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A Comprehensive Analysis of Stability and
Data Dependency in a Novel Jungck-Type
Iteration Algorithm

Abstract

This study introduces a novel Jungck-type iterative algorithm for approximating coincidence
points under specific contractive conditions. The research demonstrates the algorithm's
strong convergence, stability, and data dependency through rigorous theoretical analysis
and numerical experiments. Results indicate that the proposed method achieves a
significantly faster convergence rate compared to existing Jungck-type iterations. These
findings have practical implications in fields such as optimization, economic modeling, and
coupled differential equations, where iterative techniques are vital.
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1. Introduction and Preliminaries

The Jungck-type fixed-point iteration extends classical fixed-point theory to address
scenarios involving multiple mappings with defined interrelations. This approach
demonstrates particular efficacy in addressing problems in which the interaction between the
two operators plays a crucial role, ensuring convergence to a common fixed point under
specific contractive conditions.

By expanding the scope of fixed-point theory to encompass more complex and hybrid
systems, Jungck-type iterations have demonstrated significant applicability in domains such
as optimization, economic modeling, and coupled differential equations. The exploration of
numerical solutions for differential equations and their equivalent integral equations through
the lens of fixed point iterations has become a focal point for many scholars in the field.
(Karapinar et al., 2022, Adeyemi et al., 2021). Various problems have utilized fractals, such
as in studying the structure of river networks.(Martinez et al., 2022), image encryption
(Zhang et al., 2019), and the generation of art (Ouyang et al., 2021; Guran et al., 2023).
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Recently, substantial advancements have been achieved in both the theoretical analysis and
numerical exploration of various explicit iterative techniques (Berinde, 2004; Olatinwo, 2008;
Khan et al., 2014; Olatinwo and Postolache, 2012).

Consider (W,]]) be a Banach space, V be an arbitrary set, /,H : V - W be arbitrary non-self

mapping with HV) < J(V), J(V) is a complete subspace of W, and a, € V.
For a,, € [0,1], (Singh et al., 2005) defined the Jungck-Mann iterative scheme as follows:

]an+1 = (1 - an)]an + anHan- (11)

(Olatinwo, 2008) defined the Jungck-Noor (J-Itrl) iteration scheme as

J, =(1-u,)Jda, + u,Ha,,
Jb, =(1-35,)Ja, +,Hc,, (1.2)
Ja,,, =(1-4,)Jda, + 4,Hb,,

o0 e 0] o0

where {4 f_o.{0n fn_g +{4nfnog <[0.1].
A new three-step iteration process, known as the Jungck-Khan (J-1tr2) method, was
proposed by (Khan et al., 2014) as follows

e, =(1-u, ) Ja, + u,Hay,

I, =(1-5, - 4,)Ja, +5,Hc, + 4, Ha,, (1.3)

Ja,,, =(1-6,-7,)Ja, +6,Hb, +y,Ha,,
where {x},_, {6}, o { A} {6} and {rf, <[0.1], satisfying {5}, +{4}
{0} o+ {7} <102

To demonstrate the strong convergence of both the Jungck-Mann and Jungck-Ishikawa
iterative process, (Olatinwo and Imoru, 2008) introduced the following contractive definition

||Hu - Hv|| < 2/3||Ju - Hu||+ﬁ||Ju — Jv|| vu,veV, 0<p8<L 1.9
(Olatinwo, 2008), building on result (1.4), Olatinwo demonstrated the stability and strong

convergence of various iterative technigques. This was achieved by employing a more
comprehensive contractive condition, which is represented as

[Hu = H|| < (J9u-Hu)+ gJau-a vuvev, 0<p<y, (1.5)

where the monotonically increasing function i : R"™ — R" satisfying w (0) = 0.

Definition 1 (Jungck, 1976). Consider V a non-empty set and J,H:V — W be two mappings.
A coincidence point exists when J(v) = f = H(v) for some v in V, and the associated value
f is referred to as the point of coincidence or coincidence value of J and H. If Jw) =v =
H(v) for an element v in V then v is called the common fixed point of ] and H. The pair
(J, H) commutes at the coincidence point, and is said to be weakly compatible.

