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Abstract 

This paper reviews the application of multi-sensor fusion in simultaneous localisation 
and map construction (SLAM) technology. With the development of robotics, autonomous 
driving and virtual reality, there is an increasing demand for precise localisation and map 
construction.SLAM technology has emerged to solve the problem of autonomous robot 
localisation and map construction in unknown environments. However, single-sensor SLAM 
systems have limitations, such as limited sensing capability and susceptibility to noise 
interference. Multi-sensor fusion SLAM significantly improves the performance and 
robustness of the system by integrating the advantages of multiple sensors.The multi-sensor 
fusion SLAM system includes key components such as sensor data reading, front-end visual 
odometry, back-end optimisation, loopback detection and map building. The sensor data is 
first optimised to reduce noise and then further processed according to the task requirements. 
Sensors are categorised into internal sensors (e.g. IMUs and wheeled odometers) and external 
sensors (e.g. cameras, LIDAR, UWB sensors, etc.). Common data fusion methods include 
filter-based fusion (e.g., Extended Kalman Filter, Particle Filter), optimisation-based fusion 
(e.g., Graph Optimisation, Nonlinear Least Squares) and deep learning-based fusion (e.g., 
Convolutional Neural Network, Recurrent Neural Network). These methods are able to 
handle different types of sensor data and improve the performance of SLAM systems. 

Multi-sensor fusion SLAM technology has a wide range of applications in fields such as 
robot navigation, autonomous driving, virtual reality, geographic information systems and 
mapping. In the future, the technology will pay more attention to the combination of 
multimodal fusion and deep learning, optimising the computational efficiency of the 
algorithms, improving the real-time and robustness of the system, as well as the fusion of 
cloud SLAM and edge computing, to promote the development and advancement of the 
related fields. 
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1 Introduction 

In the context of the rapid development of modern technology, robotics, autonomous 
driving, virtual reality and other fields have put forward higher requirements for accurate 



 

 

positioning and map construction technology. Simultaneous Localisation and Map Building 
(SLAM) technology has emerged as a key technology to address this need.The core of SLAM 
technology lies in solving the problem of how to accurately know where a robot is during 
movement (localisation) and how to describe its surroundings in detail (map building).SLAM 
technology allows a robot or device to autonomously localise itself in unknown environments 
and to build an environment map. maps, providing the basis for subsequent tasks such as 
navigation and path planning. However, single-sensor SLAM systems often have limitations, 
such as limited ability to perceive the environment and susceptibility to noise interference. To 
overcome these shortcomings, fused SLAM technology has emerged, which significantly 
improves the performance and robustness of SLAM systems by integrating the advantages of 
multiple sensors. Aiming at the problems of low efficiency of existing gas leakage detectors 
and the inability to locate the leakage source, Chen Dongyi proposed a double-vehicle linkage 
cycle inspection scheme based on STM32, and at the same time successfully achieved the 
accurate positioning of the leakage source location by using the method of multisensor fusion. 
In order to improve the positioning accuracy of robot outdoor long-duration positioning, Xia 
Linlin proposed a graph optimisation-based Global Navigation Satellite System 
(GNSS)/Binocular Vision/Inertial Simultaneous Localisation and Map Building (SLAM) 
system development and application. Line features in space are integrated into the front-end 
feature extraction and back-end position optimisation thread as a supplement to the geometric 
constraints to improve the position solving accuracy. Meanwhile, the graph structure for joint 
optimisation is constructed with a factor graph and a global observation error model is 
derived. Although single-sensor systems have their conclusions and applicable scenarios, 
multi-sensor fusion SLAM systems face the problem of data complexity due to the increase in 
the number of sensors, which makes it difficult to achieve effective integration between 
different data sources. To address this challenge, the data must be pre-optimised to enhance 
the robustness of the system. By doing so, the overall performance and reliability of the multi-
sensor fusion SLAM system can be improved. 

2 Research on multi-sensor fusion slam method 

2.1 Overview of multi-sensor fusion slam 

Multi-sensor fusion SLAM is a popular technology framework that improves the 
accuracy of localisation and map building by integrating data from different sensors. Such 
frameworks typically contain key components such as sensor data reading, front-end visual 
odometry, back-end optimisation, loopback detection, and map building. Compared to 
traditional SLAM approaches, multi-sensor fusion SLAM is particularly suitable for mobile 
robot applications in dynamic, low-texture, and complex environments, which often lead to 
image drift and excessive interference points in conventional SLAM systems. 

