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A MODEL STUDY OF THE IMPACT OF ENLIGHTENMENT RATE ON THE 

DYNAMICS OF TYPHOID FEVER  

Abstract 

In this study, a mathematical investigation of the effect of enlightenment rate on the spread of 

typhoid fever is considered, using a system of nonlinear first order ordinary differential 

equations and a MATLAB ODE45 numerical scheme. The result shows that a decrease in 

vaccination rate (𝜃) significantly increases the size of the susceptible (𝑆) class and the 

response functions, 𝑅0 or 𝑅𝑒 thereby heightening the tendency for the disease to be endemic. 

If then the typhoid infection will spread throughout the population, but if  

then the infection will not be able to take hold and will eventually die out. Furthermore, it 

was shown that, the basic reproduction number has the tendency to reveal faster if a disease 

will result in an epidemic than the effective reproduction number. Finally, as enlightenment 

rates approach zero, it was observed that, over time, the disease will result in an epidemic. It 

is therefore recommended that enlightenment rate of the exposed, enlightenment rate to go 

for treatment and enlightenment rate to go for vaccination should be taken seriously by 

policy makers in order to stem the spread of typhoid.  

Keywords: Typhoid fever, basic reproduction number, effective reproduction number, 

epidemic, mathematical model 

Introduction 

Mushayabasa et al. (2013) stated that, typhoid fever, also called enteric fever, is an 

infectiousdisease caused by a bacterium known as Salmonella enteric serotype Typhi also 

called Salmonella typhi (S.Typhi). It is an infection of the intestinal tract and bloodstream 

(Ivanoff et al., 1994). It is life-threatening and highly contagious; it can spread through the 

urine and faeces of an infected person (Nsutebu, 2003). Typhoid has an incubation period of 

about 10-14 days. 

Symptoms of typhoid include high fever, headache, stomach pain, constipation or diarrhea. 

Intestinal perforation can result from a more complicated case, causing leakages of intestinal 

contents into the abdomen. An individual who eats food or drinks water contaminated with 

small amount of infected faeces or urine is likely to become infected and develop typhoid 

fever(NHS, 2024; Healthline, 2024). 

The implementation of mathematical modelling helps researchers to concentrate on the 

process by which an infectious disease is transmitted in a given population. To understand 

different infectious diseases and their dynamical properties, researchers have proposed and  
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developed several mathematical models (Butt et al., 2022; Butt et al., 2023). Musa et al. 

(2021) specificallystudied the dynamics of the transmission of typhoid fever using a 

mathematical model. They evaluated how public health education initiatives impact the 

pathogenesis of typhoid fever, which is likely to result in serious outbreaks, in areas with 

limited resources. Also, Adeboye et al. (2015)proposed and studied a mathematical model of 

typhoid and malaria co-infection to tackle the control of the transmission of malaria and 

typhoid simultaneously. 

In this study, a mathematical model is considered to investigate the impact of enlightenment 

rate of the exposed class and, enlightenment rates to go for treatment and vaccination. The 

study also considers the basic and effective reproduction numbers to determine which of the 

two reproduction numbers gives early signal in the event of an epidemic occurring.  

Materials and Methods 

The following system describing the transmission dynamics of typhoid, as given by Atokolo 

and Omale (2018), is considered for this study:   

 
𝑑𝑆

𝑑𝑡
= 𝜏 − 𝜓(1 − 𝑥)𝐵𝑆 + 𝛼𝑅 − [𝜃(1 + 𝑧) + 𝜇]𝑆    (1) 

 
𝑑𝐸

𝑑𝑡
= 𝜓(1 − 𝑥)𝐵𝑆 + 𝛿(1 − 𝜔)𝐵𝑉 − (𝜆 + 𝜇)𝐸    (2) 

 
𝑑𝐼

𝑑𝑡
= 𝜆𝐸 − [𝛾(1 + 𝑦) + (𝜉 + 𝜇)]𝐼      (3) 

 
𝐼𝑇

𝑑𝑡
= 𝛾(1 + 𝑦)𝐼 − (𝜙 + 𝜁 + 𝜇)𝐼𝑇      (4) 

 
𝑑𝑉

𝑑𝑡
= 𝜃(1 + 𝑧)𝑆 − [𝛿(1 − 𝜔)𝐵 − 𝜇]𝑉     (5) 

 
𝑑𝑅

𝑑𝑡
= 𝜙𝐼𝑇 − (𝛼 + 𝜇)𝑅        (6) 

 
𝑑𝐵

𝑑𝑡
= 𝜅𝐼 − 𝜇1𝐵        (7) 

In the above system, the total population under consideration at time 𝑡 represented by 𝑁(𝑡) is 

divided into six classes of individuals: Susceptible𝑆(𝑡), Exposed𝐸(𝑡), Infected𝐼(𝑡), Infected 

but on treatment𝐼𝑇(𝑡), Vaccinated𝑉(𝑡) and Recovered𝑅(𝑡). Equation representing the 

bacteria disease is incorporated  

 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝐼𝑇(𝑡) + 𝑉(𝑡) + 𝑅(𝑡) 

So that 

 
𝑑𝑁(𝑡)

𝑑𝑡
= 𝜏 − 𝑁𝜇 − (𝜅 + 𝜉)𝐼 − 𝜁𝐼𝑇 − 𝜇1𝐵     (8) 
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The variables and parameter values in the model are presented in Tables 1 and 2. 

