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Abstract 

This article compares and contrasts two basic graph traversal algorithms that are commonly employed in computational problem-solving 

and network research. Common applications of these algorithms include pathfinding, optimisation of network flows, collaborative 

exploration, and classification tasks. To find out how well they function with different types of datasets, network topologies, and issue 

domains, researchers have systematically reviewed previous works. We measured the efficiency of each solution using performance 

indicators like execution time, memory utilisation, and path length. According to the results, one approach is more effective in memory-

constrained settings and deep searches, while the other is better at discovering the shortest paths and providing comprehensive coverage. 

Furthermore, the paper emphasises the advantages of hybrid techniques, which merge the best features of both algorithms to provide 

better results in specific cases. This comparison helps fill gaps in our knowledge of graph-based problem-solving methods and sheds 

light on how to choose the best traversal algorithms for different types of applications.  
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1. Introduction 



 

 

    1.1  Background on tourism and technology 

         Numerous industries, including the tourist industry, have seen profound shifts as a result of the expansion of information 

technology. Providing visitors with opportunities to learn about and engage with a destination's rich history and culture is the essence 

of historical and cultural tourism. It has emerged as the top alternative travel destination for tourists who want to discover historical 

sites and cultures with historical significance. To enhance the experience of the tourists, it is crucial to maximise their trips to Banten 

Province's historical and cultural tourist destinations. As a result, information technology—mainly graph search algorithms—can be 

crucial for figuring out the best routes to take. To determine the shortest or most efficient path in a network of locations, algorithms 

like Depth-First Search (DFS) and Breadth-First Search (BFS) are frequently employed. There are numerous important advantages 

to figuring out the best path to Banten Province's archaeological tourism destinations. 

[1]Initially, travellers may navigate several sites more effectively, minimising confusion arising from the numerous attractions that 

need to be visited throughout various districts or subdistricts. Secondly, this algorithm can optimise travel routes, enabling travellers 

to ascertain the number of historical and cultural attractions they will visit. This is crucial for tourists with constrained visiting time 

who seek to optimise their experience. Moreover, graph search techniques can enhance the historical knowledge of travellers. 

Structured and optimised routes enable tourists to concentrate on acquiring and valuing the historical knowledge provided at each 

site. This technology enables archaeological site managers to offer more comprehensive and engaging travel guides using 

technology-based programs that deliver supplementary historical material, interactive maps, and optimal route recommendations. 

Consequently, the use of information technology through a graph search algorithm facilitates access and navigation in identifying 

the locations of historical-cultural tourist attractions in Banten Province, so enhancing the educational experience for visitors. This 

demonstrates that technology may significantly contribute to the preservation and comprehension of cultural material, rendering 

history more accessible and pleasant for present and future generations. This implementation enhances visit efficiency and guarantees 

that each visit is a thorough and significant learning experience. Numerous academics have utilised the BFS algorithm for identifying 

optimal paths, particularly in the tourist sector, as exemplified by Yosdarso Afero's 2022 study titled "BFS Algorithm Determines 



 

 

the Shortest Path in the Tourist City of Bukittinggi." This study demonstrated that the BFS algorithm can efficiently ascertain the 

shortest and most optimal route for tourists exploring various sites in Bukittinggi City. The results indicate that the algorithm can 

enhance travel time and distance, hence offering a better organised and efficient vacation experience. [2] 

 

1.2 The role of graph traversal algorithms 

               In 2020, Julian Sahertian et al. conducted research applying the DFS algorithm in the tourism business. This implementation 

is executed on an Android-based tourism scheduling system in Trenggalek Regency to facilitate smart city initiatives. The application 

system was effectively installed according to the black box functional test outcomes, facilitating tour scheduling for tourists, 

particularly in Trenggalek Regency.[3] In addition to determining optimal travel routes, the BFS and DFS algorithms can be applied 

in various scenarios within information systems. For instance, research by Yuliana et al. in 2024, titled "Implementation of the DFS-

BFS Algorithm in Accreditation Documents," demonstrates that the findings can enhance the speed and efficiency of searching for 

accreditation documents. Moreover, by employing a hybrid approach of the two algorithms, the system may swiftly and efficiently 

identify accreditation document storage paths in accordance with the established objectives.[4] The research concentrated on 

cooperative tree exploration, wherein robots navigate all edges of an unfamiliar tree and return to the root with efficiency. The review 

encompassed previous algorithms, notably the competitive method by Fraigniaud et al. and the performance metric by Brass et al., 

which ensured exploration durations in relation to offline expenses. The authors presented the Breadth-First Depth-Next (BFDN) 

algorithm, which demonstrates enhanced runtimes, surpassing earlier techniques and proving optimal for shallow trees. BFDN was 

enhanced to accommodate situations with restricted memory, hostile disruptions, and non-tree structures. A recursive variant of 

BFDN was introduced to enhance performance for deep trees, underscoring its versatility and efficacy in several contexts. 

