

Methods for optimizing the performance of microservice architecture in high-

load systems

Abstract. The article addresses existing methods for enhancing the performance of

microservice architectures under high-load conditions, where stability and scalability

are required to adapt to changing demands. The objective of the study is to

systematize existing optimization methods. The methodological framework includes

data analysis, a comparison of various approaches such as containerization, auto-

scaling, and the use of frameworks for asynchronous request processing. The

research was conducted based on an analysis of publicly available articles, providing

a comprehensive examination of the topic.

The analyzed studies demonstrate that implementing hybrid solutions incorporating

machine learning for load forecasting and dynamic infrastructure configuration

significantly improves performance. Additionally, the studies address the

management of service states and interactions, which is critical for maintaining data

integrity under high loads.

The information presented in the article will be valuable for system architects,

DevOps engineers, and cloud computing specialists working with resource-intensive

services. These solutions enable the creation of scalable, reliable infrastructures

capable of efficiently handling large volumes of real-time data. The conclusion

confirms the necessity of a comprehensive approach to optimizing microservice

systems, focusing on dynamic adaptation and the integration of new technologies.

Keywords: microservice architecture, performance optimization, high-load systems,

scalability, machine learning, distributed computing, cloud technologies.

Introduction

Microservice architecture is widely used in developing high-load systems due to its

scalability and independence of components. However, as the load on such systems

increases, there arises a need to optimize performance to maintain stability and

resilience under changing conditions. Issues related to scaling microservices,

resource management, and maintaining data consistency require detailed analysis.

The popularization of cloud platforms and containerization has accelerated the

scaling of microservice applications. However, existing optimization methods often

fail to account for the dynamic characteristics of such systems, limiting their

applicability in high-load environments. In scenarios where systems handle a large

number of requests, adaptive mechanisms for resource redistribution become

essential.

The optimization of microservice architecture performance remains a relevant topic,

driven by the need to enhance resource utilization efficiency, improve service quality,

and reduce response times—all of which directly impact organizational

competitiveness.

The objective of this study is to systematize existing methods for optimizing the

performance of microservice architecture in high-load systems.

Materials and Methods

In the work by Ramamoorthi V. [1], a framework utilizing artificial intelligence for

dynamic resource management in microservice systems is proposed. Based on

reinforcement learning algorithms, data analytics, and evolutionary methods, the

approach demonstrated a 25.7% improvement in performance. The study also

emphasizes the importance of adaptive resource management for the stable operation

of distributed systems facing varying loads and conditions. This approach has the

potential to form the foundation for creating self-learning microservices capable of

effectively responding to system fluctuations.

Filippone G. et al. [2] propose a method that automates the transition from monolithic

architectures to microservices using graph clustering and combinatorial optimization

techniques. The goal is to improve system connectivity and reduce dependencies

between its components, enhancing flexibility and simplifying maintenance. The

mathematical methods employed in the study optimize the architecture, reducing the

costs associated with transitioning to a new system.

Yu H. et al. [3] examine mechanisms for diversified deployment of microservices

aimed at increasing system resilience. The use of load balancing and service

distribution methods demonstrated improved reliability. The study underscores the

importance of resilience in high-load distributed systems, where the failure of a

single component should not disrupt the entire system.

Tassi A. et al. [4] explore methods for optimizing the deployment of microservice

architectures in network systems to improve scalability and reduce network traffic

between servers. The research focuses on network aspects crucial for creating high-

performance distributed applications, where optimizing network interactions is of

critical importance.

Nakarmi A. et al. [5] review various methods for optimizing microservice

deployment, including cloud technologies and orchestration. The study highlights

existing challenges in automating microservice management, which is essential for

ensuring the flexibility and efficiency of scalable distributed applications. The

technological approaches proposed by the authors enable the automation of

microservice lifecycle management.

Dinh-Tuan H., Katsarou K., and Herbke P. [6] propose hyperparameter optimization

methods to reduce latency in microservice systems. The application of these methods

led to a 10.56% performance improvement, confirming the effectiveness of tuning

the configuration and parameters of microservices. The study reveals opportunities

for performance enhancement through optimized system settings.

Despite the described methods for optimizing microservice architectures, the topic

remains insufficiently explored. Further research is needed to integrate various

optimization methods that work synergistically to improve the overall efficiency and

reliability of microservice applications under real-world operating conditions.

The methodological basis includes data analysis and the comparison of various

approaches, such as containerization, automatic scaling, and the use of frameworks

for asynchronous request processing.

Results and Discussion

Microservice architecture has become an essential model for building distributed

systems used in high-load applications. Such solutions must address issues related to

performance, state management, and efficient inter-service interactions. Horizontal

scaling serves as a tool for improving performance, but it involves more than merely

increasing the number of service instances. As the number of instances grows, the

complexity of coordinating their operation and distributing the load increases. In

high-load systems, it is crucial to focus not only on the growth in the number of

replicas but also on effective load balancing, minimizing latency, and preventing data

loss.