In multi-sensor fusion SLAM, the sensor data is first optimally processed to eliminate or 
reduce noise. This optimised data is then further processed according to the requirements of 
the particular task. There are various types of sensors, which can be classified into two main 
categories: internal and external sensors. Internal sensors, such as IMUs and wheel odometers, 
are mainly used to capture the internal states of the robot, such as velocity and acceleration. 
Whereas external sensors, including cameras, LiDAR (Lidar), Ultra Wide Band (UWB) 



 

 

sensors, magnetic field meters, and manometers, are responsible for collecting information 
about the robot's external environment, such as position and distance. 

The core advantage of multi-sensor fusion SLAM is the ability to combine the strengths 
of individual sensors to complement each other in order to overcome the limitations of a 
single sensor. Through this fusion, the system is able to sense the environment more 
accurately and improve robustness and reliability in complex scenarios. The application of 
this technology not only improves the autonomous navigation ability of robots, but also 
brings new possibilities for the development of the SLAM field. 

 
Fig. 1 Multi-sensor fusion slam architecture 

2.2 Multi-sensor fusion methods 

Vision-based SLAM systems are prone to problems such as degradation of positioning 
accuracy and failure of map construction under poor lighting conditions and lack of texture 
features in the scene; while LIDAR-based SLAM systems, although they perform better in 
structured environments, are limited in dynamic environments or complex terrains. In 
addition, data from a single sensor is susceptible to noise interference, leading to insufficient 
robustness of the SLAM system. Therefore, fusing the advantages of multiple sensors to 
achieve the complementary and fusion of multi-source information becomes a key way to 
improve the performance of SLAM systems. Multi-sensor data fusion is the core of fused 
SLAM technology. It involves how to effectively integrate data from different sensors to 
obtain more accurate and reliable positioning and map construction results. Common data 
fusion methods include filter-based fusion, optimisation-based fusion and deep learning-based 
fusion. 

Filter-based fusion: e.g. Extended Kalman Filter (EKF), Particle Filter, etc. By 
establishing the state model and observation model of the system, real-time updating and 
estimation of the sensor data is carried out to achieve the optimal estimation of the system 
state. This method is suitable for linear or nearly linear systems, and can better deal with the 
noise and uncertainty of sensor data[1]. 

Optimisation-based fusion: e.g. graph optimisation, nonlinear least squares, etc., solves 
the optimal system state by constructing an optimisation problem with sensor data as 



 

 

constraints. This method can make full use of the correlation information between sensor data 
and is suitable for dealing with large-scale and complex datasets. 

Deep learning-based fusion: deep learning models, such as convolutional neural 
networks (CNN) and recurrent neural networks (RNN), are used to extract and fuse features 
from sensor data to achieve perception and understanding of the environment. This approach 
is able to learn deeper feature representations from the data and is suitable for processing high 
dimensional and complex data[2]. 

For indoor environments that lack obvious location markers, to achieve precise 
positioning of UAVs, Jun Zhang proposed a multi-sensor fusion algorithm. The algorithm 
integrates median filtering, threshold segmentation, projection transformation, and least 
squares in order to achieve accurate estimation of UAV position and attitude[3]. 

Aiming at the problems of short-term loss of single-sensor data, low positioning 
accuracy, and asynchronous sensor frequency of mobile robots, Li Hang uses LiDAR, IMU, 
and wheeled odometer to obtain positioning information, and proposes a combined data 
fusion method based on Extended Kalman Filtering and Complementary Fusion. First, the 
initial positioning data are preprocessed by S-G filtering algorithm, and the extended Kalman 
filter fusion algorithm is used to achieve the fusion of IMU and wheel odometer sensors to 
obtain the fusion data 1, and then the complementary fusion algorithm is used to fuse the 
fusion data 1 and lidar to obtain the fusion positioning data 2, in which the fusion data 1 is 
used to make up for the real-time correction of the lidar to solve the frequency asynchrony of 
displacement deviation, thus significantly improving the positioning accuracy. The fusion data 
1 is used to correct the LiDAR in real time to solve the frequency asynchronous displacement 
deviation, thus improving the positioning accuracy[4]. 