Table 1: Description of model variables 

Variables Description 

S Susceptible class 

𝐸 Exposed class 

𝐼 Infected class 

𝐼𝑇 Infected but on treatment 

𝑉 Vaccinated class 

𝑅 Recovered class 

𝐵 Bacteria class 
 

Table 2: Description of model parameters  

Variables/ 

Parameters 

Description Estimated 

Values 

Source 

𝜏 Recruitment rate 
 

500 Atokolo and Mbah (2018) 

𝜔 Declining rate of vaccine 
 

0 < 𝜔 < 1 Nthiri (2016) 

𝜓 Interaction rate 
 

0.0011 Nthiri (2016) 

𝛼 Rate at which the recovered  

are susceptible again 
 

0.9 Atokolo and Mbah (2018) 

𝛾 Treatment rate 
 

0.9 Nthiri (2016) 

𝜇 Natural death rate of human 0.016 Nthiri (2016) 
 

𝜇1 Death rate of bacteria 0.0345 per day Jones (2015) 
 

𝜉 Death rate for the infected 0.005 Nthiri (2016) 
 

𝜁 Death rate for infected but on 

treatment 
 

0.001 Atokolo and Mbah (2018) 

𝜃 Vaccination rate 0.5 Atokolo and Mbah (2018) 
 

𝜙 Recovery rate 0.0357 per day Nthiri (2016) 
 

𝛿 Exposure rate of vaccinated 

class 
 

0 < 𝛿 < 1 Atokolo and Mbah (2018) 

𝜅 Shedding rate of bacteria 0.014 per day Jones (2015) 
 

𝐵 Contact rate of bacteria 0.0002 Nthiri (2016) 
 

𝜆 Infection rate 0.2 Muhammad (2015) 
 

𝑥 Enlightenment rate of the 

exposed 
 

0 < 𝑥 < 1 Atokolo and Mbah (2018) 

𝑦 Enlightenment rate to go for 

treatment 
 

0 < 𝑦 < 1 Atokolo and Mbah (2018) 

𝑧 Enlightenment rate to go for 

vaccination 
0 < 𝑧 < 1 Atokolo and Mbah (2018) 
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Mathematical Preliminaries: 

Existence and Uniqueness of Solution    

To determine the conditions for the existence and uniqueness of solution for the model 

equations (1) – (7), let 

 ℎ1(𝑡, 𝑚) = 𝜏 − 𝜓(1 − 𝑥)𝐵𝑆 + 𝛼𝑅 − 𝜃(1 + 𝑧)𝑆 − 𝜇𝑆,   (8) 

 ℎ2(𝑡, 𝑚) = 𝜓(1 − 𝑥)𝐵𝑆 + 𝛿(1 − 𝜔)𝐵𝑉 − (𝜆 + 𝜇)𝐸,   (9) 

 ℎ3(𝑡, 𝑥) = 𝜆𝐸 − 𝛾(1 + 𝑦)𝐼 − (𝜉 + 𝜇)𝐼,     (10) 

 ℎ4(𝑡, 𝑚) = 𝛾(1 + 𝑦)𝐼 − (𝜙 + 𝜁 + 𝜇)𝐼𝑇 ,     (11) 

 ℎ5(𝑡, 𝑚) = 𝜃(1 + 𝑧)𝑆 − 𝛿(1 − 𝜔)𝐵𝑉 − 𝜇𝑉.    (12) 

 ℎ6(𝑡, 𝑚) = 𝜙𝐼𝑇 − (𝛼 + 𝜇)𝑅       (13) 

 ℎ7(𝑡, 𝑚) = 𝜅𝐼 − 𝜇1𝐵        (14) 

Such that 

 
𝑑𝑚

𝑑𝑡
= ℎ(𝑡, 𝑚) = ℎ(𝑚).       (15) 

 

Theorem 1. Let 𝐴 represent the region 

 |𝑡 − 𝑡0| ≤ 𝑘1,  ‖𝑚 − 𝑚0‖ ≤ 𝑘2,  and  𝑚 = (𝑚1, 𝑚2, … , 𝑚𝑛) = (𝑚10, 𝑚20, … , 𝑚𝑛0)

           (16) 

with ℎ(𝑡, 𝑚) satisfying the Lipschitz condition 

 ‖ℎ(𝑡, 𝑚1) − ℎ(𝑡1, 𝑚2)‖ ≤ 𝑘‖𝑚1 − 𝑚2‖     (17) 

for (𝑡, 𝑚1) and (𝑡1, 𝑚2) in 𝐴 and 𝑘 > 0. Then, there exists a constant 𝛿 > 0 such that a 

unique continuous vector solution 𝑚̅(𝑡) of equations (8) – (14) exists in  |𝑡 − 𝑡0| ≤ 𝛿. 

𝜕ℎ𝑖

𝜕𝑚𝑗
, 𝑖, 𝑗 = 1, 2, … , 𝑛 is continuous and bounded in 𝐴 and fulfilled the condition in equation 

(17) 

Lemma 1. If ℎ(𝑡, 𝑚) is continuous and has partial derivative  
𝜕ℎ𝑖

𝜕𝑚𝑗
 on a bounded closed 

convex domain ℝ, then it satisfies a Lipschitz condition in ℝ. 
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The region of interest is given by 

 1 ≤ 𝜖 ≤ ℝ         (18) 

and bounded solution of the form below is sought for: 

 0 < ℝ < ∞         (19) 

Below is the proof of the existence theorem: 

Theorem 2: If 𝐴 represents the region defined in (17) such that (18) and (19) hold, then ∃ a 

solution of the model equations (8) – (14) bounded in the region 𝐴. 

