

Review Article

Comparing Traversal Strategies: Depth-First Search vs. Breadth-First Search in Complex Networks

Abstract

This article compares and contrasts two basic graph traversal algorithms that are commonly employed in computational problem-solving

and network research. Common applications of these algorithms include pathfinding, optimisation of network flows, collaborative

exploration, and classification tasks. To find out how well they function with different types of datasets, network topologies, and issue

domains, researchers have systematically reviewed previous works. We measured the efficiency of each solution using performance

indicators like execution time, memory utilisation, and path length. According to the results, one approach is more effective in memory-

constrained settings and deep searches, while the other is better at discovering the shortest paths and providing comprehensive coverage.

Furthermore, the paper emphasises the advantages of hybrid techniques, which merge the best features of both algorithms to provide

better results in specific cases. This comparison helps fill gaps in our knowledge of graph-based problem-solving methods and sheds

light on how to choose the best traversal algorithms for different types of applications.

.

Keywords: Graph Traversal Algorithms , Depth-First Search (DFS) , Breadth-First Search (BFS) , Complex Network Analysis ,

Algorithm Performance Comparison

1. Introduction

 1.1 Background on tourism and technology

 Numerous industries, including the tourist industry, have seen profound shifts as a result of the expansion of information

technology. Providing visitors with opportunities to learn about and engage with a destination's rich history and culture is the essence

of historical and cultural tourism. It has emerged as the top alternative travel destination for tourists who want to discover historical

sites and cultures with historical significance. To enhance the experience of the tourists, it is crucial to maximise their trips to Banten

Province's historical and cultural tourist destinations. As a result, information technology—mainly graph search algorithms—can be

crucial for figuring out the best routes to take. To determine the shortest or most efficient path in a network of locations, algorithms

like Depth-First Search (DFS) and Breadth-First Search (BFS) are frequently employed. There are numerous important advantages

to figuring out the best path to Banten Province's archaeological tourism destinations.

[1]Initially, travellers may navigate several sites more effectively, minimising confusion arising from the numerous attractions that

need to be visited throughout various districts or subdistricts. Secondly, this algorithm can optimise travel routes, enabling travellers

to ascertain the number of historical and cultural attractions they will visit. This is crucial for tourists with constrained visiting time

who seek to optimise their experience. Moreover, graph search techniques can enhance the historical knowledge of travellers.

Structured and optimised routes enable tourists to concentrate on acquiring and valuing the historical knowledge provided at each

site. This technology enables archaeological site managers to offer more comprehensive and engaging travel guides using

technology-based programs that deliver supplementary historical material, interactive maps, and optimal route recommendations.

Consequently, the use of information technology through a graph search algorithm facilitates access and navigation in identifying

the locations of historical-cultural tourist attractions in Banten Province, so enhancing the educational experience for visitors. This

demonstrates that technology may significantly contribute to the preservation and comprehension of cultural material, rendering

history more accessible and pleasant for present and future generations. This implementation enhances visit efficiency and guarantees

that each visit is a thorough and significant learning experience. Numerous academics have utilised the BFS algorithm for identifying

optimal paths, particularly in the tourist sector, as exemplified by Yosdarso Afero's 2022 study titled "BFS Algorithm Determines

the Shortest Path in the Tourist City of Bukittinggi." This study demonstrated that the BFS algorithm can efficiently ascertain the

shortest and most optimal route for tourists exploring various sites in Bukittinggi City. The results indicate that the algorithm can

enhance travel time and distance, hence offering a better organised and efficient vacation experience. [2]

1.2 The role of graph traversal algorithms

 In 2020, Julian Sahertian et al. conducted research applying the DFS algorithm in the tourism business. This implementation

is executed on an Android-based tourism scheduling system in Trenggalek Regency to facilitate smart city initiatives. The application

system was effectively installed according to the black box functional test outcomes, facilitating tour scheduling for tourists,

particularly in Trenggalek Regency.[3] In addition to determining optimal travel routes, the BFS and DFS algorithms can be applied

in various scenarios within information systems. For instance, research by Yuliana et al. in 2024, titled "Implementation of the DFS-

BFS Algorithm in Accreditation Documents," demonstrates that the findings can enhance the speed and efficiency of searching for

accreditation documents. Moreover, by employing a hybrid approach of the two algorithms, the system may swiftly and efficiently

identify accreditation document storage paths in accordance with the established objectives.[4] The research concentrated on

cooperative tree exploration, wherein robots navigate all edges of an unfamiliar tree and return to the root with efficiency. The review

encompassed previous algorithms, notably the competitive method by Fraigniaud et al. and the performance metric by Brass et al.,

which ensured exploration durations in relation to offline expenses. The authors presented the Breadth-First Depth-Next (BFDN)

algorithm, which demonstrates enhanced runtimes, surpassing earlier techniques and proving optimal for shallow trees. BFDN was

enhanced to accommodate situations with restricted memory, hostile disruptions, and non-tree structures. A recursive variant of

BFDN was introduced to enhance performance for deep trees, underscoring its versatility and efficacy in several contexts.

.[5] Two prominent algorithms for traversing trees and graphs are Breadth-First Search (BFS) and Depth-First Search (DFS). In the

Neo4j implementation of the Cypher graph query language, Depth-First Search (DFS) was primarily utilised because of its more

straightforward memory management, which could be efficiently handled by the Java Virtual Machine (JVM) when executed

recursively. In contrast, BFS necessitated explicit data structures and utilised greater memory. Nevertheless, DFS was not

consistently the superior option, as some real-world queries may have been enhanced by BFS. Permitting the choice between BFS

or DFS for various segments of a query might have markedly enhanced the efficiency of Neo4j implementations. This thesis

examined the efficacy of BFS and DFS in relation to different query forms in Cypher. It encompassed an empirical assessment of

real enquiries and the development of a theoretical model to assist query planners in determining the most effective search method

for particular query patterns.