2.3 Multi-sensor fusion data spatio-temporal alignment 

In a fused SLAM system, data from different sensors are often acquired asynchronously 
and there are spatial deviations between sensors. Therefore, achieving time synchronisation 
and spatial alignment of multiple sensors is the key to ensure the accuracy of data fusion. 
Time synchronisation: Ensure that the data from different sensors are collected at the same or 
similar time points by means of hardware synchronisation or software synchronisation. 
Hardware synchronisation usually relies on devices such as synchronous signal generators, 
while software synchronisation is corrected by algorithms that estimate the time deviation of 
sensor data. 

Spatial alignment: Establishing a transformation between different sensor coordinate 
systems to unify sensor data under the same coordinate system. This usually involves the 
calibration process of the sensors, through which the external references (e.g., rotation 
matrices and translation vectors) between the sensors are obtained to achieve spatial 
alignment of the data. 

In order to eliminate the systematic and temporal errors of ground radar, J. Zhao 
proposed a spatio-temporal alignment method for 3D spatial ground radar networks based on 
Unscented Kalman Filter (UKF). The method combines the systematic error, temporal error 
and target motion model in a dynamic model and estimates them by the UKF method.Monte-
Carlo simulation shows that the method can estimate the systematic error and temporal error 
of the radar effectively at the same time, and obtain the target trajectory at the same time. 
Based on multi-sensor integration and spatio-temporal alignment technology, Wang 



 

 

Zhilourealised the three-dimensional parameter acquisition of forest trees. Using the self-
developed multi-sensor integration system for forest parameters, the data acquisition of forest 
trees was carried out in the forest sample site of Northeast Forestry University, and the spatial 
and temporal alignment of point cloud data and image data was realised by using the inter-
sensor coordinate system conversion relationship and binocular vision algorithm. The RMSE 
of X, Y and Z directions were 0.074, 0.117 and 0.153 m, respectively, and the average value 
of RMSE was 0.115 m. The results showed that the integrated system was effective in 
collecting data and the alignment effect was good[5]. 

Pingjun Pan proposed a real-time estimation algorithm for temporal and spatial deviation 
of radar and infrared sensors by giving a temporal and spatial deviation alignment model. The 
algorithm combines the motion state of the target and the sensor deviation in the same state 
equation, constructs the system dynamic equation and the measurement equation of the 
expanded dimensional state, and through the nonlinear analysis of the measurement equation, 
the joint estimation of the target state and the alignment deviation is carried out by using the 
method of two-stage filtering of UKF and KF[6]. 

In the vehicle-mounted 3D measurement system of Shi Bo, in order to obtain the 3D 
spatial information needed in the digital city in a fast, real-time and complete way, a variety 
of sensors, such as the global positioning system (GPS) and the laser scanner (LS), are 
integrated, in which the principle of multi-sensor data fusion is applied to the processing of 
the data. The spatial and temporal alignment between the sensors is the key to the effective 
fusion of multi-sensor data information. The problem of spatial and temporal alignment is 
solved by solving the relationship between the coordinate systems of the sensors and by using 
the time recording function of the laser scanner and the GPS time marking function, which is 
successfully applied to the ‘near-view target three-dimensional measurement technology’, and 
the expected results are given in the experimental results. 

3 General overview of the slam algorithm 

Simultaneous localisation and mapping (SLAM) technology has been widely used in various 
autonomous mobile platforms, of which vision SLAM and LiDAR SLAM are the two main 
SLAM technology solutions. However, vision SLAM systems are susceptible to changes in 
the visual environment, while LiDAR SLAM systems suffer from accuracy degradation or 
even failure in environments such as single structure. As the application scenarios of smart 
mobile platforms continue to expand, higher requirements are placed on the accuracy and 
robustness of SLAM systems, and the fusion of multiple complementary sensors is an 
effective way to improve the performance of SLAM systems. 

3.1. visual slam technology 

Visual SLAM, thanks to its structural simplicity, cost-effectiveness and ability to extract 
semantic information from the environment, has become a widely used SLAM method. 
Although vision SLAM may encounter the problem of cumulative errors when operating in 
dynamic robot environments, especially when confronted with large flat areas or drastic 
changes in lighting conditions, its performance may suffer. However, the mainstream 
architectures for vision SLAM can be classified into three types,direct method, feature point 
method, and semi-direct method. 



