's increasing demand for sustainable technologies. Heuristic and 

hybrid techniques incorporate energy conservation, which makes them more applicable in 

contemporary applications than classical algorithms, which only concentrate on path optimization. We 

believe that this emphasis on sustainability not only makes these algorithms more useful, but also 

guarantees that they are in line with more general environmental objectives. 
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Although these algorithms have advanced, there are still difficulties in putting them into practice. 

Concerns including interpretability, scalability, and the moral ramifications of automated decision-

making are highlighted in research by [35] and [37]. For instance, despite their strength, ML-based 

algorithms have a "black-box" aspect that makes it challenging to comprehend or justify their choices. 

On the other hand, while traditional algorithms such as Dijkstra's are more visible, they are not as 

flexible as machine learning-based solutions. For researchers and practitioners, striking a balance 

between transparency and adaptability continues to be a crucial task. 

4.1 Comparing the differences between Shortest path algorithms types 

Table 5 compares Classical, Heuristic, and Hybrid shortest path algorithms, focusing on their strengths 

and applications. Classical algorithms like Dijkstra’s and Bellman-Ford guarantee accuracy but 

struggle with dynamic graphs and large-scale problems due to their computational intensity. Heuristic 

algorithms like A* and ACO prioritize efficiency by guiding the search with approximations but may 

produce suboptimal paths if the heuristic is flawed. Hybrid algorithms combine the precision of 

classical methods with the adaptability of heuristics or machine learning, excelling in dynamic and 

complex environments, though they are computationally demanding. Each category fits specific use 

cases, from static graph analysis to real-time navigation in IoT systems. The choice depends on the 

trade-offs between accuracy, efficiency, and adaptability. 

Table 5. Comparing the differences between Classical, Heuristic, and Hybrid shortest path 

algorithms: 

 

Aspect Classical Algorithms Heuristic Algorithms Hybrid Algorithms 

Approach 

Deterministic and 

mathematically grounded 

methods that guarantee optimal 

solutions. 

Use approximations and 

heuristics to guide the search, 

improving efficiency. 

Combine deterministic 

methods with heuristic or 

adaptive techniques for 

better performance. 

Types 
Dijkstra’s, Bellman-Ford, 

Floyd-Warshall 

A*, Greedy Best-First Search, 

Ant Colony Optimization 

(ACO) 

Machine Learning-Based 

Pathfinding, Dynamic A*, 

Genetic Algorithm (GA)-

Based Pathfinding 

Optimality 
Guarantees the shortest path 

under specified conditions. 

Often provides near-optimal 

paths but does not guarantee 

the shortest path. 

Balances between optimality 

and efficiency, often 

achieving near-optimal 

solutions. 
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Efficiency 

Can be computationally 

expensive for large graphs or 

dynamic environments. 

More efficient due to heuristic-

driven search, reducing 

unnecessary exploration. 

Achieves high efficiency by 

combining classical precision 

with heuristic adaptability. 

Adaptability 

Less adaptable to dynamic 

changes; requires 

recomputation if graph 

changes. 

Can adapt to dynamic 

conditions but depends heavily 

on the heuristic used. 

Highly adaptable to dynamic 

environments, often capable 

of real-time updates. 

Complexity 

Moderate complexity, often 

𝑂(𝑉) 𝑜𝑟 𝑂(𝑉2)depending on 

the algorithm. 

Complexity depends on the 

heuristic; typically lower for 

static graphs. 

Higher complexity due to 

combining methods but 

offers better scalability and 

adaptability. 

Search Strategy 

Exhaustive exploration of all 

possible paths to guarantee 

correctness. 

Focuses on the most promising 

paths based on heuristic 

estimates. 

Integrates heuristic guidance 

with deterministic 

calculations or adaptive 

learning. 

Memory Usage 
Requires significant memory 

for storing all paths and costs. 

Requires less memory due to 

reduced search space. 

Memory-intensive due to 

combined techniques and 

storage of additional learning 

parameters. 

Applications 

Network routing, static graph 

analysis, distributed 

computations. 

Navigation systems, robotics, 

dynamic routing, and games. 

Complex optimization 

problems, real-time 

navigation, IoT networks, 

and multi-agent systems. 

Key Strengths 

Accuracy and reliability; well-

suited for static and well-

defined problems. 