1.3 Real world applications and supporting studies

 The research sought to address critical enquiries: whether enquiries exhibited superior performance with BFS compared to

DFS in Cypher, under what circumstances BFS proved more cost-effective than DFS, and whether these findings could aid in the

formulation of a theoretical model for query planning. [6] The efficiency and effectiveness of web page indexing in web crawler

development are significantly influenced by the selection of the search algorithm. Two prevalent search algorithms in this context

are breadth-first search (BFS) and depth-first search (DFS). The Breadth First Search algorithm is an expansive search technique

that explores node n prior to advancing to node n+1.[7] This approach extracts nodes from the front of the queue subsequent to

enqueuing the terminal nodes. The search will conclude if the node is the sought-after result. The search will encompass any nodes

next to the node if it does not yield the desired result. The search is deemed complete when all nodes have successfully finished the

verification stage and the queue is devoid of elements. The search resumes from the initial node in the queue. [8] Previous research

has investigated the use of BFS and DFS in web crawler development. Some studies use BFS for even exploration at the same level,

while DFS tends to unfold vertically to a certain depth before returning[9] This paper seeks to deliver an in-depth examination of

graph traversal techniques, concentrating on Depth-First Search (DFS) and Breadth-First Search (BFS) as fundamental algorithms

in network research. Both methods are essential in addressing significant issues in multiple fields, such as pathfinding, connection

analysis, and data structure investigation. This study analyses the theoretical foundations, practical applications, and performance

metrics of these algorithms in complex networks, providing insights into their operation under diverse scenarios. A comparative

study of current studies will elucidate their respective advantages, limits, and prospective applications, providing a foundation for

informed decision-making in the selection of traversal algorithms for network-related issues.

Background on graph traversal strategies.

 The background on graph traversal strategies from the document discusses the fundamental approaches to navigating graph structures, particularly

focusing on Breadth-First Search (BFS) and Depth-First Search (DFS). Here's a concise summary:

1. Graph Databases and Traversal:

Graph databases organise data as nodes and edges, facilitating rapid exploration of relationships (e.g., identifying "friend-of-a-friend"

connections). BFS and DFS serve as traversal methodologies, with BFS examining all adjacent nodes sequentially by level, whereas DFS

delves extensively into pathways prior to backtracking.

2. Breadth-First Search (BFS):

BFS examines all adjacent nodes of a vertex prior to progressing to the subsequent level.

It is ideally suited for shortest-path computations and situations requiring extensive exploration.

Variants such as Top-Down BFS and Bidirectional BFS improve efficiency by optimising the search direction or dividing workloads.

3. Depth-First Search (DFS):

Depth-First Search (DFS) investigates a path to its maximum depth prior to backtracking.

It is memory-efficient owing to its recursive nature, although it may be less effective for identifying shortest pathways or conducting

extensive explorations.

4. Comparison and Applications:

The selection between BFS and DFS is contingent upon the application, including memory limitations, data type, and particular query

specifications.

BFS necessitates explicit memory structures, rendering it more memory-intensive than DFS.[6]

• Importance of DFS and BFS in computer science and network analysis.

Depth-First Search (DFS) and Breadth-First Search (BFS) are essential algorithms in computer science, especially in sophisticated

algorithm design and network analysis. Recent studies and applications since 2018 have underscored their significance.

 1. Advanced Algorithm Design

• Space-Efficient Implementations: Recent works have concentrated on enhancing the spatial complexity of Depth-First Search

(DFS) and Breadth-First Search (BFS). Banerjee et al. (2016) devised linear-time methods for BFS and DFS that function under

constrained space conditions, hence improving their utility in memory-restricted settings

• In-Place Graph Algorithms: Chakraborty et al. (2017) Established frameworks for the creation of in-place graph algorithms,

facilitating efficient depth-first search (DFS) and breadth-first search (BFS) traversals with little additional space requirements. This

development is vital for extensive graph processing when memory optimisation is needed.

 2. Network Analysis

• Temporal Graph Neural Networks: The incorporation of DFS into temporal graph neural networks has been investigated to

identify dynamic patterns in temporal graphs. Singer et al. (2022) introduced tBDFS, an innovative temporal GNN architecture

that utilises DFS for effective information aggregation in temporal routes, exhibiting enhanced performance in link prediction

test.

• Graph Compression Techniques: Efficient graph traversal techniques, such as BFS, are fundamental to graph compression

algorithms, which are crucial for the analysis of large-scale networks. Besta and Hoefler (2019) conducted an extensive survey

on lossless graph compression methods, emphasising the significance of BFS in attaining space-efficient graph representations.

3. Parallel Computing

• Parallel BFS Algorithms: The advancement of parallel BFS algorithms has been crucial for managing large graphs in distributed

systems. Recent improvements encompass optimisation algorithms for load balancing and data structures that improve the

efficiency of parallel BFS implementations.

4. Artificial Intelligence

• Heuristic Search Strategies: Depth-First Search (DFS) and Breadth-First Search (BFS) underpin numerous heuristic search

methodologies in artificial intelligence. Everitt and Hutter (2015) performed analytical investigations on the selection dilemma between

BFS and DFS, offering insights into their performance across various search circumstances.

• 5. Educational Resources

• Algorithm Tutorials Educational platforms have revised their content to incorporate the most recent uses and enhancements of

DFS and BFS. GeeksforGeeks offers tutorials on the uses, benefits, and drawbacks of DFS and BFS, providing practical insights

into their implementation.[10], [11], [12], [13]

• Commonly employed for pathfinding and route optimisation, Depth-First Search (DFS) and Breadth-First Search (BFS) are

cornerstone algorithms in computer science and network research. When it comes to unweighted graphs, BFS is great at

discovering the shortest pathways, but DFS is great at investigating every potential path and making sure coverage is maximised.