.[5] Two prominent algorithms for traversing trees and graphs are Breadth-First Search (BFS) and Depth-First Search (DFS). In the 

Neo4j implementation of the Cypher graph query language, Depth-First Search (DFS) was primarily utilised because of its more 

straightforward memory management, which could be efficiently handled by the Java Virtual Machine (JVM) when executed 



 

 

recursively. In contrast, BFS necessitated explicit data structures and utilised greater memory. Nevertheless, DFS was not 

consistently the superior option, as some real-world queries may have been enhanced by BFS. Permitting the choice between BFS 

or DFS for various segments of a query might have markedly enhanced the efficiency of Neo4j implementations. This thesis 

examined the efficacy of BFS and DFS in relation to different query forms in Cypher. It encompassed an empirical assessment of 

real enquiries and the development of a theoretical model to assist query planners in determining the most effective search method 

for particular query patterns.  

 

1.3  Real world applications and supporting studies 

             The research sought to address critical enquiries: whether enquiries exhibited superior performance with BFS compared to 

DFS in Cypher, under what circumstances BFS proved more cost-effective than DFS, and whether these findings could aid in the 

formulation of a theoretical model for query planning. [6] The efficiency and effectiveness of web page indexing in web crawler 

development are significantly influenced by the selection of the search algorithm. Two prevalent search algorithms in this context 

are breadth-first search (BFS) and depth-first search (DFS). The Breadth First Search algorithm is an expansive search technique 

that explores node n prior to advancing to node n+1.[7] This approach extracts nodes from the front of the queue subsequent to 

enqueuing the terminal nodes. The search will conclude if the node is the sought-after result. The search will encompass any nodes 

next to the node if it does not yield the desired result. The search is deemed complete when all nodes have successfully finished the 

verification stage and the queue is devoid of elements. The search resumes from the initial node in the queue. [8] Previous research 

has investigated the use of BFS and DFS in web crawler development. Some studies use BFS for even exploration at the same level, 

while DFS tends to unfold vertically to a certain depth before returning[9] This paper seeks to deliver an in-depth examination of 

graph traversal techniques, concentrating on Depth-First Search (DFS) and Breadth-First Search (BFS) as fundamental algorithms 

in network research. Both methods are essential in addressing significant issues in multiple fields, such as pathfinding, connection 

analysis, and data structure investigation. This study analyses the theoretical foundations, practical applications, and performance 



 

 

metrics of these algorithms in complex networks, providing insights into their operation under diverse scenarios. A comparative 

study of current studies will elucidate their respective advantages, limits, and prospective applications, providing a foundation for 

informed decision-making in the selection of traversal algorithms for network-related issues.  

 

Background on graph traversal strategies. 
   

  The background on graph traversal strategies from the document discusses the fundamental approaches to navigating graph structures,  particularly 

focusing on Breadth-First Search (BFS) and Depth-First Search (DFS). Here's a concise summary: 

1. Graph Databases and Traversal: 

Graph databases organise data as nodes and edges, facilitating rapid exploration of relationships (e.g., identifying "friend-of-a-friend" 

connections). BFS and DFS serve as traversal methodologies, with BFS examining all adjacent nodes sequentially by level, whereas DFS 

delves extensively into pathways prior to backtracking. 

 

2. Breadth-First Search (BFS): 

BFS examines all adjacent nodes of a vertex prior to progressing to the subsequent level.  

It is ideally suited for shortest-path computations and situations requiring extensive exploration.  

Variants such as Top-Down BFS and Bidirectional BFS improve efficiency by optimising the search direction or dividing workloads.  

 

3. Depth-First Search (DFS): 

Depth-First Search (DFS) investigates a path to its maximum depth prior to backtracking.  

It is memory-efficient owing to its recursive nature, although it may be less effective for identifying shortest pathways or conducting 

extensive explorations.  

 



 

 

4. Comparison and Applications: 

The selection between BFS and DFS is contingent upon the application, including memory limitations, data type, and particular query 

specifications.  

BFS necessitates explicit memory structures, rendering it more memory-intensive than DFS.[6] 

 

• Importance of DFS and BFS in computer science and network analysis. 

Depth-First Search (DFS) and Breadth-First Search (BFS) are essential algorithms in computer science, especially in sophisticated 

algorithm design and network analysis. Recent studies and applications since 2018 have underscored their significance. 

      1. Advanced Algorithm Design     

• Space-Efficient Implementations: Recent works have concentrated on enhancing the spatial complexity of Depth-First Search 

(DFS) and Breadth-First Search (BFS). Banerjee et al. (2016) devised linear-time methods for BFS and DFS that function under 

constrained space conditions, hence improving their utility in memory-restricted settings 

•  In-Place Graph Algorithms: Chakraborty et al. (2017) Established frameworks for the creation of in-place graph algorithms, 

facilitating efficient depth-first search (DFS) and breadth-first search (BFS) traversals with little additional space requirements. This 

development is vital for extensive graph processing when memory optimisation is needed.  