Proof. Considering equations (8) − (14), it will be shown that the continuity of 
𝜕ℎ𝑖

𝜕𝑚
, 𝑖 =  𝑗 =

1, 2, 3, 4, 5, 6, 7 exists. Differentiating  ℎ𝑖 partially with respect to 𝑆, 𝐸, 𝐼, 𝐼𝑇 , 𝑉, 𝑅 and 𝐵, give: 

 |
𝜕ℎ1

𝜕𝑆
| = −|[𝜓(1 − 𝑥)𝐵 + 𝜃(1 + 𝑧) + 𝜇]| < ∞    (20) 

 |
𝜕ℎ1

𝜕𝐸
| = |0| < ∞        (21) 

 |
𝜕ℎ1

𝜕𝐼
| = |0| < ∞        (22) 

 |
𝜕ℎ1

𝜕𝐼𝑇
| = |0| < ∞        (23) 

 |
𝜕ℎ1

𝜕𝑉
| = |0| < ∞        (24) 

 |
𝜕ℎ1

𝜕𝑅
| = |𝛼| < ∞        (25) 

 |
𝜕ℎ1

𝜕𝐵
| = |−𝜓(1 − 𝑥)𝑆| < ∞       (26) 

 |
𝜕ℎ2

𝜕𝑆
| = |𝜓(1 − 𝑥)𝐵| < ∞       (27) 

 |
𝜕ℎ2

𝜕𝐸
| = |−(𝜆 + 𝜇)| < ∞       (28) 

 |
𝜕ℎ2

𝜕𝐼
| = |0| < ∞        (29) 

 |
𝜕ℎ2

𝜕𝐼𝑇
| = |0| < ∞        (30) 

 |
𝜕ℎ2

𝜕𝑉
| = |𝛿(1 − 𝜔)𝐵| < ∞       (31)  
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 |
𝜕ℎ2

𝜕𝑅
| = |0| < ∞        (32) 

 |
𝜕ℎ2

𝜕𝐵
| = |𝜓(1 − 𝑥)𝑆 + 𝛿(1 − 𝜔)𝑉| < ∞     (33) 

 |
𝜕ℎ3

𝜕𝑆
| = |0| < ∞        (34) 

 |
𝜕ℎ3

𝜕𝐸
| = |𝜆| < ∞        (35) 

 |
𝜕ℎ3

𝜕𝐼
| = |−[𝛾(1 + 𝑦) + (𝜉 + 𝜇)]| < ∞     (36) 

 |
𝜕ℎ3

𝜕𝐼𝑇
| = |0| < ∞        (37) 

 |
𝜕ℎ3

𝜕𝑉
| = |0| < ∞        (38) 

 |
𝜕ℎ3

𝜕𝑅
| = |0| < ∞        (39) 

 |
𝜕ℎ3

𝜕𝐵
| = |0| < ∞        (40) 

 |
𝜕ℎ4

𝜕𝑆
| = |0| < ∞        (41) 

 |
𝜕ℎ4

𝜕𝐸
| = |0| < ∞        (42) 

 |
𝜕ℎ4

𝜕𝐼
| = |𝛾(1 + 𝑦)| < ∞       (43) 

 |
𝜕ℎ4

𝜕𝐼𝑇
| = |−(𝜙 + 𝜁 + 𝜇)| < ∞       (44) 

 |
𝜕ℎ4

𝜕𝑉
| = |0| < ∞        (45) 

 |
𝜕ℎ4

𝜕𝑅
| = |0| < ∞        (46) 

 |
𝜕ℎ4

𝜕𝐵
| = |0| < ∞        (47) 

 |
𝜕ℎ5

𝜕𝑆
| = |𝜃(1 + 𝑧)| < ∞       (48) 

 |
𝜕ℎ5

𝜕𝐸
| = |0| < ∞        (49) 

 |
𝜕ℎ5

𝜕𝐼
| = |0| < ∞        (50) 
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 |
𝜕ℎ5

𝜕𝐼𝑇
| = |0| < ∞        (51) 

 |
𝜕ℎ5

𝜕𝑉
| = |−[𝛿(1 − 𝜔)𝐵 + 𝜇]| < ∞      (52) 

 |
𝜕ℎ5

𝜕𝑅
| = |0| < ∞        (53) 

 |
𝜕ℎ5

𝜕𝐵
| = |0| < ∞        (54) 

 |
𝜕ℎ6

𝜕𝑆
| = |0| < ∞        (55) 

 |
𝜕ℎ6

𝜕𝐸
| = |0| < ∞        (56) 

 |
𝜕ℎ6

𝜕𝐼
| = |0| < ∞        (57) 

 |
𝜕ℎ6

𝜕𝐼𝑇
| = |𝜙| < ∞        (58) 

 |
𝜕ℎ6

𝜕𝑉
| = |0| < ∞        (59) 

 |
𝜕ℎ6

𝜕𝑅
| = |−(𝛼 + 𝜇)| < ∞       (60) 

 |
𝜕ℎ6

𝜕𝐵
| = |0| < ∞        (61) 

 |
𝜕ℎ7

𝜕𝑆
| = |0| < ∞        (62) 

 |
𝜕ℎ7

𝜕𝐸
| = |0| < ∞        (63) 

 |
𝜕ℎ7

𝜕𝐼
| = |𝜅| < ∞        (64) 

 |
𝜕ℎ7

𝜕𝐼𝑇
| = |0| < ∞        (65) 

 |
𝜕ℎ7

𝜕𝑉
| = |0| < ∞        (66) 

 |
𝜕ℎ7

𝜕𝑅
| = |0| < ∞        (67) 

 |
𝜕ℎ7

𝜕𝐵
| = |−𝜇1| < ∞        (68) 