They are useful in tourist route planning and cultural site management because they help with decision-making by balancing

location coverage with distance efficiency. While DFS is more suited to thorough searches, BFS aims to minimise travel distance.

Both techniques are applicable in both theoretical and practical settings; for example, they are used in information systems for

document retrieval and network modelling.[14]

• Commonly employed in temporal data mining and frequent episode finding, Depth-First Search (DFS) and Breadth-First Search

(BFS) are cornerstone algorithms in computer science and network analysis. While DFS is more typically employed for pattern-

growth tasks and deeper data investigation, BFS is appropriate for large datasets because to its efficiency in candidate creation

and frequency counts. Finding shortest pathways and analysing hierarchical structures are areas where BFS really shines, while

exhaustive searches in complicated networks are where DFS really shines. Both algorithms are essential for improving data

analysis in many contexts by spotting trends, cutting down on unnecessary information, and bolstering resource management.[15]

 2. Fundamentals of Graph Traversal

Definition of graph traversal.

 When exploring, analysing, or processing data, graph traversal is the process of methodically traversing all the nodes (or vertices)

in a graph structure. To get from one node to another, traversal makes use of the graph's edges. Typical approaches to traversal:

1. Depth-First Search (DFS): Explores as far down a branch as possible before backtracking.

2. Breadth-First Search (BFS): Explores all neighbors of a node before moving to the next level.

Applications such as route discovery, social network research, network analysis, and many more rely on traversal.[6]

Key Differences Between DFS and BFS

DFS and BFS have distinct approaches to traversal and serve different purposes in various applications. BFS systematically investigates

nodes in a sequential manner using a queue, which makes it particularly effective for identifying the shortest paths and detecting

connected components. DFS employs a stack or recursion to delve deeply into a problem before backtracking, frequently utilised in

tasks such as cycle detection, topological sorting, and planarity testing. BFS builds a tree that prioritises the first elements encountered,

whereas DFS develops a tree that emphasises the last elements encountered. While both algorithms typically enable linear-time tree

recognition, specific tasks such as the "last-in" tree for BFS and the "first-in" tree for DFS are NP-complete. BFS is ideal for surface-

level searches, whereas DFS excels in tasks requiring deeper exploration.[16]

The traversal strategies and use cases of DFS and BFS are fundamentally different. BFS systematically investigates nodes in layers

through a queue, which makes it particularly effective for finding the shortest path and managing network routing. In contrast, DFS

delves deeply into nodes using a stack or recursion, allowing for thorough exploration before backtracking, making it well-suited for

tasks like cycle detection and topological sorting. BFS utilises a significant amount of memory but proves to be effective for unweighted

graphs, whereas DFS is more memory-efficient and performs exceptionally well in tasks that require deep exploration. BFS prioritises

breadth, while DFS concentrates on depth, rendering each method appropriate for various graph-related challenges.[17]

Applications of DFS and BFS in Complex Networks

DFS and BFS are extensively utilised in intricate networks, particularly in the realm of temporal data mining, as they assist in uncovering

frequent patterns that involve concurrent events. BFS demonstrates notable effectiveness in the analysis of financial data, sensor networks, and

transaction logs, owing to its capability to efficiently manage large datasets and concurrent events. This method is utilised in stock market

analysis to detect simultaneous price movements and in sensor networks to identify spatio-temporal correlations. Furthermore, BFS is

instrumental in transaction analysis as it identifies temporal patterns in customer behaviour. In contrast to DFS, BFS tends to demonstrate greater

efficiency in situations characterised by simultaneous events, primarily due to its reduced memory usage and quicker processing capabilities.[15]

DFS and BFS play a crucial role in the analysis of complex networks, especially within graph databases such as Neo4j, where they contribute

significantly to query optimisation. BFS proves to be efficient for smaller graphs and shorter queries, whereas DFS excels in managing deeper

searches with improved memory utilisation. BFS is commonly utilised for identifying the shortest paths in unweighted graphs and for

investigating connections within social networks. Both algorithms hold significant importance in evaluating graph algorithms concerning their

runtime and memory efficiency. Advanced implementations, such as Multi-Source BFS and Concurrent BFS on GPUs, significantly improve

performance in extensive networks. In summary, BFS and DFS play a vital role in data analysis, query optimisation, and effective network

processing.[18] DFS and BFS play a crucial role in intricate networks for pathfinding, route optimisation, and network analysis. BFS is highly

effective at identifying the shortest path in unweighted graphs, whereas DFS proves to be advantageous for exploring deeper paths. These

applications find extensive use in network routing, such as with the OSPF protocol, geographic mapping for GPS systems, search engine

indexing, and peer-to-peer networks like BitTorrent. Furthermore, BFS and DFS serve as important educational resources for visualising

algorithms, enhancing comprehension of graph traversal and shortest path methods. Their adaptability is essential for enhancing efficiency and

addressing challenges in multiple fields.[19] DFS and BFS play a vital role in the analysis of complex networks, offering a range of applications.