Definition 2 (Olatinwo and Postolache, 2012). Consider the operators J,H : V - W such
that H(V) < J(V) and Jv = f = Hv, where f is a point of coincidence of J and H. Suppose
a, € V is the initial approximation, g is some function, and {Ja, };s-, € W, be the sequence
converges to f, generated by an iterative procedure
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]an+1 zg(Hran) !n=0)1;2) LI

Let {Jh, };-o € W be an arbitrary sequence. Set
Pp =9 —g(H.N). n=012,...
Then, the iterative procedure Ja,,; = g(H,a,) is said to be stable if and only if lim p,, =0
n—-oo
implies lim jh, = f.
n—oo

Lemma 1 (Berinde, 2007). If g €[0,1) and sequence of positive numbers {w,}n With
lim w,, = 0, then for every sequence of positive numbers {u,}r-,, Which satisfies

n—-oo
Upe1 < Pu, + w,, n=012,..
one has lim u, = 0.

n—-oo

Definition 3 (Khan et al., 2014). Assume an arbitrary set V and the non-self mapping pairs
(J,H),(,Hy): V -> W with HWV) € J(V) and H, (V) < J,(V). If for fixed &; > 0 and &, > 0, and
for all v € V, one gets

m(Hv,H,v) < &,

m(Jv,J1v) < &,
then, (J;, H,) is said to be an approximate mapping pair of (J, H).

This paper presents a novel Jungck-type iteration algorithm to determine the coincidence
points of contractive-type mappings. The proposed method exhibits an enhanced
convergence rate and stability compared to existing Jungck-type iteration approaches.
Additionally, we derived the data dependence findings for our newly introduced process.

We now define our novel Jungck-type iteration (New-Itr) scheme, as follows:
For a, € V, the sequence {Ja,};_, in W is given by

S 1
Jd, =—Ja, +—Ha,,
s+1 s+1
3= ha ~thd
"o " M (1.6)
Jb = s Jc, + Hc
"erl "oge1 M
‘]an+l:an

where, s > 1 and s’ > 0 are real numbers.

Remark. If we consider V = W, and J is the identity operator in (1.6), then we get the
following iteration outlined in (Sharma et al., 2024, equation(18)):

1 sa,+Ha
b,==| (s+1)Ha,—H| ———" | |,
ns(< JHan-H[ 01 jj

(1.7)

s'bn+anj
s+l )

an+1=H(

where s > 1 and s’ > 0 are real numbers.
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2. Main results

Theorem 2.1. Consider (W,||) a Banach space and V be an arbitrary set. Suppose J, H:V —

W be non-self mappings with H(V)<J(V), and J(V) is a complete subspace of W.
Suppose | and H have a coincidence point v, (that is, Jv = f = Hv) and also J,H satisfies
the contractive condition (1.5) with g <z . Let {Ja } be the new iteration process defined

by (1.6). Then, {Jan}n:0 is strongly converges to f. Moreover, (J,H) has a unique common
fixed point f provided that V = W and H,] are weakly compatible.

Proof. We shall prove that lim ja, = f. Using (1.6), one has
n—oo

J9g, - £] == ga, + = Ha, - 1|,
+1 S+1
< |oa, ~ +——|Ha, - H],
<> |oa, - f|+——[p(Jv-H Ja,—J
< 2o, = £l v (|3v= i)+ ], - ]
s+,B
=22 03a —f]. 2.1
2 32, ~ 1] .9
Now,
S S

- %”(Han— f)-2(hg, - 1),

< *Xa, - Hvl+ | Hd, ~ H],
s+1

< 2w (9v- )+ ploa, - 3]+ 2 jaa, - ),
ﬂ(s+1

|92, ~ t]1+2 13g, - . 22)
Substituting (2.1) in (2.2), we obtain
o, 112 Dy, £ 1),

s\s+1

:ﬂ(1+i+ s?:ﬁ)]||Jan - fJ|. (2.3)

Also,
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i;Icn+ich— fH
1

|90, = 1= s'+1 s'+

<5 3¢, - ][+ =1 [He, - Hy]|,
s+1 s+1
s' 1
< m".]cn —f ||+a[y/(".]v— Hv|)+ B3¢, - Jv||],
B s+ p 3
=28 ae, - 1], (24)
And;

[9a,., = | = Hb, — Hv],
< B|l3b, - 1. 2.5)