8 
 

 The partial derivatives (20) – (68) of the right hand side of (1) – (7) with respect to  

𝑆, 𝐸, 𝐼, 𝐼𝑇 , 𝑉, 𝑅 and 𝐵 are continuously differentiable and bounded. Hence, by Theorem 2, it is 

locally Lipschitz, therefore, (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝐼𝑇(𝑡), 𝑉(𝑡), 𝑅(𝑡), 𝐵(𝑡)) is a unique solution to 

the system of equations (1) – (7) with the initial conditions  𝑆10, 𝐸10, 𝐼10, 𝐼𝑇10
, 𝑉10, 𝑅10, 𝐵10 in 

the region 𝐴. 

To show that the solution satisfies the Lipschitz condition, from equation (1), it can be seen 

that 

 |𝐺(𝑡, 𝑆1) − 𝐺(𝑡, 𝑆2)| = |(𝜏 − 𝜓(1 − 𝑥)𝐵𝑆1 + 𝛼𝑅 − 𝜃(1 + 𝑧)𝑆1 − 𝜇𝑆1) −

                                                          (𝜏 − 𝜓(1 − 𝑥)𝐵𝑆2 + 𝛼𝑅 − 𝜃(1 + 𝑧)𝑆2 − 𝜇𝑆2)| 

   ≤ (𝜓(1 − 𝑥)𝐵𝑆1 + 𝛼𝑅 − 𝜃(1 + 𝑧)𝑆1 − 𝜇𝑆1)|(𝑆1 − 𝑆2)| 

This means that |𝐺(𝑡, 𝑆1) − 𝐺(𝑡, 𝑆2)| ≤ 𝑀|(𝑆1 − 𝑆2)| where  

 𝑀 = (𝜓(1 − 𝑥)𝐵𝑆1 + 𝛼𝑅 − 𝜃(1 + 𝑧)𝑆1 − 𝜇𝑆1) 

is a Lipschitz constant. 

Similarly, the other variables satisfy the Lipschitz condition, hence ∃ a unique solution 

𝐸(𝑡), 𝐼(𝑡), 𝐼𝑇(𝑡), 𝑉(𝑡), 𝑅(𝑡), 𝐵(𝑡)  ∀ 𝑡 ≥ 0. 

Invariant Region 

Lemma 2. The region 𝐴 ⊂ ℝ+
7  is positively invariant for the equations (1) − (7) with whole 

number initial condition in ℝ+
7 . 

Proof. Following equation (8), it is shown that 

 
𝑑𝑁(𝑡)

𝑑𝑡
≤ 𝜏 − 𝑁𝜇 

 ⇒ 𝑁(𝑡) ≤ 𝑁(0)𝑒𝜇𝑡 +
𝜏

𝜇
(1 − 𝑒𝜇𝑡)  

 ⇒ 𝑁(𝑡) ≤
𝜏

𝜇
 if 𝑁(0) ≤ 0.  

Therefore, the feasible region 𝐴 ⊂ ℝ+
7  for the continuous system (1) − (7) becomes 

 𝐴 = {(𝑆, 𝐸, 𝐼, 𝐼𝑇 , 𝑉, 𝑅, 𝐵)𝜖 ℝ+
7 : 𝑆 + 𝐸 + 𝐼 + 𝐼𝑇 + 𝑉 + 𝑅 + 𝐵 ≤

𝜏

𝜇
} 

Positivity of Solution 

Lemma 3. The zeros of the system of equations (1) − (7), {𝑆, 𝐸, 𝐼, 𝐼𝑇 , 𝑉, 𝑅, 𝐵}, with initial 

condition {𝑆10, 𝐸10, 𝐼10, 𝐼𝑇10
, 𝑉10, 𝑅10, 𝐵10 ≥ 0} 𝜖 𝐴 will remain non-negative ∀ time 𝑡 ≥ 0. 

Proof.  From equation (1), 
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𝑑𝑆

𝑑𝑡
= 𝜏 − 𝜓(1 − 𝑥)𝐵𝑆 + 𝛼𝑅 − 𝜃(1 + 𝑧)𝑆 − 𝜇𝑆 

 ≤ −[𝜃(1 + 𝑧) − 𝜇]𝑆 

 ⇒ 𝑆 ≥ 𝑆10𝑒− ∫[𝜃(1+𝑧)−𝜇]𝑑𝑡 ≥ 0 ∀ 𝑡 > 0 

Similarly, equations (2) – (7) show that ∀ 𝑡 > 0, 

 𝐸 ≥ 𝐸10𝑒− ∫(𝜆+𝜇)𝑑𝑡 ≥ 0, 𝐼 ≥ 𝐼10𝑒− ∫[𝛾(1+𝑦)+(𝜉+𝜇)]𝑑𝑡 ≥ 0, 𝐼𝑇 ≥ 𝐼𝑇10
𝑒− ∫(𝜙+𝜁+𝜇)𝑑𝑡 ≥ 0, 

 𝑉 ≥ 𝑉10𝑒− ∫ 𝜇𝑑𝑡 ≥ 0, 𝑅 ≥ 𝑅10𝑒− ∫(𝛼+𝜇)𝑑𝑡 ≥ 0 and 𝐵 ≥ 𝐵10𝑒− ∫ 𝜇𝑑𝑡 ≥ 0  

Hence, it can be concluded that whenever 𝑡 ≥ 0, the solution of the system (1) – (7) is 

positive. 