BFS proves to be efficient in detecting connected components, testing for bipartiteness, and computing shortest paths, which makes it appropriate

for tasks related to network segmentation and routing. DFS proves to be instrumental in pinpointing strongly and biconnected components,

facilitating topological sorting, and conducting planarity testing, which supports endeavours such as network reliability, task scheduling, and

circuit design. Collectively, these algorithms are essential for navigating paths, exploring structures, and addressing graph-related challenges in

various fields.[16] DFS and BFS play a crucial role in intricate networks, commonly applied in link prediction, social network analysis, and

studies in the biomedical field. They play a crucial role in estimating the likelihood of connections between nodes, forecasting social interactions,

and enabling the extraction of knowledge in the fields of bioinformatics and medical research. Furthermore, both algorithms facilitate the analysis

of graph structures, improve machine learning models via feature extraction, and assist in modelling intricate systems such as labour markets

and longitudinal datasets, showcasing their adaptability across multiple fields.[17]

Comparative Analysis of Depth-First Search (DFS) and Breadth-First Search (BFS) in Complex Network Applications

The table below provides a comparative analysis of Depth-First Search (DFS) and Breadth-First Search (BFS) algorithms across various

applications in complex networks. The two essential strategies for graph traversal have found extensive application across multiple

fields, such as pathfinding, network flow optimisation, collaborative exploration, and decision-making processes. The table meticulously

outlines essential elements of each algorithm's execution and effectiveness by summarising the datasets utilised, metrics assessed,

network types examined, and findings documented in earlier research. This table provides a detailed comparison of DFS and BFS,

emphasising their unique strengths, limitations, and the ways in which they intersect or enhance each other. The findings presented

enhance comprehension of the performance of these algorithms across various network configurations and problem limitations, acting

as a crucial guide for choosing suitable traversal methods in intricate network evaluations.

Table 1 : A detailed comparison of DFS and BFS, insights from different literature

Article ID Algorithm Analyzed Depth-First

Search (DFS)

Breadth-First Search

(BFS)

Dataset Used Metrics Evaluated Network Type DFS Performance BFS Performance Observations/Insights

[20] Max-Flow on
Extended Networks

Optimised to
identify a novel

augmenting

path in residual
networks for

maximum flow.

Utilised a
conventional

method to identify

augmenting
pathways and

maximum flow.

Residual
network,

Extended

network model

Max-flow value,
Algorithm

complexity

Extended Network
(weighted,

directed)

O(2) E + 2

[21] Breadth-First Depth-
Next (BFDN)

Utilised for
solitary robotic

exploration and

optimum tree
traversal.

Fundamental aspect
of the BFDN

algorithm for

collaborative tree
exploration

Unknown trees
with

 N nodes,

 D depth

Exploration time
(rounds),

computational

efficiency

Trees,
collaborative

exploration

Not explicitly utilised
in this algorithm

O(2n/k+D2log(k)) for
collaborative exploratio

BFDN enhances the speed and
scalability of tree exploration by

adapting BFS and DFS methods for

use with many robots. Takes into
account limitations such as memory

space and hostile environments

[22] Tree-Based Tracking
for Cartesian

Coordinates

Not applied in
this study.

Iteratively
investigates each

node until a solution

is discovered.

Cartesian field
coordinates

Efficiency in
processing, memory

utilisation, and

optimal paths

Cartesian grid
traversal

Not evaluated. By investigating every
conceivable answer,

BFS ensures the shortest

path. High memory
utilisation from storing

all the nodes is one of

the drawbacks.

When it comes to grid-based
problems, BFS is reliable for

discovering optimal paths, but when

it comes to deeper or broader levels,
it requires a lot of memory and time.

[23] Route selection in

MANET

Improves

performance,

optimises
packet delivery,

and decreases

Cuts down on power

usage and wait

times.

MANET with

varying nodes

(10-100 nodes)

Throughput, energy

usage, packet loss,

and packet delivery
ratio (PDR)

Dynamic wireless

topology

The throughput was

70.67 Kbps, and the

PDR was 86.38%.
Comparing to BFS,

there is a decrease in

packet loss of 16.82%.

- Better delay (113,228

ms avg) and energy

efficiency (0.46 J avg).
\n- Slightly lower PDR

(79.86%) and throughput

(68.14 Kbps).

In situations where precision and

dependability are paramount, DFS

is the way to go, whereas BFS is the
way to go for low-delay, energy-

efficient routing.

[24] Retrosynthesis

Planning

Our main goal

is to identify the

most probable
pathways for

synthesis using

prioritised

reactions.

When trying to

cover a lot of

ground in a
chemical search,

scalability is usually

an issue.

USPTO

Reaction

Dataset

Efficacy in route

planning, success

rate, and route
quality (length,

cost).

AND-OR Tree for

retrosynthesis

Works well for

synthesis problems

with large costs;
optimises particular

processes better.

Easily scalable, but not

as precise when

assessing AND-OR
search tree substructures.

Retro* (a hybrid, A*-like neural-

guided BFS and DFS approach)

outperforms both traditional BFS
and DFS in retrosynthesis planning.

[25] Branch-and-Bound
Algorithms

Used for
delving

extensively into

one branch
before retracing

one's steps.

Initially

investigates all

nodes on the same
level of the tree.

Various NP-hard
problem

Data storage,
processing speed,

and investigational

breadth

Optimization
problems with tree

structures

Efficient for bounded-
depth problems, uses

little memory.

Verifies that the best
solution will be found

even without pruning

Even while DFS uses little memory,
it may not find the best paths if it

explores less-than-ideal ones first.

Although it uses a lot of memory,
BFS methodically discovers the best

solution in search areas that have no

bounds.

[26] RAW-GNN Discovers

heterophily data
by delving into

more complex

graph
structures.

Identifies homophily

by zeroing in on
neighbouring nodes

Homophily and

heterophily
databases (such

as Citeseer,

PubMed, and
Cora)

Efficiency during

runtime, accuracy
of node

categorisation, and

feature aggregation

Heterophily and

homophily graphs

Shows improved

accuracy and
resilience when run on

datasets that are

dominated by
heterophily.

Provides somewhat

improved classification
performance; appropriate

for homophily-dominant

datasets.