 

     2. Network Analysis   

• Temporal Graph Neural Networks: The incorporation of DFS into temporal graph neural networks has been investigated to 

identify dynamic patterns in temporal graphs. Singer et al. (2022) introduced tBDFS, an innovative temporal GNN architecture 



 

 

that utilises DFS for effective information aggregation in temporal routes, exhibiting enhanced performance in link prediction 

test.  

• Graph Compression Techniques: Efficient graph traversal techniques, such as BFS, are fundamental to graph compression 

algorithms, which are crucial for the analysis of large-scale networks. Besta and Hoefler (2019) conducted an extensive survey 

on lossless graph compression methods, emphasising the significance of BFS in attaining space-efficient graph representations.  

3. Parallel Computing 

• Parallel BFS Algorithms: The advancement of parallel BFS algorithms has been crucial for managing large graphs in distributed 

systems. Recent improvements encompass optimisation algorithms for load balancing and data structures that improve the 

efficiency of parallel BFS implementations.  

4. Artificial Intelligence 

• Heuristic Search Strategies: Depth-First Search (DFS) and Breadth-First Search (BFS) underpin numerous heuristic search 

methodologies in artificial intelligence. Everitt and Hutter (2015) performed analytical investigations on the selection dilemma between 

BFS and DFS, offering insights into their performance across various search circumstances.  

• 5. Educational Resources 

• Algorithm Tutorials Educational platforms have revised their content to incorporate the most recent uses and enhancements of 

DFS and BFS. GeeksforGeeks offers tutorials on the uses, benefits, and drawbacks of DFS and BFS, providing practical insights 

into their implementation.[10], [11], [12], [13] 

• Commonly employed for pathfinding and route optimisation, Depth-First Search (DFS) and Breadth-First Search (BFS) are 

cornerstone algorithms in computer science and network research. When it comes to unweighted graphs, BFS is great at 



 

 

discovering the shortest pathways, but DFS is great at investigating every potential path and making sure coverage is maximised. 

They are useful in tourist route planning and cultural site management because they help with decision-making by balancing 

location coverage with distance efficiency. While DFS is more suited to thorough searches, BFS aims to minimise travel distance. 

Both techniques are applicable in both theoretical and practical settings; for example, they are used in information systems for 

document retrieval and network modelling.[14] 

• Commonly employed in temporal data mining and frequent episode finding, Depth-First Search (DFS) and Breadth-First Search 

(BFS) are cornerstone algorithms in computer science and network analysis. While DFS is more typically employed for pattern-

growth tasks and deeper data investigation, BFS is appropriate for large datasets because to its efficiency in candidate creation 

and frequency counts. Finding shortest pathways and analysing hierarchical structures are areas where BFS really shines, while 

exhaustive searches in complicated networks are where DFS really shines. Both algorithms are essential for improving data 

analysis in many contexts by spotting trends, cutting down on unnecessary information, and bolstering resource management.[15] 

 

     2. Fundamentals of Graph Traversal 

Definition of graph traversal. 

 When exploring, analysing, or processing data, graph traversal is the process of methodically traversing all the nodes (or vertices)   

in a graph structure. To get from one node to another, traversal makes use of the graph's edges. Typical approaches to traversal: 

1. Depth-First Search (DFS): Explores as far down a branch as possible before backtracking. 

2. Breadth-First Search (BFS): Explores all neighbors of a node before moving to the next level. 

Applications such as route discovery, social network research, network analysis, and many more rely on traversal.[6] 

 

 



 

 

 

Key Differences Between DFS and BFS 

DFS and BFS have distinct approaches to traversal and serve different purposes in various applications. BFS systematically investigates 

nodes in a sequential manner using a queue, which makes it particularly effective for identifying the shortest paths and detecting 

connected components. DFS employs a stack or recursion to delve deeply into a problem before backtracking, frequently utilised in 

tasks such as cycle detection, topological sorting, and planarity testing. BFS builds a tree that prioritises the first elements encountered, 

whereas DFS develops a tree that emphasises the last elements encountered. While both algorithms typically enable linear-time tree 

recognition, specific tasks such as the "last-in" tree for BFS and the "first-in" tree for DFS are NP-complete. BFS is ideal for surface-

level searches, whereas DFS excels in tasks requiring deeper exploration.[16] 

The traversal strategies and use cases of DFS and BFS are fundamentally different. BFS systematically investigates nodes in layers 

through a queue, which makes it particularly effective for finding the shortest path and managing network routing. In contrast, DFS 

delves deeply into nodes using a stack or recursion, allowing for thorough exploration before backtracking, making it well-suited for 

tasks like cycle detection and topological sorting. BFS utilises a significant amount of memory but proves to be effective for unweighted 

graphs, whereas DFS is more memory-efficient and performs exceptionally well in tasks that require deep exploration. BFS prioritises 

breadth, while DFS concentrates on depth, rendering each method appropriate for various graph-related challenges.[17] 