 

 

The direct method directly utilises the pixel intensity information obtained from the 
camera to estimate the camera motion and the 3D structure of the scene. Its ability to use all 
pixel information provides dense map building capability, which makes it perform well when 
dealing with environments with rich textures. Since it does not rely on feature points, the 
direct method maintains good performance when facing large planes or less textured 
environments and maintains good robustness when dealing with fast-moving scenes, since it 
models pixel intensity changes directly. Jakob engel proposed a direct monocular SLAM 
algorithm that constructs large-scale, consistent maps of the environment, performs highly 
accurate pose estimation in the presence of scale drift, and reconstructs 3D environments in 
real time using a large number of pixel-level small-baseline stereo comparison filters. The 
algorithm employs a direct image alignment method for high-precision pose estimation and 
reconstructs the 3D environment using an associated keyframe poses-graph and a semi-dense 
depth map[7]. 

The feature point method estimates the camera motion by detecting and tracking feature 
points in the image, which can effectively handle different lighting and occlusion situations 
and provide relatively high localisation accuracy. By extracting the local features of the object, 
the feature point method is able to achieve a stable and robust visual feature description, 
which is not easily affected by lighting changes. Moreover, the bag-of-words model built 
using feature points can perform effective loopback detection, which is one of the important 
roles of the feature point method in SLAM systems. However, in scenes with less texture or 
repetitive objects, the feature point method may encounter matching difficulties, resulting in 
performance degradation. And it may fail when dealing with fast moving objects or the 
camera's own motion, which limits its application in dynamic scenes.Raul Mur-Artal proposes 
the ORB-SLAM system, a robust monocular SLAM system that operates in real time in 
small-scale environments indoors and outdoors and is capable of dealing with severe motion 
clutter, supporting extensive baseline loop closure and relocation, and with fully automatic 
initialisation. The algorithm demonstrates the advantages of real-time, robustness, loop 
closure and relocation, and automatic initialisation by constructing a feature-based monocular 
SLAM system and testing the ORB-SLAM system in a variety of environments[8]. 

The semi-direct method combines the advantages of the direct and feature-point methods 
to reduce the computational effort by tracking blocks of pixels in an image while maintaining 
sensitivity to fast motion.Xiang Gao proposed a sparse odometry monocular vision SLAM 
system (LDSO) with closed-loop detection and bitmap optimisation. As a straightforward 
technique, DSO can utilise any image pixel with a sufficient intensity gradient, which makes 
it robust even in featureless regions.LDSO retains this robustness while prioritising corner 
features in the tracking front-end, thus ensuring repeatability of these points. This 
repeatability allows for reliable detection of closed-loop candidate points using traditional 
feature-based bag-of-words (BoW) methods. Closed-loop candidate points are geometrically 
verified and Sim(3) relative positional constraints are estimated by jointly minimising 2D and 
3D geometric error terms. These constraints are fused with relative positional co-visibility 
maps extracted from the sliding window optimisation of the DSO. Evaluation on a publicly 
available dataset shows that the modified point selection strategy retains tracking accuracy 
and robustness, while the integrated bitmap optimisation significantly reduces cumulative 
rotations, translations and scale drifts, making the overall performance comparable to state-of-



 

 

the-art feature-based systems[9]. 

3.2 Laser slam technology 

Laser SLAM technology solutions can be mainly divided into two categories: 2D laser 
SLAM and 3D laser SLAM, each of which has different application scenarios and 
characteristics: 

2D laser SLAM mainly uses single-line LiDAR to detect two-dimensional planar 
environmental information, suitable for indoor environment, famous for Gmapping, Hector-
slam, cartogapher .JingRen Wen proposed a 2D LiDAR SLAM back-end optimisation method 
that introduces the control network constraints (CNC), in order to improve the mobile 
mapping accuracy that effectively solves the drift accumulation problem of front-end scan 
matching. The back-end of the graph-optimised SLAM is optimised by aligning the lidar scan 
centres with the control vertices of a pre-measured control network to optimise the bit 
positions of all scans and sub-maps[10][11][12]. 