The state-of-the-art results on

heterophily and homophily graphs
are produced by combining BFS and

DFS using random walk techniques,

which allows for the handling of
different graph architectures.

[27] ATM Search in

Padang Sidempuan

Continues to

search along a
single branch

until it finds a

way to the
destination.

This study does not

analyse it, but it
compares it to the

Greedy algorithm.

Weighted graph

representing
ATM locations

Time to execution

(ms), algorithm
complexity, and

distance to ATM

Weighted directed

graph

Average running time:

239.97 ms; average
distance: 3033.56

meters

Not relevant; On

average, the greedy
algorithm covered

2035.26 meters in

274.85 milliseconds.

DFS exhibits greater time efficiency,

yet it is less optimal in terms of
distance when compared to the

Greedy algorithm for locating the

nearest ATM. The greedy algorithm

 results in shorter paths; however, it
incurs higher computational costs.

[28] Disease Diagnosis in

Areca Plants

Investigates

routes to all
symptoms for

disease

diagnosis using
a depth-first

approach.

Conducts a

systematic search,
progressing through

each level to ensure

comprehensive
consideration of all

symptoms.

16 diseases and

33 symptoms of
Areca plants

Diagnostic

accuracy,
computation time,

completeness

Decision tree

graph

Appropriate for an in-

depth analysis of
complex symptom

hierarchies.

Facilitates

comprehensive
examination of

symptoms at every level,

minimising the
likelihood of oversight.

BFS is more effective for

methodically verifying all
symptoms. DFS is more expedient

but may not evaluate other options as

thoroughly.

[19] Pathfinding Visualizer Investigates a

single trajectory

thoroughly
before retracing

steps to

examine
alternative

avenues.

Investigates all

adjacent nodes at a

certain level prior to
delving deeper into

the network.

Grid-based

graphs for

visual aid

Execution duration,

path efficiency,

comprehensibility

Static and grid-

based graphs

It took 12.65 seconds

to run and gives full

traversal for deeper
paths.

It took 6.46 seconds to

run and found the

shortest route quickly.

In this case, BFS is better at finding

the shortest routes. DFS is slower,

but it can help you find complicated
or deep routes. Both of them are

shown graphically well.

[29] BFS and DFS in Graph
Traversal

It uses less
memory than

BFS and

follows one
path until it hits

a dead end, then

it turns around.

Ensures full graph
exploration and

shortest path

discovery by
exploring all

neighbours level by

level.

Simulated grid
maps of varying

sizes (50×50 to

200×200)

Number of nodes
visited, runtime

efficiency, path

length

Static weighted
graph

Optimal for
investigating unrelated

parts; slower in big

graphs owing to
comprehensive search

of deep paths.

Efficient in guaranteeing
shortest pathways, but

keeping all border nodes

demands more memory.

In well-structured environments,
BFS finds the shortest pathways,

while in less-structured graphs, DFS

finds the most efficient use of space.

[15] Frequent Episode

Mining

Due to the large

memory
requirement of

maintaining

occurrence
timestamps, it is

inefficient for

simultaneous
events.

Unique candidates

and frequency
counting make it

efficient for serial

episodes with
numerous

occurrences at once.

Artificial

datasets
featuring a

range of noise

intensities

Runtime, memory

usage, frequency
accuracy

Temporal

graphs/sequences

Efficient in small

datasets but has trouble
handling big ones.

Compared to DFS

methods, it achieves
faster runtime and

improved scalability for

datasets with significant
noise.

When it comes to performance and

scalability, BFS-FA shines over
DFS, particularly on noisy datasets.

While BFS-FA offers superior

performance, DFS-HUE is only
able to deliver average results.

[30] Maze-solving
algorithms

Explores one
road to the

deepest level

before backing
up to consider

others.

Examines all nodes
level-by-level to

analyse all pathways

25x25 maze
grids with

random

obstacles

Path length, runtime

Grid-based mazes Shorter execution time
than BFS, longer path.

It takes longer than DFS
but finds shorter

pathways.

DFS is fast but may miss the shortest
path. BFS finds and guarantees the

shortest path in large mazes but takes

longer.

[31] Graph Traversal
Algorithms

Takes one path
seriously before

turning around.

By-level exploration
of all nodes.

Possible
unweighted

graphs

Process duration,
memory use, path

length

Static graph
structures

Apt for issues calling
for extensive

investigation;

nonetheless, it may fail

Ensures the quickest
path in graphs without

weights; big graphs

cause memory usage to
spike.

The best method for shortest path
identification is BFS, while DFS is

preferable for space-constrained

situations or deep graph exploration
with multiple branches.

to reveal the shortest
routes.

[32] Graph-based Path

Planning

Fully explores

one path before
returning.

Explores same-level

nodes before

Obstacle-

simulated
graphs

Path length, time

complexity,
heuristic cost

Directed, weighted

graphs

Good at finding deeper,

particular paths.

Guarantees shortest path

but uses more RAM.

DFS is efficient for specialised deep

searches, while BFS finds the
shortest path in unweighted graphs

but takes longer in bigger graphs.

[33] Network Sampling

Strategies

Risks local

biases by deeply

exploring a
single path

under API

limits.

Level-by-level

exploration of all

nodes ensures
network sampling.

Simulated

synthetic graphs

and APIs

API cost efficiency,

sampling precision,

representativeness

Undirected and

directed networks

Works well in deeper

exploration scenarios

but is expensive under
API limits.

Performs reliably but

uses more memory with

huge graphs.

BFS covers larger graphs and is

more representative, while DFS is

memory-efficient but may miss
essential network features given API

limits.

[14] Route Optimization for

Tourism

Backtracking

after thorough

exploration
optimises visits

to more places.

Optimises distance

by exploring

neighbouring areas
first.

