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Abstract  

The increasing reliance on Internet-based services has rendered secure and efficient 
network traffic classification a criticaltask. Conventional methods of categorising 
traffic such as port and payload methods often strugglewith the challenges posed by 
encrypted traffic. Deep learning techniques have emerged as a predominant method 
for traffic classification given its success in domains such as image recognition, 
document analysis and genomics This research proposes an enhanced DenseNet 
architecture that leverages deep learning to accurately classify encrypted internet 
traffic categories. The approach introduces a compression layer into the DenseNet 
architecture to address the co-adaptation problem as a result of information flow and 
optimise the CNN’s accuracy. The experimental results show that the approach can 
distinguish various encrypted Internet traffic categories with a high level of accuracy. 
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INTRODUCTION 
Internet traffic classification has become a vital aspect of network management and 

security. As the volume and complexity of internet traffic continue to expand, 

efficient and accurate classification methods are essential for distinguishing various 

applications that utilise the internet, this is useful for operations such as network 

optimisation, security monitoring, and quality of service management [1].  

Conventional approaches to traffic classification, such as port-based and payload-

based methods, have become less effective due to the widespread utilisation of 

encryption and dynamic port allocation [2].  

Consequently, machine learning techniques, particularly deep learning models, have 

gained prominence in recent years for their capacity to analyse complex patterns in 

network traffic data [3]. These advanced methods can extract salient features from 

raw packet data or flow statistics, enabling more precise classification of internet 

traffic, even in the presence of encryption [4]. The development of sophisticated 

classification algorithms continues to be an active area of research, with ongoing 

efforts to enhance accuracy, scalability, and adaptability to evolving network 

protocols and applications. 



 

 

Deep learning approaches for encrypted traffic classification have demonstrated the 

most promising results for the Internet traffic classification task. Due to successes 

recorded in tasks such as image classification, voice recognition and video 

classification, convolutional neural networks (CNN) have been utilised for the 

Internet traffic classification task. One of the most prominent variants of CNN is the 

DenseNet architecture [5] that enables information propagation through all the layers 

of the network; however, a significant drawback of the architectureis that as 

information is passed from the input to the output layer of the network, it can result in 

the detection of the same features by neurons, thereby resulting in reduced network 

capacity utilisation[6][7]. This study addresses this drawback by introducing a 

compression layer into the DenseNet architecture to prune the redundant neurons in 

the fully connected layer of the architecture. 

The contributions of the paper are listed below: 

 An enhanced DenseNet architecture with a neuron pruning layer for efficient 

encrypted internet traffic classification 

 A classifier that is able to accurately distinguish between encrypted Internet 

traffic categories. 

 Comparison of the performance of the proposed architecture with the 

conventional DenseNet architecture. 

The paper is organised as follows: a review of literature, themethodology and results 

and discussionsare presented. 

 

2. Literature review 

DenseNet architecture was created to ensure maximum information flow between the 

various layers of the CNN architecture. It uses a feedforward architecture whereby 

each layer receives input feature maps from the preceding layers and passes its feature 

maps to all subsequent layers. Features are not combined through summation but 

through concatenation. Despite these challenges, researchers have used several 

strategies to address these limitations. Approaches involving supervised and semi-

supervised learning approaches have been used [8] while parameter-efficient fine-

tuning methods aim to decrease computational resource usage [9]. Efforts are also 

being made to improve the interpretability of deep learning models for encrypted 

traffic classification [10].  



 

 

[11] stacked convolution layers to enhance feature extraction in DenseNet architecture 

and mitigate redundancies. Squeeze excitation modules were employed to represent 

interdependencies of salient feature maps. [12] incorporated PSA modules into the 

DenseNet architecture to improve computational efficiency by dividing convolution 

kernels in the Dense PSA block into asymmetric convolutions. [13] utilised a squeeze 

and excitation module to model interdependencies between features of different 

convolutional layers. [14] introduced a variant of DenseNet inspired by ResNet that 

substitutes concatenation operations within the dense blocks to reduce model 

complexity and the number of parameters. [15] employed Dense blocks to modify 

convolution layers in MobileNet, resulting in higher recognition accuracy. [16] 

combined DenseNet and LSTM for multivariate tasks. However, this approach has the 

limitation of high computational time. [17] enhanced the DenseNet architecture using 

sliding dense blocks to reduce redundancies in the network. 

Several researchers have applied the DenseNet architecture to the Internet 

Traffic Classification task. [18] utilised a rap-DenseNet framework for network traffic 

classification. The limitation of this approach is its computational intensity. [19] 

incorporated a normalisation layer into the DenseNet architecture for data stabilisation 

and to enhance convergence speed. [20] employed a convolutional neural network for 

the classification of Internet Applications. The technique achieved high accuracy; 

however, it has the limitation of misclassifying encrypted internet traffic. [21] utilised 

a fully connected neural network and a 1-dimensional convolutional neural network 

for classifying internet traffic payload. The approach achieved an accuracy of 96%. 