Boundedness of Solution 

Lemma 4. The zeros {𝑆, 𝐸, 𝐼, 𝐼𝑇 , 𝑉, 𝑅, 𝐵} of the system of equations (1) − (7) with initial 

condition {𝑆10, 𝐸10, 𝐼10, 𝐼𝑇10
, 𝑉10, 𝑅10, 𝐵10 ≥ 0} 𝜖 𝐴 are bounded and remain in the region  

 𝐴 = 𝐴𝐻 × 𝐴𝐵         (69) 

Where 

 𝐴𝐻 = {(𝑆, 𝐸, 𝐼, 𝐼𝑇,𝑉, 𝑅) ∈  ℝ+
6 ∶ 0 ≤ (𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝐼𝑇(𝑡) + 𝑉(𝑡) + 𝑅(𝑡) ≤

𝜏

𝜇
} 

           (70) 

And 

 𝐴𝐵 = {𝐵 ≤ ℝ+ ∶ 0 ≤ 𝐵(𝑡) ≤
𝜅

𝜇1
}      (71) 

Proof:                                                                                                                                           

Splitting the model (1) – (7) into human population 𝐻(𝑡) and bacteria population 𝐵(𝑡), where 

 𝐻(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝐼𝑇(𝑡) + 𝑉(𝑡) + 𝑅(𝑡) 

Hence, 

 
𝑑𝐻

𝑑𝑡
= 𝜏 − 𝐻𝜇 − (𝜅 + 𝜉)𝐼 − 𝜁𝐼𝑇 ≤ 𝜏 − 𝐻𝜇 

 ∴ 𝐻 ≤
𝜏

𝜇
+ 𝐶𝑒−𝜇𝑡 (𝐶 is an arbitrary constant) 

At 𝑡 = 0, 𝐻 ≤
𝜏

𝜇
+ (𝐻(0) −

𝜏

𝜇
) 𝑒−𝜇𝑡  

 lim
𝑡→∞

𝐻 ≤
𝜏

𝜇
 

Similarly,  

 
𝑑𝐵

𝑑𝑡
= 𝜅𝐼 − 𝜇1𝐵 ≤ 𝜅 − 𝜇1𝐵 

 lim
𝑡→∞

𝐵 ≤
𝜅

𝜇1
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It implies that the human and bacteria populations are biologically feasible in the region (70) 

and (71) respectively. Hence, the solution of (1) – (7) with the given initial condition is 

bounded in the invariant region (69) ∀ 𝑡 ≥ 0. 

  

Disease-free Equilibrium (DFE) and Endemic Equilibrium (EE) 

Following George (2023), at an equilibrium point,  

 
𝑑𝑆(𝑡)

𝑑𝑡
=

𝑑𝐸(𝑡)

𝑑𝑡
=

𝑑𝐼(𝑡)

𝑑𝑡
=

𝑑𝐼𝑇(𝑡)

𝑑𝑡
=

𝑑𝑉(𝑡)

𝑑𝑡
=

𝑑𝑅(𝑡)

𝑑𝑡
=

𝑑𝐵(𝑡)

𝑑𝑡
= 0.  

Hence, the disease-free equilibrium (DFE) of the model (1) – (7) is given by 

(𝑆,0 𝐸0, 𝐼0, 𝐼𝑇
0, 𝑉0, 𝑅0, 𝐵0) = (

𝜏

𝜃(1+𝑧)+𝜇
, 0, 0, 0,

𝜃(1+𝑧)𝜏

𝜇[𝜃(1+𝑧)+𝜇]
, 0, 0),  (72) 

since at the DFE, 𝐸 = 𝐼 = 𝐼𝑇 = 0. 

At the endemic equilibrium (EE), 𝐸 ≠ 0, 𝐼 ≠ 0, 𝐼𝑇 ≠ 0. Hence, 

 𝑠∗ =
𝜇

𝜓(1−𝑥)𝜅𝐼∗+𝜇[𝜃(1+𝑧)+𝜋]
[

𝜏+𝛼𝛾𝜃(1+𝑧)𝐼∗

(𝜙+𝜁+𝜇)(𝛼+𝜇)
] 

 𝐸∗ =
1

𝛾
[𝛾(1 + 𝑦) + (𝜉 + 𝜇)]𝐼∗ 

 𝐼∗ =
𝜇

𝜅
𝐵∗ 

 𝐼𝑇
∗ =

𝛾(1+𝑧)

(𝜙+𝜁+𝜇)
𝐼∗  

 𝑉∗ =
𝜇2𝜃(1+𝑧)