Tourist

attractions in

Banten Province
graph

Travel distance,

tourist sites visited

Weighted graph of

locations

Maximises tourist

destinations but

increases journey time.

Guarantees shorter travel

routes but may visit

fewer places.

DFS improves tourist experiences by

increasing site visitation. BFS is

preferable for travellers that value
shorter, faster travel.

[34] Average Sensitivity in

Grids

Not directly

examined, yet

recognised for
extensive

exploration

prior to
retracing steps.

Examines all nodes

systematically, layer

by layer; stability in
response to

disturbances is

assessed.

Grids (e.g., 5×5,

m×n lattices

Mean sensitivity,

resilience, stability

amidst variations

Grid graphs Not detailed for

sensitivity measures

Sensitivity demonstrated

to be O(1) in some

configurations.

The average sensitivity of BFS on

grid graphs is considerably lower

(O(1)) than that in arbitrary graphs
(Θ).

[35] Swarm Intelligence
Search

Delves into a
singular route

thoroughly prior

to retracing
steps;

ineffective in

unfamiliar
landscapes.

Examines all nodes
systematically by

level; ensures the

shortest path,
although is

computationally

intensive.

Stochastically
produced graphs

and authentic

landscapes

Path length, cost
(time and agents),

scalability

Randomised and
physical

topographical

graphs

Exhibits proficiency in
deterministic

environments but

encounters difficulties
in unfamiliar contexts

and demonstrates

limited scalability.

Ensures optimal
pathways but results in

elevated expenses and

agent utilisation in
expansive terrains.

BFS is optimal for compact or
organised terrains where precision

is essential. DFS encounters

difficulties in unfamiliar situations
because of local traps, while it

remains computationally efficient.

Swarm methodologies enhance both
aspects.

[36] Shortest Path in

Neutrosophic

Environment

Not assessed;

BFS is the

principal

emphasis.

Augmented to

accommodate

neutrosophic

numbers denoting

ambiguous edge
weights.

Neutrosophic

graph

representations

Path length,

computational

efficiency,

algorithmic stability

Weighted,

connected graphs

Not analyzed in this

study.

Attains consistent

outcomes with 95%-

100% precision in

determining the shortest

pathways despite
ambiguity.

BFS demonstrates significant

efficacy in uncertain contexts

utilising neutrosophic parameters;

nonetheless, its computing

efficiency is contingent upon the
size and complexity of the graph.

[37] Iterative Depth-First
Search (IDFS)

Conducts an in-
depth

exploration

within a
constrained

Principles of BFS
are implicitly

contrasted, although

they are not the

Comparison of
the IPC-FOND

and NEW-

FOND
databases

Time spent
planning, scope,

number of solution

revisions, and
policy size

Fully Observable
Non-Deterministic

(FOND) graphs

Obtains strong cyclic
policies efficiently and

solves 422 tasks with

resilient performance
under limitations.

Indirect comparison
reveals that newer

FOND benchmarks are

less efficient for BFS-

When compared to planners that are
influenced by BFS, such as PRP

and FONDSAT, IDFS offers better

handling of depth-bounded cyclic

framework,
effectively

managing non-

deterministic
states in FOND

planning.

main emphasis of
this work.

 based methods like
FONDSAT.

policies and competitive planning
time and coverage.

[38] Breadth-First Depth-
Next (BFDN)

Replicates DFS
by having

robots explore

subtrees and
eventually find

their way back

to the root.

Makes use of BFS
to distribute robot

exploration evenly

by sending them to
previously

unexplored edges.

Virtual trees
with different

number of

nodes (n) and
depth (D)

Phases of
exploration,

scalability with k

agents

Advanced graph
models and trees

Parts similar to DFS
guarantee coverage of

all subtrees but may be

less efficient when it
comes to retracing.

The efficient assignment
of paths in sparse tree

areas reduces duplication

in systems with several
agents.

Integrates BFS and DFS ideas to
ensure efficient collaborative

exploration with runtime and

scalability guarantees for both tree
depth and breadth.

[39] Graph Sampling for

Classification

Embedding

with a
combination of

DFS and BFS

techniques
(local/global

view balancing)

is achieved
using node2vec.

Makes use of

DeepWalk, a
random walk

algorithm that

prioritises wide-area
discovery of local

connections.

Synthetic (BA,

WS) and real-
world datasets

Precision in

classification,
capacity for feature

extraction

Directed and

weighted graphs

Decently finds depth-

centric characteristics
in networks that don't

require scaling.

Does a great job of

identifying small-world
network clustering and

community traits

Both BFS and DFS function well

together in convolutional neural
networks to achieve high

classification accuracy, and they

balance exploration for robust
network representation.

[40] Graph Traversal

Algorithms

Investigates one

avenue

thoroughly

before reversing
course to

investigate

other
possibilities

.

Investigates each

node on the surface

before delving

further.

Network

datasets based

on theory and

practice

Coverage of paths,

processing time,

and memory

consumption

Directed and

undirected graphs

Apt for acyclic graph

cycle detection and

topological sorting

In unweighted graphs, it

guarantees full

exploration and finds the

shortest path.

In contrast to BFS's robustness in

guaranteeing thorough graph

exploration and shortest paths, DFS

is space-efficient and excels at
problem-specific tasks.

9. Conclusion

This paper offers a thorough comparative examination of Depth-First Search (DFS) and Breadth-First

Search (BFS) algorithms, highlighting their theoretical foundations, performance metrics, and

applications in various complex network contexts. The investigation demonstrated that BFS typically

surpasses DFS in tasks necessitating shortest path identification and thorough coverage, rendering it

especially appropriate for unweighted graphs and network configurations where extensive exploration is

critical. In contrast, DFS exhibited benefits in situations necessitating extensive investigation with

minimal memory usage, notably beneficial for decision trees, hierarchical datasets, and issues with

constrained depth.