Speed and efficiency, 

especially in large search 

spaces or dynamic 

environments. 

Flexibility, scalability, and 

adaptability to changing 

conditions. 

Key 

Weaknesses 

Poor adaptability to dynamic 

graphs and computationally 

intensive for large-scale 

problems. 

Heuristic quality impacts 

solution quality; suboptimal 

paths are possible. 

Higher computational and 

implementation complexity 

due to combining methods. 
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4.2 Comparing the differences between Classical algorithms types 

Table 6 compares four shortest-path algorithms based on their purpose, edge weight handling, 

complexity, and use cases. While Dijkstra's Algorithm performs best on sparse graphs with non-

negative weights, Bellman-Ford handles graphs with negative weights and detects negative cycles. 

Floyd-Warshall efficiently determines all-pairs shortest paths for dense graphs, despite its processing 

demands. For sparse networks that require all-pairs shortest paths, Johnson's Algorithm combines the 

Bellman-Ford and Dijkstra algorithms. Each algorithm has pros and cons, and the requirements and 

graph topology determine which algorithms are applicable. 

 

4.3 Comparing between Heuristic Shortest Path Algorithms types. 

Based on their methodology, effectiveness, and use cases, A*, Greedy Best-First Search, and Ant 

Colony Optimization (ACO) are contrasted in Table 7. Although A* is memory-intensive, it 

guarantees optimal pathways with accepted heuristics by striking a balance between actual costs and 

heuristics. For speed, Greedy Best-First Search just uses heuristics, but it runs the risk of choosing 

less-than-ideal routes. ACO is computationally demanding yet excels at complicated, dynamic 

situations thanks to its use of pheromones and probabilistic exploration. Greedy is best for quick, easy 

searches, A* is best for optimal navigation, and ACO is best for large-scale optimization such as 

network routing and TSP. ACO stands out for its parallelism, which uses several agents to conduct 

exploration. 

Table 6.  Comparing the differences between Dijkstra’s Algorithm, Bellman-Ford Algorithm, Floyd-

Warshall Algorithm, and Johnson’s Algorithm: 

Aspect Dijkstra’s Algorithm 
Bellman-Ford 

Algorithm 

Floyd-Warshall 

Algorithm 

Johnson’s 

Algorithm 

Purpose 

Finds the shortest path 

from a single source to all 

nodes. 

Finds the shortest 

path from a single 

source to all 

nodes. 

Finds the shortest 

paths between all 

pairs of nodes. 

Finds the shortest 

paths between all 

pairs of nodes. 

Edge Weights 
Non-negative weights 

only. 

Handles both 

positive and 

negative weights. 

Handles both 

positive and 

negative weights 

(no negative 

cycles). 

Handles both positive 

and negative weights 

(no negative cycles). 

Cycle Detection 
Does not detect negative 

weight cycles. 

Detects negative 

weight cycles. 

Detects negative 

weight cycles. 

Detects negative 

weight cycles during 

reweighting. 

Time Complexity 

𝑂(𝑉2 + 𝐸)  

OR  𝑂((𝑉 + 𝐸) log 𝑉)  

 With priority queue. 

𝑂(𝑉𝐸) 
𝑂(𝑉3)  

 
𝑂(𝑉𝐸 + 𝑉2𝐿𝑜𝑔 𝑉)  
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Graph Type 

Best for sparse graphs 

with non-negative 

weights. 

Works for any 

weighted graph 

(without negative 

cycles). 

Suitable for dense 

graphs. 

Best for sparse 

graphs. 

Space Complexity 

𝑂(𝑉 + 𝐸)  
for adjacency list 

implementation. 

𝑂(𝑉 + 𝐸)  
for adjacency list 

implementation. 

𝑂(𝑉2)  

due to the distance 

matrix. 

𝑂(𝑉2)  

due to reweighting 

and distance matrix. 

Approach Greedy algorithm. 

Dynamic 

programming with 

edge relaxation. 

Dynamic 

programming with 

incremental 

updates. 

Combines Bellman-

Ford for reweighting 

and Dijkstra’s for 

pathfinding. 

Use Case 

Best for routing in static 

networks with non-

negative weights. 

Used for 

distributed 

systems or graphs 

with negative 

weights. 