By using (2.3), (2.4); (2.5) yields
U Y B
92, f||£,6’(SI+1J[1+S+S(S+1)J||Jan .
s+ 1 s+p ) o
S{'B(s'+1j[l+g+s(s+l)n 198, - ]| (26)

Since, s > 1, s’ > 0; and Osﬂ<i,we have

NE)

O<S+ﬁ<l; and 0<1+1+ s+p <3.
s+1 s s(s+1)

Hence,

2(SHB )1 1, SHB |4
p (s‘+1j[1+s+s(s+1)j<l'

and therefore

(ﬂz [ﬂ)[l+l+ﬂﬁ —0asn—» o,

s'+1 s s(s+1)

Therefore, (2.6) implies that !im"\laﬁl - f|=0.

Hence, {Ja,}  converges to f.

To demonstrate that f is the unique common fixed point of H and J, assume that v and v,
are coincidence points of H and J such that Hv = f = Jv and Hv, = f; = Jv,, where f; is
another point of coincidence of H and J. Applying the contractive condition (1.5), we have:
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|f =t =Hv=Hu] < plav=dv] <[ f -],

this leads to a contradiction. Hence, f; = f means that point of coincidence is unique. Given
that H and ] are weakly compatible, we have
Hf = HHv = HJv = JHv = Jf.

which implies Jf = f = Hf. This verifies that H and J have f as the point of coincidence.
The uniqueness of the point of coincidence indicates that f is a unigue common fixed point
of H,].

Theorem 2.2. Let / and H be the same as in Theorem 2.1, and {Ja,} be the iteration

scheme generated by (1.6) converging to f. Then {Ja } is (J, H)- stable.

n=0

Proof. Suppose {Jpn} cW be an arbitrary sequence, such that

H, = ||‘]pn+1 - an " '

where Jq, :iJrn+iHrn, Jr, :S—HHpn—thn, and Jh, :—Jpn L ——Hp,.
s'+1 s'+1 s S+ s+1

To prove that the iterative scheme (1.6) is (J, H)-stable; we have to show that lim x, =0 if

and only if IH'DJ Jp, =f.
Let lim x4, =0. We have
"‘]pn+1 - f" = "‘]pn+l —Ha, +Hq, - f”’
= "mel - an"+||an - f "'
= U, +||an - f"’
<, + p|3g, - . 2.7)
1

> Jr +—Hr —f“,

Jg. — f|l=|—
[9a, - 1] s+l " s+l T

s.s—'narn— fll+ I, - H]

o —f||+—[ (19v=Hv])+ A[1ar, = 3]

s+1

s+
Jr — f 2.8
S ]| 8

With ease; similar to estimate (2.3); one can get

_ 1,545 _
|, f||£ﬂ[l+s+s(s+1)J||Jpn fl. (29)

Substituting (2.8) and (2.9); estimate (2.7) yields
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Y o et E @10

As f° (S+ﬂ] 1+l+ s+p <1, using Lemma 1; inequality (2.10) yields limJp, = f.
1 s s(s+1) N

Conversely; let limJp, = f .

Hy = "‘]pm—l - an "'
:"Jpn+1_ f+f- an"'

<[9pn. = ]+ [Ha, - £

1
<|9p,. — f[|+ B° (i’fj{ g+s?;ﬁ)J||Jpn—f||. (2.12)

By taking the limit as n — oo on both sides of (2.11), we get limu, =0.

Theorem 2.3. Let (J,H) be the same as in Theorem 2.1, and (J;,H;) be an approximate
mapping pair of (J, H) according to Definition 3 such that J; (V) is complete in W. Suppose

J,v = f; = Hyv. Consider {Jan}::0 be the iteration scheme generated by (1.6) converging to

f and {Jlen}::0 be the sequence defined by

Jlen+1_ 1gn’
J,9,=—Jh, +— ! H,h
| s+1 "
2.12
thn = ﬂHlen _lHlin’ ( )
S
. S 1
Ji=—-Je +——H.e.
sl M s M