 

 

Applications of DFS and BFS in Complex Networks  

DFS and BFS are extensively utilised in intricate networks, particularly in the realm of temporal data mining, as they assist in uncovering 

frequent patterns that involve concurrent events. BFS demonstrates notable effectiveness in the analysis of financial data, sensor networks, and 



 

 

transaction logs, owing to its capability to efficiently manage large datasets and concurrent events. This method is utilised in stock market 

analysis to detect simultaneous price movements and in sensor networks to identify spatio-temporal correlations. Furthermore, BFS is 

instrumental in transaction analysis as it identifies temporal patterns in customer behaviour. In contrast to DFS, BFS tends to demonstrate greater 

efficiency in situations characterised by simultaneous events, primarily due to its reduced memory usage and quicker processing capabilities.[15] 

DFS and BFS play a crucial role in the analysis of complex networks, especially within graph databases such as Neo4j, where they contribute 

significantly to query optimisation. BFS proves to be efficient for smaller graphs and shorter queries, whereas DFS excels in managing deeper 

searches with improved memory utilisation. BFS is commonly utilised for identifying the shortest paths in unweighted graphs and for 

investigating connections within social networks. Both algorithms hold significant importance in evaluating graph algorithms concerning their 

runtime and memory efficiency. Advanced implementations, such as Multi-Source BFS and Concurrent BFS on GPUs, significantly improve 

performance in extensive networks. In summary, BFS and DFS play a vital role in data analysis, query optimisation, and effective network 

processing.[18] DFS and BFS play a crucial role in intricate networks for pathfinding, route optimisation, and network analysis. BFS is highly 

effective at identifying the shortest path in unweighted graphs, whereas DFS proves to be advantageous for exploring deeper paths. These 

applications find extensive use in network routing, such as with the OSPF protocol, geographic mapping for GPS systems, search engine 

indexing, and peer-to-peer networks like BitTorrent. Furthermore, BFS and DFS serve as important educational resources for visualising 

algorithms, enhancing comprehension of graph traversal and shortest path methods. Their adaptability is essential for enhancing efficiency and 

addressing challenges in multiple fields.[19] DFS and BFS play a vital role in the analysis of complex networks, offering a range of applications. 

BFS proves to be efficient in detecting connected components, testing for bipartiteness, and computing shortest paths, which makes it appropriate 

for tasks related to network segmentation and routing. DFS proves to be instrumental in pinpointing strongly and biconnected components, 

facilitating topological sorting, and conducting planarity testing, which supports endeavours such as network reliability, task scheduling, and 

circuit design. Collectively, these algorithms are essential for navigating paths, exploring structures, and addressing graph-related challenges in 

various fields.[16] DFS and BFS play a crucial role in intricate networks, commonly applied in link prediction, social network analysis, and 

studies in the biomedical field. They play a crucial role in estimating the likelihood of connections between nodes, forecasting social interactions, 

and enabling the extraction of knowledge in the fields of bioinformatics and medical research. Furthermore, both algorithms facilitate the analysis 



 

 

of graph structures, improve machine learning models via feature extraction, and assist in modelling intricate systems such as labour markets 

and longitudinal datasets, showcasing their adaptability across multiple fields.[17] 

 

 

 

Comparative Analysis of Depth-First Search (DFS) and Breadth-First Search (BFS) in Complex Network Applications 

The table below provides a comparative analysis of Depth-First Search (DFS) and Breadth-First Search (BFS) algorithms across various 

applications in complex networks. The two essential strategies for graph traversal have found extensive application across multiple 

fields, such as pathfinding, network flow optimisation, collaborative exploration, and decision-making processes. The table meticulously 

outlines essential elements of each algorithm's execution and effectiveness by summarising the datasets utilised, metrics assessed, 

network types examined, and findings documented in earlier research. This table provides a detailed comparison of DFS and BFS, 

emphasising their unique strengths, limitations, and the ways in which they intersect or enhance each other. The findings presented 

enhance comprehension of the performance of these algorithms across various network configurations and problem limitations, acting 

as a crucial guide for choosing suitable traversal methods in intricate network evaluations. 

Table 1 : A detailed comparison of DFS and BFS, insights from different literature 

Article ID Algorithm Analyzed Depth-First 

Search (DFS) 

Breadth-First Search 

(BFS) 

Dataset Used Metrics Evaluated Network Type DFS Performance BFS Performance Observations/Insights 

[20] Max-Flow on 
Extended Networks 

Optimised to 
identify a novel 

augmenting 

path in residual 
networks for 

maximum flow. 