Tools such as Kubernetes enable the automation of scaling; however, a critical aspect

is the system's ability to adapt quickly to changes in load. Load distribution

algorithms play a key role, utilizing tools like Envoy or Nginx to dynamically

redistribute requests. Additionally, load prediction methods are used to adjust the

frequency of scaling. Effective load balancing is essential and is achieved through

various algorithms, including:

● Round Robin: A method that distributes requests to services in a sequential

order.

● Least Connections: A method that routes requests to services with the fewest

active connections, promoting balanced workloads.

● IP Hash: An algorithm that directs requests from a specific client to a

particular service based on the hash of its IP address [1, 2, 4].

Below will be reflected the advantages and disadvantages of scaling methods to

optimize the performance of microservice architecture. So the advantages are: the

ability to handle high loads; scaling at the level of individual services; and

automation reduces the risks of overloading.

The disadvantages in turn are: the possibility of complicating the process of service

management, which requires the use of complex orchestration mechanisms; in the

presence of a large number of services, there are difficulties with balancing, which

can become ineffective.

The optimization of inter-service interactions also involves sharding and data

replication, which enables the even distribution of requests across nodes. An example

is the "master-slave" model, where data is partitioned and replicated, reducing

response time and minimizing the risk of overload.

To eliminate synchronous requests, the Event Sourcing method is utilized, where

changes are recorded as events. This approach accelerates request processing and

reduces dependencies between services. It is critical for enhancing fault tolerance and

data consistency.

Asynchronous processing is supported through message queues such as Kafka or

RabbitMQ, which alleviates the load on services, reduces response time, and

increases system flexibility. Since efficient data management requires reducing the

load on databases, caching is one of the solutions applied at both the data and query

levels. Technologies like Redis and Memcached store frequently requested

information in memory, significantly decreasing response times. For optimal caching

functionality, it is crucial to configure eviction policies and monitor data expiration

times correctly.

The Read-Write Splitting method is also used, whereby read and write operations are

handled by different replicas or databases. This approach reduces the load on primary

storage and improves query processing speed [2, 3, 6].

Next, the advantages and disadvantages of using the asynchronous method in

optimizing the performance of microservice architecture will be described. So the

advantages are: Improves performance by offloading services; Reduces latency,

increases scalability; and Suitable for distributed transactions as well as scalable

threads.

The disadvantages in turn are: Complicated debugging as well as testing due to

asynchrony. May cause problems with queues if they are not able to handle load

peaks quickly. Increased complexity of architecture, need for state management

mechanisms.

Sharding facilitates parallel request processing, thereby accelerating the system.

However, it is crucial to maintain data consistency across shared nodes. Figure 1

illustrates the sharding process.

Fig. 1. Sharding Process [1, 2, 4].

Choosing a data distribution
algorithm. In this case, hashing
and range splitting methods are
used to evenly distribute data

between the caricatured nodes.

Maintaining data consistency. In
distributed systems, it is

necessary to ensure consistency
of information. For this, Paxos

and Raft protocols are used,
which guarantee data integrity
under high loads and network

failures.

It is important to note that microservice architecture involves interactions between

components, which can cause latency, especially under high loads. Optimizing these

interactions requires consideration of factors such as speed and overhead in data

transmission. gRPC serves as a suitable tool for interservice calls as it uses binary

protocols, reducing overhead compared to traditional REST, which relies on text-

based formats like JSON. Implementing CQRS separates the processing of read and

write operations, facilitating load balancing and accelerating data retrieval.

Prometheus and Grafana enable the collection of metrics from various services,

visualization of system status, and workload analysis.

For detailed analysis of interservice interactions, tracing systems such as Jaeger or

Zipkin are used. These tools allow tracking the time taken by each service to process

requests, helping identify bottlenecks in the system and resolve performance issues.

The reliability of high-load microservice applications depends on preconfigured

automatic recovery and scaling mechanisms. Systems must be capable of promptly

adapting to load changes and restoring services in case of failures.

Circuit Breaker mechanisms prevent overloads by blocking requests to services that

start operating unreliably, maintaining the overall system performance.

Containerization with Docker and orchestration using Kubernetes ensure automatic

service recovery and adaptation to changing loads. Early detection of anomalies

through monitoring enables rapid response to changes, ensuring system resilience and

stability.

Caching serves as a method where frequently requested information is stored in

memory, reducing the load on primary storage and improving response times. Tools

such as Redis, Memcached, and Hazelcast are commonly used for this purpose, each

offering specific features [3, 4]. Figure 2 below illustrates the types of caching.

Fig. 2. Types of caching [1, 2, 3].

Next, the process of sharding is examined, which includes several stages:

The first stage involves selecting a data distribution algorithm. In this context,

methods such as hashing and range partitioning are applied to ensure an even

distribution of data among sharded nodes.

The subsequent stage requires maintaining data consistency. In distributed systems, it

is essential to ensure information coherence. Protocols such as Paxos and Raft are

employed to guarantee data integrity under high loads and network failures. The

implementation of replication and sharding demands careful configuration of tools

and methods to ensure system stability and high performance under intensive query

conditions [3, 4, 5].