However, the method is computationally intensive. [22] employed an ensemble of 

CNNs to classify network traffic in the Cambridge dataset. An accuracy of 98% was 

achieved. The approach, however, is susceptible to overfitting. [23] proposed a deep 

learning-based framework for encrypted network traffic that utilises stacked 

autoencoders, multi perceptron and convolutional neural networks. The method 

achieved low accuracy. 

 The reviewed studies have presented various techniques that have used 

DenseNet and other CNN variants for Classification; however, a common limitation is 

the susceptibility to overfitting and the high computational overhead involved in 

training and deploying the DenseNet model. This study seeks to address this by 

integrating a compression layer that reduces the number of neurons using neuron 

pruning. 



 

 

 

3. Methodology 

The methodology of this study focuses on the development of an enhanced 

DenseNet architecture for classifying encrypted Internet traffic. This method aims to 

address the challenges posed by traditional traffic classification techniques when 

dealing with encrypted data streams. The DenseNet architecture is enhanced by 

adding a compression layer for neuron pruning.The pruning of neurons is modelled as 

a tradeoff problem where neurons are pruned while maintaining classification 

performance. The approach proposed in this study incorporates key improvements 

such as the removal of redundant neurons in the neural network using the Upper 

Confidence Bound Multi-Armed Bandits algorithm to boost the classification 

performance of the neural network.  The following subsections detail the dataset 

preparation, network architecture, training and evaluation metrics used in the study. 

 

Dataset 

To assess the deep-learning-based classification method, the Intrusion Detection 

dataset (ISCX) 2016 from the Canadian Institute of Cybersecurity was used.The  

ISCX-VPN datasetcomprises Internet traffic transmitted via an encrypted Internet 

connection. Within the ISCX VPN category, six traffic categories are captured: VoIP, 

Streaming, Email, Chat, Peer-to-peer (P2P) traffic and File Transfer. The categories of 

the ISCX dataset are shown in the table 1 below 

Table 1: Internet traffic categories and applications 

Traffic Category VPN 

Voice over IP (VoIP)  Google Hangouts, VoipBuster and Skype 

Streaming Netflix, YouTube and  Vimeo 

Email Thunderbolt, SMTP, POP3 and Gmail 

Chat Facebook, Google Hangouts, Skype, IAM and ICQ 

Peer to Peer (P2P) Bittorrent and uTorrent 

 

The dataset comprises packet capture files corresponding to specific application 

categories 

Pre-processing and Image Construction 



 

The ISCX Packets with similar 5-tuple attributes {source IP, source port, destination 

IP. Destination port, protocol}. The image construction approach used by [24] was 

adopted in this work, packets from the ISCX dataset were converted to packet flows 

with a size of 100 Bytes.These packets were converted to flow-based two-dimensional 

histograms. The histograms were construced by plotting the packet-arrival time on the 

X-axis and the packet size for packets in a packet flow on the Y-axis.  

Figure 1 illustrates the histograms for the various categories captured from the ISCX 

dataset. 

 



 

 
Figure 1: Two-dimensional histograms constructed for Chat, Email, File Transfer, 

VoIP, P2P and Streaming categories 

Network Architecture 

The DenseNet architecture comprises the convolution, pooling and fully connected 

layers with each utilising a non-linear transformation whereܪ௟ = indexes the layer ܪ௟. 

Transformation operations such as convolution, pooling, batch normalization, 

rectified linear units are carried out at each respective layer. The pooling layers in the 

architecture are divided into multiple dense blocks. These operations are condensed 

into multiple densely connected Blocks. Figure 2 below illustrates the architecture of 

DenseNet with 3 Dense blocks. 

 

 
Figure 2: DenseNet Architecture (Source: Huang et al. (2016)) 

 

Figure 3 depicts the compression layer added to the DenseNet architecture in the 

proposed architecture.  



 

 
Figure 3: Enhanced DenseNet Architecture with Compression Layer 

The three major components of the proposed architecture are discussed below: 

Convolutional Layer: The convolutional layer is a fundamental part of  CNN. An 

input tensor is transformed into an output tensor by convolving the input with filters. 

It is done for input images with a size ܹ	ଵ 	× ଵܪ 	× -ଵ and accepts four hyperܥ

parameters namely: the number of filters, their spatial extent, the zero padding 

between the borders of the input and a stride with which filters are applied to each 

image. 

Pooling Layer:The pooling layers reduce the size of representations with fixed 

downsampling transformation. Each channel in the input is independent of others and 

are downsampled spatially. 