Used for dense 

graphs or when 

all-pairs shortest 

paths are required. 

Efficient for sparse 

graphs and all-pairs 

shortest paths. 

Implementation 

Complexity 
Simple to implement. 

Relatively simple 

to implement. 

Simple but 

computationally 

intensive. 

Complex due to 

reweighting and 

multiple algorithms. 

 

Table 7. Comparing between A*, Greedy Best-First Search, Floyd-Warshall Algorithm, and Ant 

Colony Optimization (ACO): 

Aspect A* Greedy Best-First Search 
Ant Colony Optimization 

(ACO) 

Approach 

Combines actual cost 

𝑔(𝑛)and heuristic estimate 

ℎ(𝑛)to find the shortest path. 

Relies solely on the 

heuristic estimate ℎ(𝑛)to 

guide the search. 

Uses pheromone trails and 

heuristic information for 

probabilistic pathfinding. 

Optimality 

Guarantees the shortest path 

if the heuristic is admissible 

and consistent. 

Does not guarantee the 

shortest path, as it only 

focuses on the immediate 

goal. 

Does not always guarantee the 

shortest path but often finds 

near-optimal solutions. 

Search Strategy 

Expands nodes based on 

𝑓(𝑛) = 𝑔(𝑛) +  ℎ(𝑛) 
balancing exploration and 

exploitation. 

Expands nodes based on 

the smallest heuristic value 

ℎ(𝑛)favoring goal-directed 

paths. 

Explores multiple paths 

probabilistically and reinforces 

better solutions with 

pheromones. 
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Complexity 

Memory-intensive for large 

graphs due to maintaining 

open and closed lists. 

Requires less memory 

compared to A* but may 

explore irrelevant paths. 

Computationally intensive for 

large-scale problems due to 

multiple iterations and 

pheromone updates. 

Performance 

Highly efficient with a well-

designed heuristic, reducing 

unnecessary exploration. 

Faster in simple graphs but 

prone to getting stuck in 

suboptimal paths if the 

heuristic is misleading. 

Balances exploration and 

exploitation, making it 

effective for complex, dynamic 

problems. 

Heuristic 

Dependency 

Strongly depends on the 

heuristic for efficiency but 

guarantees correctness with 

admissible heuristics. 

Fully relies on the 

heuristic, making its 

accuracy critical to the 

algorithm’s success. 

Partially dependent on 

heuristic; pheromone dynamics 

compensate for heuristic 

weaknesses. 

Parallelism 
Sequential, typically 

processes one path at a time. 

Sequential, focusing on 

one path at a time. 

Highly parallelizable, as 

multiple ants can explore paths 

simultaneously. 

Applications 

Used in navigation, robotics, 

and scenarios requiring 

optimal paths. 

Common in quick 

pathfinding, like video 

games, where speed is 

more critical than 

accuracy. 

Ideal for complex optimization 

problems, such as TSP, 

network routing, and dynamic 

systems. 

 

 

4.4 Comparing between Hybird Shortest Path Algorithms types. 

Table 8 contrasts the use cases, complexity, and flexibility of ML-Based Pathfinding, Dynamic A*, 

and GA-Based Pathfinding. ML-Based Pathfinding uses machine learning to forecast the best routes; 

it works well in dynamic settings but needs a lot of training data and processing power. Dynamic A* 

adds overhead for static issues but ensures optimality in real-time scenarios such as robot navigation 

by incrementally adapting to graph changes. Despite its delayed convergence and need on parameter 

tuning, GA-Based Pathfinding effectively explores vast, complicated networks by applying 

evolutionary principles. Dynamic A* is effective in adaptive scenarios, GA flourishes in large-scale, 

intricate optimization tasks, and ML shines in high-dimensional domains. 
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Table 8. Comparing the differences between ML-Based Pathfinding, Dynamic A*, and GA-Based 

Pathfinding: 

Aspect ML-Based Pathfinding Dynamic A* GA-Based Pathfinding 

Approach 

Uses machine learning 

models (e.g., neural 

networks, reinforcement 

learning) to predict optimal 

paths based on historical 

and real-time data. 

Extends the A* algorithm to 

handle changes in graph 

topology or edge weights 

during execution, adapting 

incrementally. 