{𝛿(1−𝜔)𝜅+𝜇2}{𝜓(1−𝑥)𝜅𝐼∗+𝜇[𝜃(1+𝑧)+𝜋]}
[

𝜏+𝛼𝛾𝜃(1+𝑧)

(𝜙+𝜁+𝜇)(𝛼+𝜇)
] 𝐼∗ 

 𝑅∗ =
𝛾𝜃(1+𝑧)

(𝜙+𝜁+𝜇)(𝛼+𝜇)
𝐼∗ 

 𝐵∗ =
𝜅

𝜇
𝐼∗ 

 

 

The Effective Reproduction Number (𝑹𝒆) 

The effective reproduction number (𝑅𝑒) can be calculated by multiplying the basic 

reproduction number 𝑅0 by the fraction of the population who are susceptible, leading to the 

equation 

 𝑅𝑒 = 𝑅0𝑠            (73) 

where s is the fraction of the host population who are susceptible to the disease. 
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The basic reproduction number (𝑅0) is a critical threshold value in epidemiology used to 

measure the transmission potential of a disease. In the calculation of 𝑅0, it is assumed that 

the entire population is susceptible to the disease. This assumption may not always be the 

case since some individuals will be immune due to a prior infection creating life-long 

immunity, or as a result of vaccination. To consider this, the effective reproduction number 

(𝑅𝑒) is used.  

Following the next generation matrix approach proposed by Driessche and Watmough 

(2002), the basic reproduction number 𝑅0 is given by 

 𝑅0 =
𝜏𝜆𝜅(1−𝑥)𝜓

(𝜃(1+𝑧)+𝜇){𝜇1(𝜆+𝜇)[𝛾(1+𝑦)+(𝜉+𝜇)]−𝜆𝜅[𝜓(1−𝑥)𝑆+𝛿(1−𝜔)𝑉]}
 

Hence, 

 𝑅𝑒 =
𝜏𝜆𝜅(1−𝑥)𝜓𝑠

(𝜃(1+𝑧)+𝜇){𝜇1(𝜆+𝜇)[𝛾(1+𝑦)+(𝜉+𝜇)]−𝜆𝜅[𝜓(1−𝑥)𝑆+𝛿(1−𝜔)𝑉]}
 

The magnitude of  not only indicates the speed of how a disease will spread, but whether 

it will spread at all. If it is the case that then the typhoid infection will spread 

throughout the population, but if  then the infection will not be able to take hold and 

will eventually die out. The greater the value of , the harder it is to control an epidemic. 

 

RESULTS AND DISCUSSION 

Simulated data are generated using a MATLABODE45 scheme to study the effect of 

enlightenment rates on 𝑅0, 𝑅𝑒 and the state variables, 𝑆, 𝐸, 𝐼, 𝐼𝑇 , 𝑉, 𝑅,  and 𝐵. The results are 

presented and discussed hereunder:  

Table 1a: Impact of vaccination rate (𝜃) on 𝑅0 and 𝑅𝑒 

𝜃 𝑅0 𝑅𝑒 

0.5  1.20 × 10−5 4.21 × 10−6 

0.45 2.12 × 10−5 4.66 × 10−6 

0.40 2.38 × 10−5 5.22 × 10−6 

0.35 2.70 × 10−5 5.94 × 10−6 

0.30 3.13 × 10−5 6.88 × 10−6 

0.25 3.72 × 10−5 8.18 × 10−6 

0.20 4.59 × 10−5 1.01 × 10−5 

0.15 5.98 × 10−5 1.31 × 10−5 

0.10 8.57 × 10−5 1.88 × 10−5 

0.05 1.51 × 10−4 3.32 × 10−5 
 

Table 1a shows that a decrease in vaccination rate (𝜃) increases the response functions,  

𝑅0and𝑅𝑒 respectively thereby heightening the tendency for the endemicity of the disease.  
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Table 1b: Impact of vaccination rate (𝜃) on 𝑆, 𝐸, 𝐼, 𝐼𝑇, 𝑉, 𝑅 and 𝐵 

𝜃 𝑆 𝐸 𝐼 𝐼𝑇 𝑉 𝑅 𝐵 

0.50 500.86 4267.59 864.89 13175.90 4.12 507.34 1329.45 
0.45 514.77 4263.38 864.07 13167.80 3.81 507.04 1329.31 
0.40 529.47 4258.90 863.19 13159.26 3.48 506.72 1329.16 
0.35 545.03 4254.12 862.26 13150.26 3.14 506.39 1329.00 
0.30 561.53 4249.01 861.26 13140.77 2.77 506.04 1328.84 
0.25 579.04 4243.54 860.19 13130.74 2.38 505.67 1328.67 
0.20 597.67 4237.69 859.05 13120.12 1.97 505.27 1328.49 
0.15 617.53 4231.37 857.83 13108.86 1.52 504.86 1328.29 
0.10 638.74 4224.57 856.51 13096.90 1.05 504.42 1328.09 
0.05 661.45 4217.22 855.09 13084.18 0.54 503.95 1327.87 

 

Table 1b reveals that, decreasing the rate of vaccination (𝜃) significantly increases the size of 

the susceptible (𝑆) class. It can be inferred from Tables 1a and b that the more the number of 

susceptible people, the higher the possibility for the disease to spread faster. 