3D laser SLAMM uses multi-line LIDAR to acquire 3D data of the environment and 
performs localisation through feature point matching of the 3D data.3D laser SLAM 
technology has the advantages of high measurement accuracy, high environmental 
adaptability, and easy deployment. With the mass production and performance improvement 
of domestic multi-line LIDAR, 3D LIDAR is gradually moving towards low-cost, low-power 
and high-reliability applications, and 3D LIDAR-based SLAM algorithms have been 
developed rapidly.RTAB-Map was initially developed as an appearance-based closed-loop 
detection method with memory management for dealing with large-scale and long-time online 
operations. Subsequently, it evolved to enable simultaneous localisation and map building 
(SLAM) on a wide range of robotic and mobile platforms[13]. 

Vision SLAM and laser SLAM are undoubtedly integral and important components of 
sensor fusion SLAM, and their synergy opens up new paths for autonomous robot navigation 
and environment sensing. 

4 Mainstream sensor fusion solutions 

Multi-sensor fusion SLAM technology can effectively solve the problems faced by 
single-sensor SLAM systems, and it improves the performance of SLAM systems by 
integrating data from different sensors, such as vision, LiDAR (laser radar), and inertial 
measurement unit (IMU). This fusion approach demonstrates its advantages in the following 
main areas: 

Extended spatial detection range: multi-sensor systems are able to cover a wider space as 
different sensors can make measurements over a wider range. Improved resolution: by 
integrating multiple independent but qualitatively identical measurements, multi-sensor fusion 
SLAM is able to achieve higher resolution beyond the measurement limitations of a single 
sensor. Enhanced Robustness and Accuracy: Increasing the spatial dimensions of the sensors 
reduces the amount of interference to the system. Even if one sensor fails, the system can still 
maintain operation because other sensors can provide the necessary data support. 

4.1 Visual inertia slam 

The visual inertial slam programme combines data from visual sensors and an inertial 



 

 

measurement unit (IMU). The vision sensor provides rich feature information about the 
environment, while the IMU provides dynamic information about the robot's motion. 
Combining these two sensors improves the robustness and accuracy of the system, especially 
in dynamic and light-changing environments. Fusion of inertial and vision data is widely used 
to improve attitude estimation of objects. However, this type of fusion is rarely used to 
estimate further unknown quantities in a vision framework.GabrielNutzi proposed two 
different approaches to estimate unknown scale parameters in a monocular SLAM framework, 
which are directly related to scale by estimating the absolute velocity and position of an 
object in 3D space. The first method is a spline fitting task from Jung and Taylor, and the 
second is an extended Kalman filter, both of which have been used to analyse the behaviour 
of arbitrary camera paths and the quality of the resulting scale estimates by simulating them 
offline. The online multirate extended Kalman filter is then embedded into Klein and 
Murray's Parallel Tracking and Mapping (PTAM) algorithm with an inertial sensor. In this 
inertial/monocular SLAM framework, real-time, robust and rapidly converging scale 
estimation results are demonstrated. A camera and a low-cost Inertial Measurement Unit 
(IMU) form the monocular Vision-Inertial System (VINS), the smallest sensor suite (in terms 
of size, weight and power consumption) for metric six-degrees-of-freedom (DOF) state 
estimation.Tong Qin proposes the VINS-Mono: a robust and versatile monocular Vision-
Inertial state estimator. The method starts with a robust process of estimator initialisation, and 
uses a tightly coupled, nonlinear optimisation-based approach to obtain a highly accurate 
visual-inertial odometry by fusing pre-integrated IMU measurements and eigenobservations. 
Combined with the tightly coupled formulation, the loopback detection module is able to 
achieve repositioning with minimal computational effort. A 4-degree-of-freedom position map 
optimisation is also performed to ensure global consistency[14][15]. 

4.2 Laser inertial slam 

The laser-inertial slam scheme utilises data from LIDAR and IMU, with the radar 
providing accurate distance measurements and the IMU providing motion state 
information.TiXiao Shan proposed a tightly-coupled LIDAR-inertial position measurement 
framework, called LIO-SAM, implemented by smoothing and mapping, for highly accurate 
real-time mobile robot trajectory estimation and map construction.LIO- SAM formulates the 
LiDAR-inertial positioning problem as a factorial map, allowing the introduction of a large 
number of relative and absolute measurements from different sources as factors, including 
closed loops. Pre-integrated estimates from the Inertial Measurement Unit (IMU) de-tilt the 
point cloud and generate an initial guess for the lidar positioning optimisation. The acquired 
lidar positioning solution is used to estimate the deviation of the IMU. To ensure high 
performance in real-time, the old LiDAR scans are marginalised for attitude optimisation 
rather than matching the LiDAR scans to the global map. Matching scans on a local rather 
than a global scale significantly improves the real-time performance of the system, with the 
selective introduction of keyframes and an effective sliding window approach to register new 
keyframes into a fixed-size set of previous ‘subkeyframes’[16]. 