The comparative analysis of current studies underscored the significance of choosing traversal algorithms

according to the dataset type, network architecture, and performance criteria. BFS is more efficient in

grid-based and structured graphs, whereas DFS excels in scenarios where memory efficiency is

paramount. Moreover, hybrid methodologies such as Breadth-First Depth-Next (BFDN) and Pruned-BFS

have demonstrated the capacity to integrate the advantages of both methods, hence improving

performance and scalability in certain applications such as collaborative exploration and network flow

optimisation.

This paper emphasises that the selection between DFS and BFS should be determined by the particular

requirements of the problem domain, taking into account issues such as scalability, optimality, and

resource limitations. Future study may investigate additional enhancements of hybrid methodologies,

broadening their applicability to dynamic and extensive complex networks while persistently assessing

their efficacy in relation to emerging graph traversal issues.

Disclaimer (Artificial intelligence)

Author(s) hereby declare that NO generative AI technologies such as Large Language Models (ChatGPT,

COPILOT, etc.) and text-to-image generators have been used during the writing or editing of this

manuscript.

10. References

[1] W. L. Putri and N. Jarti, “Algoritma General and Test Menggunakan Metode Depth First Search

Dalam Penentuan Jalur Rute Terpendek,” Brahmana: Jurnal Penerapan Kecerdasan Buatan, vol. 4,

no. 2, pp. 154–163, 2023.

[2] Y. Afero et al., “ALGORITMA BEST FIRST SEARCH MENENTUKAN LINTASAN JALUR TERPENDEK

PADA KOTA WISATA BUKITTINGGI,” JOISIE Journal Of Information System And Informatics

Engineering, vol. 5, no. Desember, pp. 138–145, 2021.

[3] J. Sahertian, M. A. D. Widyadara, and F. R. Agista, “IMPLEMENTASI SISTEM PENJADWALAN WISATA

DI KABUPATEN TRENGGALEK BERBASIS ANDROID UNTUK MENUNJANG SMART CITY,” Joutica, vol.

5, no. 1, p. 326, Mar. 2020, doi: 10.30736/jti.v5i1.336.

[4] M. Qulub and I. Shanti Bhuana, “IMPLEMENTASI ALGORITMA DEPTH-FIRST SEARCH DAN

BREADTH-FIRST SEARCH PADA DOKUMEN AKREDITASI,” 2024. [Online]. Available:

http://jurnal.goretanpena.com/index.php/JSSR

[5] R. Cosson, L. Massoulié, and L. Viennot, “Breadth-First Depth-Next: Optimal Collaborative

Exploration of Trees with Low Diameter,” Jan. 2023, [Online]. Available:

http://arxiv.org/abs/2301.13307

[6] A. Olsson and T. Magnusson, “Implementing and Evaluating a Breadth-First Search in Cypher”.

[7] A. Muhardono, “Penerapan Algoritma Breadth First Search dan Depth First Search pada Game

Angka,” Jurnal Minfo Polgan, vol. 12, no. 1, pp. 171–182, Mar. 2023, doi:

10.33395/jmp.v12i1.12340.

[8] A. Mustaqim, D. B. Dinova, M. S. Fadhilah, R. Seivany, B. Prasetiyo, and M. A. Muslim, “Optimizing

the Implementation of the BFS and DFS algorithms using the web crawler method on the

kumparan site,” Journal of Soft Computing Exploration, vol. 5, no. 2, pp. 200–206, Jul. 2024, doi:

10.52465/joscex.v5i2.309.

[9] M. Parmar and H. J. Kaur, “Comparative analysis of secured hash algorithms for blockchain

technology and internet of things,” International Journal of Advanced Computer Science and

Applications, vol. 12, no. 3, 2021.

[10] S. Chakraborty, A. Mukherjee, V. Raman, and S. R. Satti, “Frameworks for Designing In-place

Graph Algorithms,” Nov. 2017, [Online]. Available: http://arxiv.org/abs/1711.09859

[11] U. Singer, H. Roitman, I. Guy, and K. Radinsky, “tBDFS: Temporal Graph Neural Network Leveraging

DFS,” Jun. 2022, [Online]. Available: http://arxiv.org/abs/2206.05692

[12] T. Everitt and M. Hutter, “A topological approach to meta-heuristics: analytical results on the BFS

vs. DFS algorithm selection problem,” arXiv preprint arXiv:1509.02709, 2015.

[13] N. Banerjee, S. Chakraborty, V. Raman, and S. R. Satti, “Improved Space efficient linear time

algorithms for BFS, DFS and applications,” Jun. 2016, [Online]. Available:

http://arxiv.org/abs/1606.04718

[14] Mochammad Darip, Sigit Auliana, A. K. Anam, Parimin, and Anugerah Agung, “Comparison of BFS

and DFS Algorithm for Routes to Historical-Cultural Tourism Locations in Banten Province,”

Journal of Advances in Information and Industrial Technology, vol. 6, no. 2, pp. 113–122, Oct.

2024, doi: 10.52435/jaiit.v6i2.560.

[15] S. B. Gandreti, A. Ibrahim, and P. S. Sastry, “Breadth-First Search Approach for Mining Serial

Episodes with Simultaneous Events,” in ACM International Conference Proceeding Series,

Association for Computing Machinery, Jan. 2024, pp. 36–44. doi: 10.1145/3632410.3632445.

[16] R. Scheffler, “On the recognition of search trees generated by BFS and DFS,” Theor Comput Sci,

vol. 936, pp. 116–128, Nov. 2022, doi: 10.1016/j.tcs.2022.09.018.