Suppose that {J.e,}  converges to f;. Then; we have

6(81 +:B<92)

f—1|<
|| 1||< 1_3ﬂ2

Proof. Using (1.6) and (2.12), we have
92602 = 92, = [Hi g, —Hb, |

<[H.9.~Hg,[+[Hg, - Hb,|.
Sgl+¢//(||\]  —Hb, )+ﬂ||Jgn—an ,
£gl+1//(||.]bn—an||)+ﬂ||Jgn—Jlgn||+,B||Jlgn—an||,

<&, +y (|3, —Hb,|)+ Bz, + B|3,9, - Ib|. 2.13)

n+l

Now,
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IN - Hh -3 —LHe

g
13,9, b, = s+1 i syl s'+1 s'+1

nil

<5 ah,—dc Jeo HH h
s'+1

<5 o, - ~de 4o HHh thH+iHth—chH~
s'+1 !

s 1
S| el Ry —u/(HchHc H)+—HJh -Jc,|,

l
S‘LH\thn -Jc, |+

11+7w(uacnchnH)«—(HahnfalhnwalmchnH),

s+1 Sﬁle a7v (e, —He H)+ ﬁHJh Jc, (2.14)
Also,
Joun, - 3e, | =[S He, -, -2 Ha, + S,
<L+1HHe HanH+—HHlin—Hd"H,
<L+1(HH9 —He, | +[He, —Ha, [} + (HHlin*HinHH\Hin*HdnH)v
<SED 2 50 g ) ﬂ(s”)uae—Ja o5 Ly a0, i )+ £ i -2,
a6, 1 v (|92, ~Ha, )+ S (199, - Ha, )+ ﬁ‘“”(uae -3+ 13, -9)
ﬁ(uun—wm—mnu),
<SC8D L (193, ~Ha )+ o (j9d, - H )+ 22 e, + P D e ga By 0 ) (2as)
And,
19,0, —3d, | == e, + 1 Hee, - Ja, ——Ha, |,
S+1 s+1 s+1 s+1
s 1
< S—Jrl"v"len - Ja, ||+S—+1||Hlen —Ha,[,
s 1
< m"‘]len _‘]an ||+m("H1en - Hen ||+||Hen - Han ")’
<> e, —da |+ -2+ Ly (98, - Ha ||)+—||Je da,
seain I s
& 1
< 5_4i1+ 4 v (|| Ja, - Ha, ||)+—||Jlen - Jan||+s—+1(||\]en —Jie, [ +[d.e, - Ja,]),
& 1 s+ /4
StV v (|Ja, —Ha, ||)+?g2 P | (2.16)

By combining (2.13), (2.14), (2.15) and (2.16), we get

Al s EE D 12 B e, e Log o LEOEA PO,
s(s'+1) s s+1 s(s+1) s(s+1)(s+1)
+ fe, + ﬁ g+ NAGIICN &+ B (s+ )

+1 s(s+1) s(s+1)(s+1) 2

ﬂ(s+ﬂ) ﬂ(3+ﬁ)
TS5t [s*“?j (I8, - Ha, ) + v (J3d, - Hd, ). @.17)

H‘]lerHl -J

ooy (90, ~ o )+ Loy (3, e,

Since,s > 1,s' > 0,and 8 <5 then (2.17) yields
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9.6, —Ja,.,[ <387 ., — Ja, ||+ 6(s, + Be,) +w (| Ib, — Hb, )+ (| Ic, — He, )
s
+(s +1+s_+1j,,,(||aan ~Ha, )+ (|3d, ~ Hd, ). (2.18)
Now,

|9a, - Ha,| <[ Ja, — f[|+] f - Ha,],
<|Ja, - f||+x//(||Jv— Hv||)+ B|3a, — v,
= (1+B)|Ja, - f|- (2.19)

Given that, !im||Jan - f||=0, equation (2.19) yields !im||Jan —Ha,| =0, which subsequently
leads to limy (|Ja, —Ha,[)) =0.
Also,
"‘Jdn - Hdn" = "‘]dn - f"+"f - Hdn"’

<(1+8)3d, - £,

s B
<(1 —Ja - f||+—|Ja —f
(1) S0, 11+ Ly, - 1]

<(1+ ﬁ)(%jumn — 1. (2.20)

Since, !im||;lan - f|=0, equation (2.20) yields !im||Jdn —Hd,|=0, which further implies
limy (|[9d, —Hd, ) =0.