Table 2a: Impact of enlightenment rate (𝑥) of the exposed on 𝑅0 and 𝑅𝑒 

𝑥 𝑅0 𝑅𝑒 

0.080 1.92 × 10−5 4.21 × 10−6 

0.072 1.93 × 10−5 4.25 × 10−6 

0.064 1.95 × 10−5 4.28 × 10−6 

0.056 1.97 × 10−5 4.32 × 10−6 

0.048 1.98 × 10−5 4.36 × 10−6 

0.040 2.00 × 10−5 4.39 × 10−6 

0.032 2.02 × 10−5 4.43 × 10−6 

0.024 2.03 × 10−5 4.46 × 10−6 

0.016 2.05 × 10−5 4.50 × 10−6 

0.008 2.07 × 10−5 4.54 × 10−6 
 

Table 2a shows that a decrease in enlightenment rate (𝑥) of the exposed increases 

𝑅0and𝑅𝑒respectively, signaling the tendency for the endemicity of the disease. 

Table 2b: Impact of enlightenment rate (𝑥) of the exposed on 𝑆, 𝐸, 𝐼, 𝐼𝑇, 𝑉, 𝑅 and 𝐵 

𝑥 𝑆 𝐸 𝐼 𝐼𝑇 𝑉 𝑅 𝐵 

0.080 500.86 4267.57 864.89 13175.90 4.11 507.34 1329.45 
0.072 497.83 4268.34 865.04 13177.93 4.09 507.42 1329.48 
0.064 494.83 4269.08 865.19 13179.94 4.07 507.49 1329.52 
0.056 491.87 4269.81 865.34 13181.93 4.04 507.57 1329.55 
0.048 488.94 4270.54 865.48 13183.89 4.02 507.64 1329.59 
0.040 486.05 4271.26 865.63 13185.82 3.99 507.72 1329.62 
0.032 483.20 4271.97 865.77 13187.73 3.97 507.79 1329.66 
0.024 480.37 4272.67 865.91 13189.62 3.95 507.86 1329.69 
0.016 477.58 4273.36 866.05 13191.49 3.92 507.79 1329.732 
0.008 474.82 4274.05 866.19 13193.33 3.90 508.00 1329.76 
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Table 2b reveals that decreasing the enlightenment rate (𝑥) of the exposed gradually moved 

individuals from susceptible class to the exposed (𝐸) and infected classes. It can be 

concluded from Tables 2a and b that reducing the enlightenment rate (𝑥) of the exposed 

individuals is likely to increase the possibility for the disease to spread faster. 

Table 3a: Impact of enlightenment rate to go for treatment (𝑦) on 𝑅0 and 𝑅𝑒 

𝑦 𝑅0 𝑅𝑒 

0.070 1.92 × 10−5 4.21 × 10−6 

0.063 1.90 × 10−5 4.18 × 10−6 

0.056 1.89 × 10−5 4.15 × 10−6 

0.049 1.88 × 10−5 4.13 × 10−6 

0.042 1.87 × 10−5 4.10 × 10−6 

0.035 1.86 × 10−5 4.07 × 10−6 

0.028 1.84 × 10−5 4.05 × 10−6 

0.021 1.83 × 10−5 4.02 × 10−6 

0.014 1.82 × 10−5 3.99 × 10−6 

0.007 1.81 × 10−5 3.97 × 10−6 
 

Table 3a shows that decreasing the enlightenment rate to go for treatment (𝑦) slightly 

decreases 𝑅0and 𝑅𝑒 respectively. 

Table 3b: Impact of enlightenment rate to go for treatment (𝑦) on 𝑆, 𝐸, 𝐼, 𝐼𝑇, 𝑉, 𝑅 and 𝐵 

𝑦 𝑆 𝐸 𝐼 𝐼𝑇 𝑉 𝑅 𝐵 

0.070 500.86 4267.59 864.89 13175.90 4.11 507.34 1329.45 
0.063 500.43 4266.92 870.31 13171.80 4.11 507.16 1330.77 
0.056 500.00 4266.26 875.81 13166.60 4.10 506.98 1332.11 
0.049 499.56 4265.58 881.37 13161.86 4.09 506.79 1333.46 
0.042 499.12 4264.89 887.00 13157.06 4.09 506.61 1334.84 
0.035 498.67 4264.20 892.77 13152.20 4.08 506.42 1336.23 
0.028 498.22 4263.49 898.49 13147.28 4.07 506.23 1337.64 
0.021 497.76 4262.78 904.34 13142.29 4.06 506.03 1339.06 
0.014 497.30 4262.05 910.27 13137.24 4.05 505.84 1340.50 
0.007 496.83 4261.32 916.28 13132.12 4.05 505.64 1341.97 

 

Table 3b shows that decreasing the enlightenment rate to go for treatment (𝑦), increases the 

size of the infectious classes. It can be concluded from Tables 3a and b that reducing the 

enlightenment rate to go for treatment can increase the possibility for the disease to spread 

faster. 