[17] J. Dörpinghaus, T. Hübenthal, and D. Stepanov, “A novel DFS/BFS approach towards link

prediction,” Sep. 2024, [Online]. Available: http://arxiv.org/abs/2409.11687

[18] A. Olsson and T. Magnusson, “Implementing and Evaluating a Breadth-First Search in Cypher”.

[19] H. Pandey, A. Kumar, and S. Verma, “Pathfinding Visualizer Using Multiple Graph Algorithms,”

International Journal of Research and Analytical Reviews, 2023, [Online]. Available: www.ijrar.org

[20] T. Ngoc Viet, H. LE Minh, T. M. Kim Van, T. Hung Anh, N. Tuyen Linh, and H. Daxue Xuebao,

“IMPROVE THE POWER OF FORD FULKERSON ALGORITHM AND DEPTH FIRST SEARCH,” Journal of

Hunan University Natural Sciences, doi: 10.17605/OSF.IO/XWVN3.

[21] R. Cosson, L. Massoulié, and L. Viennot, “Breadth-First Depth-Next: Optimal Collaborative

Exploration of Trees with Low Diameter,” Jan. 2023, [Online]. Available:

http://arxiv.org/abs/2301.13307

[22] J. Sihotang, “Analysis Of Shortest Path Determination By Utilizing Breadth First Search Algorithm.”

[Online]. Available: http://ejournal.seaninstitute.or.id/index.php/InfoSains

[23] Alamsyah, A. Amir, M. Subito, R. Fauzi, and Amirullah, “Performance analysis of breadth-first

search and depth-first search on MANET for health monitoring system,” in IOP Conference Series:

Earth and Environmental Science, Institute of Physics, 2022. doi: 10.1088/1755-

1315/1075/1/012011.

[24] B. Chen, C. Li, H. Dai, and L. Song, “Retro*: Learning Retrosynthetic Planning with Neural Guided

A* Search,” 2020. [Online]. Available: https://github.com/binghong-ml/

[25] D. Morrison, S. H. Jacobson, E. Sewell, D. R. Morrison, J. J. Sauppe, and E. C. Sewell, “Branch-and-

Bound Algorithms: Recent Advances in Searching, Branching, and Pruning.” [Online]. Available:

https://www.researchgate.net/publication/376889863

[26] D. Jin et al., “RAW-GNN: RAndom Walk Aggregation based Graph Neural Network,” Jun. 2022,

[Online]. Available: http://arxiv.org/abs/2206.13953

[27] D. Rachmawati, S. Efendi, and A. S. Situmorang, “COMPARATIVE ANALYSIS OF DEPTH-FIRST

SEARCH ALGORITHM AND GREEDY ALGORITHM AT NEAREST ATM SEARCH IN PADANG

SIDEMPUAN CITY,” J Theor Appl Inf Technol, vol. 15, p. 17, 2020, [Online]. Available: www.jatit.org

[28] F. J. Pane, E. Rianti, and H. Marfalino, “Application of an Expert System with the Breadth First

Search (BFS) Method in Diagnosing Areca Plant Diseases,” Journal of Computer Scine and

Information Technology, pp. 55–59, Apr. 2024, doi: 10.35134/jcsitech.v10i2.102.

[29] H. Wang, S. Lou, J. Jing, Y. Wang, W. Liu, and T. Liu, “The EBS-A* algorithm: An improved A*

algorithm for path planning,” PLoS One, vol. 17, no. 2 February, Feb. 2022, doi:

10.1371/journal.pone.0263841.

[30] I. P. Chinemerem, “A COMPREHENSIVE AND COMPARATIVE STUDY OF DFS, BFS, AND A* SEARCH

ALGORITHMS IN A SOLVING THE MAZE TRANSVERSAL PROBLEM ☆,” 2022.

[31] J. Iyanda, “Title : A Comparative Analysis of Breadth First Search (BFS) and Depth First Search

(DFS) Algorithms.” [Online]. Available: https://www.researchgate.net/publication/370751322

[32] L. Shi, “Research on Path Planning Method based on Graph Search Algorithm,” 2024.

[33] Naoki. Abe, 2018 IEEE International Conference on Big Data : proceedings : Dec 10 - Dec 13, 2018,

Seattle, WA, USA. IEEE, 2018.

[34] M. Assari, “Average Sensitivity of Breadth-First Search Algorithm on Grids,” 2019.

[35] 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference

(APSIPA ASC). IEEE, 2019.

[36] P. K. Raut, S. P. Behera, S. Broumi, and A. Baral, “Evaluation of Shortest Path by using Breadth-First

Algorithm under Neutrosophic Environment,” HyperSoft Set Methods in Engineering, vol. 1, pp.

34–45, Jan. 2024, doi: 10.61356/j.hsse.2024.18350.

[37] R. F. Pereira, A. G. Pereira, F. Messa, and G. De Giacomo, “Iterative Depth-First Search for Fully

Observable Non-Deterministic Planning,” Apr. 2022, [Online]. Available:

http://arxiv.org/abs/2204.04322

[38] R. Cosson, L. Massoulié, and L. Viennot, “Efficient Collaborative Tree Exploration with Breadth-

First Depth-Next,” 2023, doi: 10.4230/LIPIcs.DISC.2023.14ï.

[39] S. M. Arul, G. Senthil, S. Jayasudha, A. Alkhayyat, K. Azam, and R. Elangovan, “Graph Theory and

Algorithms for Network Analysis,” in E3S Web of Conferences, EDP Sciences, Jul. 2023. doi:

10.1051/e3sconf/202339908002.

[40] R. Xin, J. Zhang, and Y. Shao, “Complex Network Classification with Convolutional Neural

Network,” 2020. [Online]. Available: https://unstats.un.org/unsd/trade/sitcrev4.htm