Similarly,

"‘]Cn - HCn " < "‘]Cn - f"+" f- ch"'

<L+ A)de, 1]
s(l+ﬂ)[sT+l
<1+ ﬁ)(@uaan -1+ 2paa, - f||),

s(l+ﬂ)(ﬁ(s+l)+£(S+ﬂjj||3an—f||. (2.21)

S s\ s+l

1
I, - 1+ 21 i, |

Given that, !Iim||Jan - f|=0, equation (2.21) yields Aim||Jcn —Hc,||=0, which further implies
limy (|[Jc, —He, [[) =0.

And,
"‘]bn - an" S”‘]bn - f||+||f - an"’

(w89, 1]
B(s+p S8 V15a -
<(1+) ( j(s+l+s+l]||Jan f. (2.22)

s\ s+l
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Since, !im||\]an — f||=0, equation (2.22) yields !Lm”.]bn —Hb, | =0, which subsequently leads
to limy (|[3b, ~ Hb, [) = 0.
As limJa, = f and limJe, = f.
n—oo n—o
Taking limit n - o and using above facts, (2.18) yields
[f - ]| <38%||f — f,|+6(c + Be,)
which further gives
6(g, + Be,)
f—f||<x 7727
|| 1" 1_3ﬂ2

To verify the numerical feasibility of Theorem 2.3, the following example is provided:

Example 2.4. Consider V =[0,1] and H,J : V - W is defined by H(v) = 5; and J(v) = 6—7"

1
satisfy the contractive condition (1.5) when y(v) = vz and g = 0.2. Define operators H; and

Ji as Hy(v) = 4%1 and J;(v) = 4?” Itis clear that H(v) € J(v), H,(v) € J,(v),H(1) =J(1) =2 =

7

f and H; (g) =/ (g) = g = f;. We have Té’}}‘lH — H;| = 0.257 = &, (say) and Tg},xl] =il =
0.057 = ¢, (say).Evidently, (H,,J;) is an approximate mapping pair of (H,J). With initial
approximation v, = 0.5 and s =9,s’ = 110 the iteratives schemes {Ja,,11}neo and {J;a,41} =0
converges to g and g respectively as shown in Table 1 and the graphical convergence is
shown in Fig. 1. The values of the operators H(v), H,(v), J(v), and J,(v) displayed in Table
2 corresponding to different values of v € V and also the graphical representation of the
values of Table 2 is provided in Fig. 2(a) — 2(b). Therefore, we obtain the following estimate:

6(e1 + Bey)
22 =|f — < ——=1.83.
0 f=fl <= 83
Table 1. Comparison of Ja, ., and J;a, ., iterations.
Iterations Ja,1 Jiani1

0 0.42857 0.40000
1 0.85423 0.64207
2 0.85703 0.64007
3 0.85703 0.64007
4 0.85703 0.64007
5 0.85703 0.64007

Iterative Values

Number of Iterations

Figure 1. Graph for Table 1.
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Table 2. Values of operators over domain [0, 1].

v H(v) H,(v) J) J1(v)
0. 0.71429 0.80000 0.00000 0.00000
0.1 0.72857 0.78000 0.08571 0.08000
0.2 0.74286 0.76000 0.17143 0.16000
0.3 0.75714 0.74000 0.25714 0.24000
0.4 0.77143 0.72000 0.34286 0.32000
0.5 0.78571 0.70000 0.42857 0.40000
0.6 0.80000 0.68000 0.51429 0.48000
0.7 0.81429 0.66000 0.60000 0.56000
0.8 0.82857 0.64000 0.68571 0.64000
0.9 0.84286 0.62000 0.77143 0.72000
1. 0.85714 0.60000 0.85714 0.80000
Y7 AR R N B B 08l
% 0.80F @
£ £ 06;
g 0.75 5
= =
S s 041
@ 0.70F @
S 065 S 02
0.60- | ‘ ‘ | . 0.0 ‘ ‘ . ‘ ‘
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 08 1.0
Variable (v)-values Variable (v)-values
— H(v) Mapping —— Hy(v) Mapping =— Jv) Mapping =—— Jj(v) Mapping
Figure 2(a). Graph for Operators H and H;. Figure 2(b). Graph for Operators J and J;.