4.3 Laser vision inertial slam 

Laser vision-inertial slam enables real-time localisation of the robot and simultaneous 
construction of environment maps by processing data from vision, LiDAR and IMU in real-



 

 

time.Jiarong Lin proposed a novel LiDAR-inertial-visual sensor fusion framework called 
R3LIVE, which utilises measurements from LiDAR, inertial and visual sensors to achieve 
robust and accurate state estimation.R3LIVE consists of two subsystems, LiDAR-Inertial 
Odometry (LIO) and Visual-Inertial Odometry (VIO).The LIO subsystem constructs the 
geometry of the map  using measurements from LiDAR and inertial sensors.The VIO 
subsystem renders the texture of the map using visual-inertial sensor data (. Specifically, the 
VIO subsystem directly and efficiently fuses visual data by minimising frame-to-map 
photometric errors[17]. 

4.4 Partial fusion slam method 

Table 1 Summary of multi-sensor mapping methodology options 

Program Time Sensor source or 
not 
 

Map Type 

R3LIVE 2021 monocular camera+Lidar+Imu  Yes Point cloud 
OpenRealm 2020 Vision+Lidar+Imu+Gps Yes Point cloud 
Lvi-Sam 2020 monocular camera+lidar+imu Yes Point cloud 
Fast-Lio 2021 Lidar+imu Yes Point cloud 
Vins-Mono 2020 monocular camera+imu Yes Point cloud 
Gao-S 2022 monocular camera+imu+Gps No Point cloud 
Li-k 2021 Lidar+imu No Point cloud 
Camvox 2021 Lidar+imu+Rgb-d Yes Point cloud 

5 Summary 

5.1 Integration challenges 

Data synchronisation and fusion: multi-sensor data synchronisation is a major challenge 
in multi-sensor fusion SLAM. The data acquisition frequencies and timestamps of different 
sensors may not be consistent, which requires an accurate synchronisation mechanism to 
ensure data consistency. In addition, the data formats and characteristics of different sensors 
vary widely, and it is a technical challenge to effectively fuse these data to improve the 
accuracy and robustness of SLAM. 

Demand for computational resources: multi-sensor fusion SLAM needs to process a 
large amount of data, including high-resolution images, point cloud data and IMU data. This 
requires the system to have high computational power for real-time processing and decision 
making. On resource-constrained devices, how to optimise the algorithms to reduce the 
consumption of computational resources is an urgent problem to be solved. 
Real-time: In dynamic environments, such as self-driving cars, real-time is a key requirement 
for SLAM systems. Multi-sensor fusion SLAM needs to process a large amount of data in a 
short period of time and respond quickly, which puts high demands on the processing speed 
of the system. 

Environmental adaptability: the adaptability of multi-sensor fusion SLAM in different 
environments is also a challenge. For example, in environments with low light or lack of 
texture, the performance of vision sensors may degrade, while the performance of LIDAR and 
IMU may be more stable. How to adapt the sensor fusion strategy to different environments to 
maintain the stability and accuracy of the system is an issue that requires in-depth research. 



 

 

Sensor errors and noise: all sensors are affected by certain errors and noise, which may be 
amplified in the data fusion process. How to correct and compensate these errors effectively is 
the key to improve the performance of SLAM system[18][19]. 

5.2 Directions for Development 

Algorithm optimisation: future research will focus on the development of more efficient 
algorithms to reduce the consumption of computational resources and increase processing 
speed. This may include improving existing filtering and optimisation algorithms, as well as 
developing new machine learning and deep learning techniques to process sensor data. 
Hardware development: as sensor technology advances, higher performance and lower cost 
sensors may be available in the future. This will help improve the performance of multi-
sensor fusion SLAM systems while reducing costs. 