Table 4a: Impact of enlightenment rate to go for vaccination (𝑧) on 𝑅0 and 𝑅𝑒 

𝑧 𝑅0 𝑅𝑒 

0.050 1.92 × 10−5 4.21 × 10−6 

0.045 1.93 × 10−5 4.23 × 10−6 

0.040 1.93 × 10−5 4.25 × 10−6 

0.035 1.94 × 10−5 4.27 × 10−6 

0.030 1.95 × 10−5 4.29 × 10−6 

0.025 1.96 × 10−5 4.31 × 10−6 
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0.020 1.97 × 10−5 4.33 × 10−6 

0.015 1.98 × 10−5 4.35 × 10−6 

0.010 1.99 × 10−5 4.37 × 10−6 

0.005 2.00 × 10−5 4.39 × 10−6 
 

Table 4a shows that, a decrease in enlightenment rate to go for vaccination (𝑧) increases 𝑅0 

and 𝑅𝑒, respectively and in consequence, increasing the tendency for the disease to spread 

over time 

Table 4b: Impact of enlightenment rate to go for vaccination (𝑧) on 𝑆, 𝐸, 𝐼, 𝐼𝑇, 𝑉, 𝑅 and 𝐵 

𝑧 𝑆 𝐸 𝐼 𝐼𝑇 𝑉 𝑅 𝐵 

0.050 500.86 4267.59 864.89 13175.90 4.11 507.34 1329.45 
0.045 501.51 4267.39 864.85 13175.52 4.10 507.32 1329.44 
0.040 502.15 4267.20 864.81 13175.15 4.09 507.31 1329.43 
0.035 502.80 4267.00 864.78 13174.77 4.07 507.30 1329.43 
0.030 503.45 4266.80 864.74 13174.39 4.06 507.28 1329.42 
0.025 504.12 4266.61 864.70 13174.01 4.04 507.27 1329.41 
0.020 504.76 4266.41 864.66 13173.62 4.03 507.25 1329.41 
0.015 505.42 4266.21 864.62 13173.24 4.02 507.24 1329.40 
0.010 506.07 4266.01 864.58 13172.86 4.00 507.22 1329.39 
0.005 506.73 4265.81 864.54 13172.47 3.99 507.21 1329.39 

 

Table 4b shows that, decreasing the enlightenment rate to go for vaccination (𝑧) gradually 

increases the susceptible class. It can be concluded from Tables 4a and 4b that the more the 

number of susceptible people, the higher the possibility for an epidemic case. 

Table 5: Impact of zero and non-zero enlightenment rates 

 𝑥 = 0,  

𝑦 = 0.07,  
𝑧 = 0.05 

𝑥 = 008,  
𝑦 = 0,   

𝑧 = 0.05 

𝑥 = 008,  
𝑦 = 0.07,   

𝑧 = 0,  

𝑥 = 𝑦 = 𝑧 = 0 𝑥 = 0.08,  
𝑦 = 0.07,  
𝑧 = 0.05 

𝑅0 2.08 × 10−5 1.79 × 10−5 2.01 × 10−5 2.04 × 10−5 1.92 × 10−5 

𝑅𝑒 4.57 × 10−6 3.94 × 10−6 4.41 × 10−6 4.49 × 10−6 4.21 × 10−6 

𝑆 4.72 × 102 4.96 × 102 5.07 × 102 4.73 × 102 5.01 × 102 

𝐸 4.27 × 103 4.26 × 103 4.27 × 103 4.27 × 103 4.27 × 103 

𝐼 8.66 × 102 9.22 × 102 8.65 × 102 9.24 × 102 8.65 × 102 

𝐼𝑇 1.32 × 104 1.31 × 104 1.32 × 104 1.31 × 104 1.32 × 104 

𝑉 3.88 4.04 3.97 3.67 4.12 

𝑅 5.08 × 102 5.05 × 102 5.07 × 102 5.06 × 102 5.07 × 102 

𝐵 1.33 × 103 1.34 × 103 1.33 × 103 1.34 × 103 1.33 × 103 
 

Table 5 shows a spike in the size of the infectious class when the enlightenment rate of the 

exposed (𝑥) and enlightenment rates to go for treatment (𝑦) and vaccination (𝑧) are zero, 

with the basic and effective reproduction numbers higher when the enlightenment rate of the 

exposed (𝑥) is zero and lowest when the enlightenment rate to go for treatment (𝑦) is zero. It 

can be concluded that, over time, the disease will result in an epidemic, whenever the rates of 

enlightenment approach zero. 

Conclusion 
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A mathematical model was used to study the effect of enlightenment rate of the exposed and, 

enlightenment rates to go for treatment and vaccination. The study also considered the basic 

and effective reproduction numbers to ascertain which of the two gives early signal in the 

event of an epidemic occurring. The result in this work underscores the importance of 

sustained enlightenment campaigns in checking the spread of typhoid disease. It was shown 

that, the more the number of susceptible people in the population, the higher the possibility 

for the disease to spread faster. Furthermore, it was shown that, decreasing the enlightenment 

rate of the exposed (𝑥) and enlightenment rates to go for treatment (𝑦) and vaccination (𝑧) 

can increase the possibility for the disease to spread faster. Additionally, it was revealed that, 

the basic reproduction number gives signal earlier than the effective reproduction number, if 

the disease will result in an epidemic. This is because some individuals in the population 

have immunity conferred on them, as is assumed in the effective reproduction number, hence 

delaying the signal for the occurrence of an epidemic. 

This work is important to the scientific community since it has used the tools of mathematics 

to solve the crisis in health sector by indicating clearly the impact of vaccination and 

treatment to typhoid. It has brought in a clear relationship between biology, health science 

and mathematics which are ideal subjects in science. This work has revealed that, to consider 

target parameters in the outbreak of an infectious disease, the basic reproduction number 

gives a faster indication of an impending widespread than the effective reproduction number. 
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