3. Numerical examples

To thoroughly assess the effectiveness and capabilities of the proposed iterative approach, it
is crucial to examine a wide array of mathematical challenges with varying levels of
complexity. By implementing the proposed iteration technique across these diverse equation
types, we seek to verify its broad applicability and acquire a more comprehensive
understanding of its advantages and constraints when addressing intricate, real-world
scenarios.

Example 3.1. Consider the equation
v2—10 =3v
Let V = [5,7] c R be equipped with a standard metric. Establish H,J : [5,7] - [15,40] with
a coincidence point 5 by Hv =3v and Jv = v? — 10. Evidently, H([5,7]) € J([5,7]) and
J([5,7]) is a complete subset of [15, 40]. Assume the initial guess as v, = 7. Table 3
presents a comparative analysis of the convergence rates for the J-trl, J-1tr2, and New-Itr
methods towards the point of coincidence, and a graphical representation is shown in Fig. 3.
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Table 3. Comparison of iterative algorithms for Example 3.1. with s =9,s" = 1—10 and a, =B, =

~ Jamy
Iterations J-ltrl Ja, J-tr2 Ja, 11 New-ltr Ja, 1
0 39.00000 39.00000 39.00000
1 15.50300 —9.14960 15.62000
2 15.01300 29.05400 15.02000
3 15.00500 11.43500 15.00100
4 15.00300 14.82800 15.00000
5 15.00200 14.96800 15.00000
6 15.00100 14.99100 15.00000
7 15.00100 14.99700 15.00000
8 15.00000 14.99900 15.00000
9 15.00000 14.99900 15.00000
10 15.00000 15.00000 15.00000
11 15.00000 15.00000 15.00000
12 15.00000 15.00000 15.00000
40t
': --@-- J-itrt
‘.“‘_ --W-- J-ltr2
30 '.‘-‘ - - -4~ - New-ltr
g 20 Voo
§ ‘--_5-0---“-.‘0----.—---a---—-u—-—-u----u—-------------a----aj
g 10+ . : L2l )
0 e
10+ .
2 4 8 T 12
Number of iterations
Figure 3. Graph for Table 3.

Example 3.2. Consider the transcendental equation as

e’ =Sinv+ 2

Let V =[0,2] c R be equipped with a standard metric. We define H,J : [0,2] - [0, 8] with a
coincidence point 1.054127 by Hv = 2 + sinv and Jv = e". Evidently, H([0,2]) € J([0,2])
and j([0,2]) is a complete subset of [0,8]. Suppose the initial guess v, = —1.5. A
comparative study of the convergence between J-ltrl, J-Itr2, and New-Itr to the point of
coincidence is presented in Table 4, and a graphical representation is shown in Figure 4.
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Table 4. Comparison of iterative algorithms for Example 3.2. with s =9,s’ =% and

anzﬁnz),nzanzlnz

1

Ja+n)

Iterations J-ltrl Ja, 11 J-1tr2 Ja, 11 New-ltr Ja, 1
0 0.22313 0.22313 0.22313
1 2.63990 3.63310 2.60050
2 2.86810 2.04090 2.86710
3 2.86900 3.07580 2.86950
4 2.86930 2.85580 2.86950
5 2.86940 2.86810 2.86950
6 2.86940 2.86920 2.86950
7 2.86940 2.86940 2.86950
8 2.86940 2.86940 2.86950
9 2.86940 2.86950 2.86950
10 2.86950 2.86950 2.86950
11 2.86950 2.86950 2.86950
12 2.86950 2.86950 2.86950

3.5 -;

30 “-‘._,___":'_“:;..____‘_____._____.____.____,_____._____.____.

2.5 .',,’*” "‘ ’
S0 W
g 1.8 --@-- J-ltr1

1.0 . - M- - J-ltr2

::.. - -4~ - New-Itr
L
-
0.00
2 4 6 8 10 12
Number of iterations
Figure 4. Graph for Table 4.

4. Conclusion

We introduced an innovative Jungck-type iterative method, and examined its strong
convergence, stability, and data dependence characteristics followed by non-trivial
examples. Furthermore, computational experiments indicated that the proposed method
demonstrated superior convergence speed compared to several established iteration
techniques.
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