Compression Layer:The conventional DenseNet architecture consists of a 

compression layer that is used to reduce the number of feature maps. However, this 

approach relies on arbitrairlysetting the compression factor. In this study, the neurons 

in the fully connected layers are pruned using the Upper Confidence Multi-Armed 

Bandits Algorithm which is integrated into the enhamcedDenseNet. This approach 

provides a more efficient means of reducing the number of feature maps thereby 

compressing the DenseNet without degrading classification performance. 

Experimental Setup 

The dataset used in this research was stored in Google Drive.The Google 

Colaboratory environment was used for training and evaluation of the architecture to 

enable the use of its free GPU resources. Empirical tests were carried out to contrast 

and compare the enhanced and conventional DenseNet architecture. The DenseNet 

classifier were trained using Stochastic gradient descent with an initial learning rate 

set to 0.1, The RelU activation function andthe cross-entropy loss function were used 

to minimise loss. The dataset was split into 80% for training and 20% for testing.  

Results and Discussion 



 

 

The conventional and enhanced DenseNet architectures were evaluated. The two 

architectures were evaluated using performance metrics such as precision, recall, F1 

Score, Area under the ROC Curve, and False positive Rate. Table 2 below shows the 

performance of the Conventional DenseNet architecture in the evaluation metrics. The 

Peer-to-peer Category recorded near-perfect results in all the metrics. Overall, the 

classifier provided a balance between precision and recall and controlled the false 

positive rates effectively. The Chat category displayed the lowest classification 

performance, a phenomenon that can be explained by the heterogenous nature of Chat 

traffic in general. 

Table 2: Performance of Conventional DenseNet Classifier 

 Precision Recall F1-

Score 

FPR TP TN FN FP 

Chat 83 89 86 1.91 170 1781 22 34 

Email 94 88 91 0.21 63 1888 9 4 

File 

Transfer 

91 83 87 1.61 276 1675 55 27 

Peer to Peer  

(P2P) 

99 98 98 0.40 453 1498 6 8 

Streaming 84 96 89 3.09 268 1683 11 52 

VoIP 96 94 95 2.36 721 1230 47 29 

 

Figure 4 illustrates the confusion matrix of the conventional CNN classifier which 

shows that the P2P, Streaming and File Transfer recorded the best results. The 

classifier distinguishes between the various categories. The conventional classifier 

struggles with distinguishing between the VoIP and Streaming categories. 



 

 
Figure 4: Confusion Matrix for DenseNet Classifier 

The P2P recorded the highest AUC from the curve in the figure below, closely 

followed by Streaming, VoIP, Email and Chat categories.  

 
Figure 5: ROC Curve for DenseNet Classifier 

The classification performance of the Enhanced DenseNet architecture was also 

evaluated. Table shows the performance in metrics such as metrics such as precision, 

recall, F1 Score, Area under the ROC Curve, False positive Rate.The enhanced 

DenseNet architecture outperformed the conventional DenseNet architecture in the 

file transfer and streaming categories. 

Table 3: Performance of Enhanced DenseNet Classifier 

 Precision Recall F1-Score FPR TP TN FN FP 

Chat 81 85 83 2.5 213 2472 44 44 



 

Email 90 94 90 0.48 87 2691 8 8 

File 

Transfer 

92 85 89 1.83 369 2324 74 74 

P2P 99 100 100 0.46 600 2188 15 15 

Streaming 83  96 89 1.54 348 2354 24 24 

VoIP 99 96 97 0.82 33 1749 66 66 

 

Figure which illustrates the confusion matrix shows that the VOIP category was the 

most correctly classified category followed by P2P, File Transfer, Streaming, Chat 

and Email. The enhanced classifier was able to distinguish between streaming and 

VoIP catgories unlike the conventional classifier. 

 
Figure 6: Confusion Matrix for Enhanced DenseNet Classifier 

The ROC curves for all the categories show impressive performance across all the 

traffic categories. P2P has the highest classification followed by Email, Streaming, 

Chat and File Transfer. Overall, the classifier maintains high positive rates for all 

categories while maintaining low false positive rates. 

 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: ROC Curve for Enhanced DenseNet Classifier 

 

Conclusion and Future Work 

In this paper, we introduce a novel DenseNet architecture for identifying Internet 

traffic application categories. Experimental results show that the approach used in this 

study outperforms the conventional DenseNet architecture. The key insight behind the 

approach utilised is the conversion of traffic flows into images. As shown, the flow-

feature statistics-based approach used is able to successfully distinguish between 

encrypted Internet traffic categories. Future studies can optimize the DenseNet 

architecture further by compressing input images before feeding them into the 

classifier. Another approach would be to incorporate modalities such as payload and 

temporal features into the dataset to further improve the classification performance.  
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