Artificial Intelligence and Machine Learning: the use of artificial intelligence and 
machine learning techniques to improve the adaptive and learning capabilities of SLAM 
systems is an important research direction. By training models to recognise and predict 
environmental changes, SLAM systems can better adapt to different environments and tasks. 
Multimodal data fusion: future research may explore the fusion of more types of sensor data 
such as fused vision, LIDAR, IMU, radar and ultrasonic sensors. This will help to improve 
the perception of the system in complex environments.Real-time and robustness: future 
research will aim to improve the real-time and robustness of the system, especially in 
dynamic and uncertain environments[20]. 

5.3 Application Scenarios of Converged SLAM Technology 

In the field of robotics, fused SLAM technology is widely used in robot navigation and 
autonomous exploration tasks. By fusing data from multiple sensors, robots are able to 
accurately locate and build maps in unknown environments, so that they can autonomously 
plan paths, avoid obstacles, and complete various tasks. For example, in service robots, fused 
SLAM technology can help robots navigate in complex environments such as shopping malls 
and hospitals and provide guide services for customers; in industrial robots, fused SLAM 
technology can achieve real-time perception and modelling of factory environments, 
improving the productivity and flexibility of robots.Autonomous driving is another important 
application area of fused SLAM technology. In the automatic driving system, fused SLAM 
technology can provide vehicles with high-precision positioning and environment sensing 
capabilities, so that vehicles can drive safely in complex road environments. By fusing data 
from on-board cameras, LIDAR, IMU and other sensors, self-driving vehicles can acquire 
real-time information about the surrounding environment, including road signs, traffic signals, 
pedestrians, vehicles, etc., so as to realise precise control of the vehicle's movement state and 
path planning. In the field of virtual reality (VR) and augmented reality (AR), the integration 
of SLAM technology can achieve real-time perception and modelling of the user's 
surroundings, providing the user with an immersive interactive experience. For example, in 
AR applications, converged SLAM technology can accurately superimpose virtual objects 
into the real world, enabling users to interact with virtual objects in a natural way; in VR 
applications, converged SLAM technology can realise accurate tracking of users' movements, 
providing a more realistic and smooth virtual environment experience. In the field of 
geographic information system (GIS) and surveying and mapping, fused SLAM technology 



 

 

can be used to rapidly acquire geospatial data and improve the efficiency and accuracy of 
surveying and mapping. By fusing data from LIDAR, IMU, GPS and other sensors, high-
precision 3D modelling and topographic mapping can be carried out in complex terrains or 
hard-to-reach areas, providing important basic data support for urban planning, environmental 
monitoring and disaster assessment. In the future, fusion SLAM technology will pay more 
attention to the combination of multimodal fusion and deep learning. By deeply fusing sensor 
data from different modalities and using deep learning models to extract and analyse the 
features of the data, the sensing ability and intelligence level of the SLAM system can be 
further improved. For example, by combining multiple sensor data such as vision, LIDAR, 
sonar, etc., a deep learning model is used to learn the multidimensional feature representation 
of the environment to achieve comprehensive perception and understanding of the complex 
environment. With the continuous expansion of application scenarios, the real-time and 
robustness of the fusion SLAM system has put forward higher requirements. Future research 
will be devoted to optimising the computational efficiency of the algorithm and reducing the 
time delay of data processing and fusion to meet the real-time requirements. At the same time, 
the robustness of the SLAM system in various complex environments is improved so that it 
can better cope with challenges such as lighting changes, dynamic objects, and noise 
interference[21]. 

The convergence of cloud SLAM and edge computing will be an important development 
direction in the future. By combining the SLAM system with the cloud computing platform, 
the powerful computing and storage capabilities of the cloud platform can be used to achieve 
the processing and analysis of large-scale data and improve the performance and scalability of 
the SLAM system. At the same time, combined with edge computing technology, data 
preprocessing and preliminary fusion can be carried out near the data source, reducing the 
delay of data transmission and improving the response speed of the system. 

6 Conclusion 

As an important cutting-edge technology, fused SLAM technology has shown great 
application potential and value in many fields. Through the fusion of multi-sensor data, the 
fused SLAM system can achieve high-precision perception and modelling of the environment, 
which provides a solid technical foundation for applications such as robot navigation, 
autonomous driving and virtual reality. In the future, with the continuous progress and 
innovation of technology, the fusion SLAM technology will make greater breakthroughs in 
multimodal fusion, deep learning, real-time and robustness, cloud SLAM and edge computing, 
human-computer interaction and collaborative SLAM, etc., and promote the development and 
progress of related fields. 
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