Types

of
cachin

g.

Caching at the application level. User sessions, frequently
requested information, and calculation results are stored in
memory using Redis or Memcached. This speeds up query

processing by eliminating database access.

Caching at the query level. The results of database queries
are stored in memory, which eliminates the need to repeat

operations. This reduces data access time.

Distributed caching. The data is distributed across multiple

nodes, which contributes to improved performance and
increased system fault tolerance. This approach is used in

large, high-load distributed applications.

The advantages of sharding include high performance when properly configured,

increased fault tolerance through replication, and improved scalability due to data

partitioning.

However, certain limitations exist, which are associated with the following factors:

challenges in synchronization and data consistency, significant effort required for

configuration and monitoring, and increased complexity in data handling logic and

transaction processing.

Subsequently, to diagnose and evaluate the operation of distributed systems in a

microservice architecture, it is necessary to trace the path of requests across services.

This helps to study component interactions and identify bottlenecks affecting

performance. The tracing tools used include:

● Jaeger, Zipkin: Solutions for distributed tracing that enable tracking the path

of a request from one service to another. These tools display interaction stages

and record data transfer points throughout the system.

● Prometheus, Grafana: Systems for real-time metric monitoring. Prometheus

collects data on the state of components, while Grafana provides visualization

for analyzing the system's current metrics [1, 4, 6].

Table 1 provides a comparison of the examined methods for optimizing the

performance of microservice architectures.

Table 1. Comparison of performance optimization methods for microservice

architecture (compiled by the author).

Method Advantages Disadvantages

Horizontal
scaling, load
balancing

Increases scalability, and
improves fault tolerance.

Complicates management and balancing
with a large number of services.

Asynchronous
processing

Reduces blocking, unloads
services, and increases
scalability.

Complexity in debugging and
monitoring.

Data caching Reduces database load, and
improves response time.

Issues with data synchronization.

Replication,
sharding

Enhances fault tolerance, and
improves performance.

Challenges in data synchronization and
subsequent database configuration.

Distributed
transaction tracing

Identifies bottlenecks, and
improves monitoring.

Requires additional resources and
complex configuration.

To enhance the efficiency of microservice architecture under high load conditions, it

is essential to consider numerous factors influencing its operation, such as scalability,

asynchronous mechanisms, state management, and inter-service communication.

Each element contributes to creating a system capable of adapting to changing

operational conditions.

Managing load and fine-tuning interactions between components requires careful

consideration. It is necessary to evaluate how services process data, how their

communication is structured, and which synchronization mechanisms are applied.

Only a comprehensive approach ensures system stability under evolving external

conditions. Furthermore, the architecture must remain flexible, providing the ability

to quickly adjust and respond to changes in load.

Conclusion

In conclusion, the methods for optimizing the performance of microservice

architectures used in high-load systems were analyzed. The analysis demonstrated

that maintaining the stable operation of such systems requires the integration of

various technological solutions, including containerization, automatic scaling, and

monitoring tools based on load prediction algorithms. Resource redistribution plays a

critical role, enabling the system to adapt to changes in workload and ensuring

functionality during peak request activity.

The findings indicate that success depends on the proper organization of interactions

between microservices, data state management, and the use of asynchronous request

processing methods. The combination of load-balancing technologies and data

caching contributes to reducing response time and increasing system throughput.

Modern optimization methods, such as load prediction algorithms and automatic

resource adaptation, influence the development of high-performance and resilient

systems.

COMPETING INTERESTS DISCLAIMER:

Authors have declared that they have no known competing financial interests OR non-financial interests OR
personal relationships that could have appeared to influence the work reported in this paper.

References

1. Ramamoorthi V. AI-Enhanced Performance Optimization for

Microservice-Based Systems //Journal of Advanced Computing Systems. – 2024. –

Vol. 4 (9). – pp. 1-7.

2. Filippone G. et al. From monolithic to microservice architecture: an

automated approach based on graph clustering and combinatorial optimization //2023

IEEE 20th International Conference on Software Architecture (ICSA). – IEEE, 2023.

– pp. 47-57.

3. Yu H. et al. A Microservice Resilience Deployment Mechanism Based

on Diversity //Security and Communication Networks. – 2022. – Vol. 1. – pp.

7146716.

4. Tassi A. et al. On Optimization of Next-Generation Microservice-Based

Core Networks //IEEE Transactions on Vehicular Technology. – 2024. – Vol.73 (6).

– pp.9199 - 9204

5. Nakarmi A. et al. A Comprehensive Study on Optimization Techniques

for Microservices Deployment //2024 Sixth International Conference on

Computational Intelligence and Communication Technologies (CCICT). – IEEE,

2024. – pp. 133-140.

6. Dinh-Tuan H., Katsarou K., Herbke P. Optimizing microservices with

hyperparameter optimization //2021 17th International Conference on Mobility,

Sensing and Networking (MSN). – IEEE, 2021. – pp. 685-686.