Uses principles of natural 

selection (mutation, 

crossover, and selection) to 

evolve paths toward an 

optimal solution. 

Adaptability 

Highly adaptive to dynamic 

environments by learning 

from data and adjusting in 

real-time. 

Adapts dynamically to changes 

in the graph without 

recalculating the entire path. 

Adaptive through population 

evolution but less responsive 

to real-time changes 

compared to ML or Dynamic 

A*. 

Optimality 

Provides near-optimal 

solutions, depending on the 

quality of training data and 

model accuracy. 

Guarantees optimality in 

dynamic environments if 

changes are handled correctly. 

Does not guarantee the 

shortest path but can find 

near-optimal solutions for 

complex problems. 

Complexity 

Computationally intensive 

due to model training and 

inference requirements. 

Moderate complexity; efficient 

in dynamic graphs but requires 

additional logic for 

incremental updates. 

Computationally expensive 

for large problems due to 

iterative evolution and 

evaluation of populations. 

Key Limitation 

Requires high-quality 

training data and 

computational resources for 

training and inference. 

Less effective for static graphs 

due to additional overhead for 

incremental updates. 

Convergence can be slow, 

and performance depends on 

carefully tuned parameters. 

Search Space 

Learns to optimize in high-

dimensional and multi-

variable spaces. 

Focuses only on portions of the 

graph affected by changes, 

reducing unnecessary 

recalculations. 

Explores large search spaces 

by evolving solutions, 

making it suitable for highly 

complex networks. 

Parallelism 

Parallelizable for prediction 

tasks, especially when using 

distributed machine 

learning. 

Sequential but efficient in 

focusing only on relevant 

graph changes. 

Highly parallelizable, as 

multiple solutions 

(populations) can be evolved 

simultaneously. 
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Applications 

Intelligent transportation 

systems. 

Dynamic environments like 

robot navigation or urban 

exploration. 

 Logistics and supply chain 

optimization. 

Real-time IoT network 

optimization. 
Disaster response and adaptive 

routing. 

 Network routing for large, 

complex systems. 

-Autonomous navigation 

(e.g., drones, vehicles). 

 Scheduling and resource 

allocation. 

Heuristic 

Dependency 

Relies on predictive models 

rather than explicit 

heuristics. 

Requires a heuristic to estimate 

path costs, similar to standard 

A*. 

No explicit heuristic; 

solutions evolve based on 

fitness evaluation. 

 

When comparing shortest path algorithms, traditional techniques such as Bellman-Ford and Dijkstra's 

are effective and dependable in static situations but ineffective in dynamic, adaptive networks. Greater 

flexibility and scalability are provided by heuristic algorithms like A* and ACO, which perform well 

in dynamic systems but need careful tweaking. Lastly, by fusing accuracy with flexibility and 

sustainability, hybrid algorithms such as Dynamic A* and ML-based models offer the most reliable 

results. We believe that hybrid algorithms, particularly those based on machine learning, provide the 

most promising way forward. They are perfect for complex, dynamic systems because they provide 

scalability and flexibility that are unrivaled by heuristic and classical approaches. But in the end, the 

particular application will determine which algorithm is best, taking sustainability, adaptability, and 

computational efficiency into account. 

Conclusion 
In network optimization, shortest path techniques are essential for striking a balance between 

scalability, flexibility, and efficiency. Traditional algorithms, such Bellman-Ford and Dijkstra's, 

function well in static networks but poorly in dynamic ones. Although they mostly rely on heuristic 

quality, heuristic approaches such as A* and Ant Colony Optimization effectively and adaptably 

handle these problems. Precision and flexibility are combined in hybrid techniques, such as Dynamic 

A* and machine learning-based algorithms, which perform well in complicated and dynamic situations 

but demand a large amount of processing power. Hybrid approaches that combine the advantages of 

machine learning, heuristic, and classical methods are the way of the future for shortest path 

algorithms. Promising avenues for enhancing security, scalability, and computational efficiency are 

provided by emerging technologies like blockchain and quantum computing. These developments will 

guarantee that shortest path algorithms remain relevant in meeting the needs of contemporary networks 

by redefining their function. These algorithms will continue to play a crucial role in facilitating 

effective, flexible, and dependable network communication across a range of applications by 

overcoming present constraints and integrating sustainability. 
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