 

Utilised a 
conventional 

method to identify 

augmenting 
pathways and 

maximum flow. 

Residual 
network, 

Extended 

network model 
 

Max-flow value, 
Algorithm 

complexity 

Extended Network 
(weighted, 

directed) 

O(2) E + 2 



 

 

[21] Breadth-First Depth-
Next (BFDN) 

Utilised for 
solitary robotic 

exploration and 

optimum tree 
traversal. 

 

Fundamental aspect 
of the BFDN 

algorithm for 

collaborative tree 
exploration 

 

Unknown trees 
with 

 N nodes, 

 D depth 

Exploration time 
(rounds), 

computational 

efficiency 

Trees, 
collaborative 

exploration 

Not explicitly utilised 
in this algorithm 

 

O(2n/k+D2log(k)) for 
collaborative exploratio 

BFDN enhances the speed and 
scalability of tree exploration by 

adapting BFS and DFS methods for 

use with many robots. Takes into 
account limitations such as memory 

space and hostile environments 

 

[22] Tree-Based Tracking 
for Cartesian 

Coordinates 

 

Not applied in 
this study. 

Iteratively 
investigates each 

node until a solution 

is discovered. 
 

Cartesian field 
coordinates 

Efficiency in 
processing, memory 

utilisation, and 

optimal paths 
 

Cartesian grid 
traversal 

Not evaluated. By investigating every 
conceivable answer, 

BFS ensures the shortest 

path. High memory 
utilisation from storing 

all the nodes is one of 

the drawbacks. 

When it comes to grid-based 
problems, BFS is reliable for 

discovering optimal paths, but when 

it comes to deeper or broader levels, 
it requires a lot of memory and time. 

 

[23] Route selection in 

MANET 

Improves 

performance, 

optimises 
packet delivery, 

and decreases 

 

Cuts down on power 

usage and wait 

times. 
 

MANET with 

varying nodes 

(10-100 nodes) 

Throughput, energy 

usage, packet loss, 

and packet delivery 
ratio (PDR) 

 

Dynamic wireless 

topology 

The throughput was 

70.67 Kbps, and the 

PDR was 86.38%. 
Comparing to BFS, 

there is a decrease in 

packet loss of 16.82%. 
 

- Better delay (113,228 

ms avg) and energy 

efficiency (0.46 J avg). 
\n- Slightly lower PDR 

(79.86%) and throughput 

(68.14 Kbps). 

In situations where precision and 

dependability are paramount, DFS 

is the way to go, whereas BFS is the 
way to go for low-delay, energy-

efficient routing. 

 

[24] Retrosynthesis 

Planning 

Our main goal 

is to identify the 

most probable 
pathways for 

synthesis using 

prioritised 

reactions. 

 

When trying to 

cover a lot of 

ground in a 
chemical search, 

scalability is usually 

an issue. 

 

USPTO 

Reaction 

Dataset 

Efficacy in route 

planning, success 

rate, and route 
quality (length, 

cost). 

 

AND-OR Tree for 

retrosynthesis 

Works well for 

synthesis problems 

with large costs; 
optimises particular 

processes better. 

 

Easily scalable, but not 

as precise when 

assessing AND-OR 
search tree substructures. 

 

Retro* (a hybrid, A*-like neural-

guided BFS and DFS approach) 

outperforms both traditional BFS 
and DFS in retrosynthesis planning. 

[25] Branch-and-Bound 
Algorithms 

Used for 
delving 

extensively into 

one branch 
before retracing 

one's steps. 

 

Initially 

investigates all 

nodes on the same 
level of the tree.  

 

Various NP-hard 
problem 

Data storage, 
processing speed, 

and investigational 

breadth 
 

Optimization 
problems with tree 

structures 

Efficient for bounded-
depth problems, uses 

little memory. 

 

Verifies that the best 
solution will be found 

even without pruning 

 

Even while DFS uses little memory, 
it may not find the best paths if it 

explores less-than-ideal ones first. 

Although it uses a lot of memory, 
BFS methodically discovers the best 

solution in search areas that have no 

bounds. 
 

[26] RAW-GNN Discovers 

heterophily data 
by delving into 

more complex 

graph 
structures. 

 

Identifies homophily 

by zeroing in on 
neighbouring nodes 

 

Homophily and 

heterophily 
databases (such 

as Citeseer, 

PubMed, and 
Cora) 

 

Efficiency during 

runtime, accuracy 
of node 

categorisation, and 

feature aggregation 
 

Heterophily and 

homophily graphs 

Shows improved 

accuracy and 
resilience when run on 

datasets that are 

dominated by 
heterophily. 

 

Provides somewhat 

improved classification 
performance; appropriate 

for homophily-dominant 

datasets. 
 

The state-of-the-art results on 

heterophily and homophily graphs 
are produced by combining BFS and 

DFS using random walk techniques, 

which allows for the handling of 
different graph architectures. 

 

[27] ATM Search in 

Padang Sidempuan 

Continues to 

search along a 
single branch 

until it finds a 

way to the 
destination. 

This study does not 

analyse it, but it 
compares it to the 

Greedy algorithm. 

 

Weighted graph 

representing 
ATM locations 

Time to execution 

(ms), algorithm 
complexity, and 

distance to ATM 

 

Weighted directed 

graph 

Average running time: 

239.97 ms; average 
distance: 3033.56 

meters 

Not relevant; On 

average, the greedy 
algorithm covered 

2035.26 meters in 

274.85 milliseconds. 
 

DFS exhibits greater time efficiency, 

yet it is less optimal in terms of 
distance when compared to the 

Greedy algorithm for locating the 

nearest ATM. The greedy algorithm 



 

 

 results in shorter paths; however, it 
incurs higher computational costs. 

 

[28] Disease Diagnosis in 

Areca Plants 

Investigates 

routes to all 
symptoms for 

disease 

diagnosis using 
a depth-first 

approach. 

 

Conducts a 

systematic search, 
progressing through 

each level to ensure 

comprehensive 
consideration of all 

symptoms. 

 

16 diseases and 

33 symptoms of 
Areca plants 

Diagnostic 

accuracy, 
computation time, 

completeness 

 

Decision tree 

graph 

Appropriate for an in-

depth analysis of 
complex symptom 

hierarchies. 

 

Facilitates 

comprehensive 
examination of 

symptoms at every level, 

minimising the 
likelihood of oversight. 

 

BFS is more effective for 

methodically verifying all 
symptoms. DFS is more expedient 

but may not evaluate other options as 

thoroughly. 
 

[19] Pathfinding Visualizer Investigates a 

single trajectory 

thoroughly 
before retracing 

steps to 

examine 
alternative 

avenues. 

 

Investigates all 

adjacent nodes at a 

certain level prior to 
delving deeper into 

the network. 

 

Grid-based 

graphs for 

visual aid 

Execution duration, 

path efficiency, 

comprehensibility 
 

Static and grid-

based graphs 

It took 12.65 seconds 

to run and gives full 

traversal for deeper 
paths. 

 

It took 6.46 seconds to 

run and found the 

shortest route quickly. 
 

In this case, BFS is better at finding 

the shortest routes. DFS is slower, 

but it can help you find complicated 
or deep routes. Both of them are 

shown graphically well. 

 

[29] BFS and DFS in Graph 
Traversal 

It uses less 
memory than 

BFS and 

follows one 
path until it hits 

a dead end, then 

it turns around. 

 

Ensures full graph 
exploration and 

shortest path 

discovery by 
exploring all 

neighbours level by 

level. 

 

Simulated grid 
maps of varying 

sizes (50×50 to 

200×200) 

Number of nodes 
visited, runtime 

efficiency, path 

length 
 

Static weighted 
graph 

Optimal for 
investigating unrelated 

parts; slower in big 

graphs owing to 
comprehensive search 

of deep paths. 

 

Efficient in guaranteeing 
shortest pathways, but 

keeping all border nodes 

demands more memory. 
 

In well-structured environments, 
BFS finds the shortest pathways, 

while in less-structured graphs, DFS 

finds the most efficient use of space. 
 

[15] Frequent Episode 

Mining 

Due to the large 

memory 
requirement of 

maintaining 

occurrence 
timestamps, it is 

inefficient for 

simultaneous 
events. 

 

Unique candidates 

and frequency 
counting make it 

efficient for serial 

episodes with 
numerous 

occurrences at once.  

 

Artificial 

datasets 
featuring a 

range of noise 

intensities 
 

Runtime, memory 

usage, frequency 
accuracy 

Temporal 

graphs/sequences 

Efficient in small 

datasets but has trouble 
handling big ones. 

 

Compared to DFS 

methods, it achieves 
faster runtime and 

improved scalability for 

datasets with significant 
noise. 

 

When it comes to performance and 

scalability, BFS-FA shines over 
DFS, particularly on noisy datasets. 

While BFS-FA offers superior 

performance, DFS-HUE is only 
able to deliver average results. 

 

[30] Maze-solving 
algorithms 

Explores one 
road to the 

deepest level 

before backing 
up to consider 

others. 

 

Examines all nodes 
level-by-level to 

analyse all pathways 

 

25x25 maze 
grids with 

random 

obstacles 

Path length, runtime 
 

Grid-based mazes Shorter execution time 
than BFS, longer path. 

 

It takes longer than DFS 
but finds shorter 

pathways. 

 

DFS is fast but may miss the shortest 
path. BFS finds and guarantees the 

shortest path in large mazes but takes 

longer. 
 

[31] Graph Traversal 
Algorithms 

Takes one path 
seriously before 

turning around. 

 

By-level exploration 
of all nodes. 

 

Possible 
unweighted 

graphs 

 

Process duration, 
memory use, path 

length 

 

Static graph 
structures 

Apt for issues calling 
for extensive 

investigation; 

nonetheless, it may fail 

Ensures the quickest 
path in graphs without 

weights; big graphs 

cause memory usage to 
spike. 

The best method for shortest path 
identification is BFS, while DFS is 

preferable for space-constrained 

situations or deep graph exploration 
with multiple branches. 



 

 

to reveal the shortest 
routes. 

 

  

[32] Graph-based Path 

Planning 

Fully explores 

one path before 
returning. 

 

Explores same-level 

nodes before 
 

Obstacle-

simulated 
graphs 

 

Path length, time 

complexity, 
heuristic cost 

Directed, weighted 

graphs 

Good at finding deeper, 

particular paths. 
 

Guarantees shortest path 

but uses more RAM. 
 

DFS is efficient for specialised deep 

searches, while BFS finds the 
shortest path in unweighted graphs 

but takes longer in bigger graphs. 

 

[33] Network Sampling 

Strategies 

Risks local 

biases by deeply 

exploring a 
single path 

under API 

limits. 
 

Level-by-level 

exploration of all 

nodes ensures 
network sampling. 

Simulated 

synthetic graphs 

and APIs 

API cost efficiency, 

sampling precision, 

representativeness 
 

Undirected and 

directed networks 

Works well in deeper 

exploration scenarios 

but is expensive under 
API limits. 

 

Performs reliably but 

uses more memory with 

huge graphs. 
 

BFS covers larger graphs and is 

more representative, while DFS is 

memory-efficient but may miss 
essential network features given API 

limits. 

 

[14] Route Optimization for 

Tourism 

Backtracking 

after thorough 

exploration 
optimises visits 

to more places. 

 

Optimises distance 

by exploring 

neighbouring areas 
first. 

 

Tourist 

attractions in 

Banten Province 
graph 

 

Travel distance, 

tourist sites visited 

 

Weighted graph of 

locations 

Maximises tourist 

destinations but 

increases journey time. 
 

Guarantees shorter travel 

routes but may visit 

fewer places. 
 

DFS improves tourist experiences by 

increasing site visitation. BFS is 

preferable for travellers that value 
shorter, faster travel. 

 

[34] Average Sensitivity in 

Grids 

Not directly 

examined, yet 

recognised for 
extensive 

exploration 

prior to 
retracing steps. 

 

Examines all nodes 

systematically, layer 

by layer; stability in 
response to 

disturbances is 

assessed. 
 

Grids (e.g., 5×5, 

m×n lattices 

Mean sensitivity, 

resilience, stability 

amidst variations 
 

Grid graphs Not detailed for 

sensitivity measures 

Sensitivity demonstrated 

to be O(1) in some 

configurations. 
 

The average sensitivity of BFS on 

grid graphs is considerably lower 

(O(1)) than that in arbitrary graphs 
(Θ). 

 

[35] Swarm Intelligence 
Search 

Delves into a 
singular route 

thoroughly prior 

to retracing 
steps; 

ineffective in 

unfamiliar 
landscapes. 

 

Examines all nodes 
systematically by 

level; ensures the 

shortest path, 
although is 

computationally 

intensive. 
 

Stochastically 
produced graphs 

and authentic 

landscapes 
 

Path length, cost 
(time and agents), 

scalability 

Randomised and 
physical 

topographical 

graphs 
 

Exhibits proficiency in 
deterministic 

environments but 

encounters difficulties 
in unfamiliar contexts 

and demonstrates 

limited scalability. 
 

Ensures optimal 
pathways but results in 

elevated expenses and 

agent utilisation in 
expansive terrains. 

 

BFS is optimal for compact or 
organised terrains where precision 

is essential. DFS encounters 

difficulties in unfamiliar situations 
because of local traps, while it 

remains computationally efficient. 

Swarm methodologies enhance both 
aspects. 

 

[36] Shortest Path in 

Neutrosophic 

Environment 

Not assessed; 

BFS is the 

principal 

emphasis. 

 

Augmented to 

accommodate 

neutrosophic 

numbers denoting 

ambiguous edge 
weights. 

 

Neutrosophic 

graph 

representations 

Path length, 

computational 

efficiency, 

algorithmic stability 

 

Weighted, 

connected graphs 

Not analyzed in this 

study. 

Attains consistent 

outcomes with 95%-

100% precision in 

determining the shortest 

pathways despite 
ambiguity. 

 

BFS demonstrates significant 

efficacy in uncertain contexts 

utilising neutrosophic parameters; 

nonetheless, its computing 

efficiency is contingent upon the 
size and complexity of the graph. 

 

[37] Iterative Depth-First 
Search (IDFS) 

Conducts an in-
depth 

exploration 

within a 
constrained 

Principles of BFS 
are implicitly 

contrasted, although 

they are not the 

Comparison of 
the IPC-FOND 

and NEW-

FOND 
databases 

Time spent 
planning, scope, 

number of solution 

revisions, and 
policy size 

Fully Observable 
Non-Deterministic 

(FOND) graphs 

Obtains strong cyclic 
policies efficiently and 

solves 422 tasks with 

resilient performance 
under limitations. 

Indirect comparison 
reveals that newer 

FOND benchmarks are 

less efficient for BFS-

When compared to planners that are 
influenced by BFS, such as PRP 

and FONDSAT, IDFS offers better 

handling of depth-bounded cyclic 



 

 

framework, 
effectively 

managing non-

deterministic 
states in FOND 

planning. 

 

main emphasis of 
this work. 

 

   based methods like 
FONDSAT. 

 

policies and competitive planning 
time and coverage. 

 

[38] Breadth-First Depth-
Next (BFDN) 

Replicates DFS 
by having 

robots explore 

subtrees and 
eventually find 

their way back 

to the root. 
 

Makes use of BFS 
to distribute robot 

exploration evenly 

by sending them to 
previously 

unexplored edges. 

 

Virtual trees 
with different 

number of 

nodes (n) and 
depth (D) 

 

Phases of 
exploration, 

scalability with k 

agents 
 

Advanced graph 
models and trees 

 

Parts similar to DFS 
guarantee coverage of 

all subtrees but may be 

less efficient when it 
comes to retracing. 

 

The efficient assignment 
of paths in sparse tree 

areas reduces duplication 

in systems with several 
agents. 

 

Integrates BFS and DFS ideas to 
ensure efficient collaborative 

exploration with runtime and 

scalability guarantees for both tree 
depth and breadth. 

 

[39] Graph Sampling for 

Classification 

Embedding 

with a 
combination of 

DFS and BFS 

techniques 
(local/global 

view balancing) 

is achieved 
using node2vec. 

 

Makes use of 

DeepWalk, a 
random walk 

algorithm that 

prioritises wide-area 
discovery of local 

connections. 

 

Synthetic (BA, 

WS) and real-
world datasets 

Precision in 

classification, 
capacity for feature 

extraction 

 

Directed and 

weighted graphs 

Decently finds depth-

centric characteristics 
in networks that don't 

require scaling. 

 

Does a great job of 

identifying small-world 
network clustering and 

community traits 

 

Both BFS and DFS function well 

together in convolutional neural 
networks to achieve high 

classification accuracy, and they 

balance exploration for robust 
network representation. 

 

[40] Graph Traversal 

Algorithms 

Investigates one 

avenue 

thoroughly 

before reversing 
course to 

investigate 

other 
possibilities 

. 

Investigates each 

node on the surface 

before delving 

further. 
 

Network 

datasets based 

on theory and 

practice 
 

Coverage of paths, 

processing time, 

and memory 

consumption 
 

Directed and 

undirected graphs 

Apt for acyclic graph 

cycle detection and 

topological sorting 

 

In unweighted graphs, it 

guarantees full 

exploration and finds the 

shortest path. 
 

In contrast to BFS's robustness in 

guaranteeing thorough graph 

exploration and shortest paths, DFS 

is space-efficient and excels at 
problem-specific tasks. 

 

 



 

 

 

 

 

9. Conclusion 

This paper offers a thorough comparative examination of Depth-First Search (DFS) and Breadth-First 

Search (BFS) algorithms, highlighting their theoretical foundations, performance metrics, and 

applications in various complex network contexts. The investigation demonstrated that BFS typically 

surpasses DFS in tasks necessitating shortest path identification and thorough coverage, rendering it 

especially appropriate for unweighted graphs and network configurations where extensive exploration is 

critical. In contrast, DFS exhibited benefits in situations necessitating extensive investigation with 

minimal memory usage, notably beneficial for decision trees, hierarchical datasets, and issues with 

constrained depth.  

The comparative analysis of current studies underscored the significance of choosing traversal algorithms 

according to the dataset type, network architecture, and performance criteria. BFS is more efficient in 

grid-based and structured graphs, whereas DFS excels in scenarios where memory efficiency is 

paramount. Moreover, hybrid methodologies such as Breadth-First Depth-Next (BFDN) and Pruned-BFS 

have demonstrated the capacity to integrate the advantages of both methods, hence improving 

performance and scalability in certain applications such as collaborative exploration and network flow 

optimisation.  

This paper emphasises that the selection between DFS and BFS should be determined by the particular 

requirements of the problem domain, taking into account issues such as scalability, optimality, and 

resource limitations. Future study may investigate additional enhancements of hybrid methodologies, 

broadening their applicability to dynamic and extensive complex networks while persistently assessing 

their efficacy in relation to emerging graph traversal issues.  
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