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Abstract 
The traveling salesman problem (TSP) is a fundamental combinatorial optimization problem with 
applications in resource management, logistics, and communications. In order to address TSP and its 
differences, this paper discusses developments in Ant Colony Optimization (ACO), a biologically 
inspired algorithm. Inspired by the foraging activity of ants, ACO's decentralized and recursive 
methodology has proven successful in solving difficult routing problems. ACO's scalability, convergence 
speed, and solution quality have been greatly enhanced over time through innovations including 
hybridization with algorithms such as Firefly, genetic algorithms, parallel computing frameworks, and 
adaptation mechanisms. These developments have given the ACO the flexibility and efficiency to handle 
dynamic situations, such as real-time vehicle guidance and underwater navigation. Despite its progress, 
issues remain such as scalability in resource-limited contexts, processing overhead, and reliance on 
parameter modification. This work summarizes current developments in ACO, noting how revolutionary 
the TSP solution is, pointing out its drawbacks, and suggesting areas for further study. Leveraging emerging 
technologies like machine learning and quantum computing, ACO has huge potential to progressively address 
challenging real-world problems. This review provides a comprehensive framework for developing uses 
of ACOs and reaffirms their status as a key component of improvement research. 

Keywords- Traveling Salesman Problem (TSP), Ant Colony Optimization (ACO), Metaheuristic Algorithms, 
Dynamic Routing, Hybrid Optimization Techniques, Parallel Computing in Optimization, Real-World Applications of 
ACO. 

Introduction 
In combinatorial optimization, the Traveling Salesman Problem (TSP) is one of the most difficult and well-
researched problems. It is an NP-hard problem that finds the fastest way for a travel salesman to a set of 
cities precisely once and then back to the starting point. The practical importance of this topic extends to 
industries where efficient routing and allocation of resources is critical, including manufacturing, 
bioinformatics, logistics, and telecommunications [1]. Although TSP is a straightforward formula, its 
computational complexity requires the application of heuristics and methods to find near-optimal 
solutions. Ant colony optimization (ACO) is one such technique that has become very popular [2], [3]. 
Developed by  [1]in the 1990s, ACO is based on the foraging behavior of ants, which use pheromone 
trails to collectively explore and optimize routes. This biologically inspired method has shown great 
potential in tackling a range of optimization problems, especially TSP and its variations. However, 
traditional ACOs suffer from some drawbacks such as slow convergence and weakness in the face of local 
optimal conditions. The pheromone mutation and reconfiguration techniques pioneered by [4],[5] were 
among the early developments that effectively mitigated some of these problems. Hybrid strategies have 
been more effective tools for improving ACO performance in recent years. 



 
For example in [6] combined ACO with the Firefly algorithm, achieving higher convergence time and 
solution quality, while [7] used ACO with mutation techniques to optimize DNA sequencing workloads. 
ACO can now efficiently handle large-scale problems thanks to parallelism, which has increased its 
application. Studies by [8],[2]have shown how parallel ACO can be used in real-world applications 
because it reduces computation time without sacrificing solution accuracy. Adaptive mechanisms have 
improved the flexibility of ACO in dynamic and constrained situations. Examples of such mechanisms are 
the dynamic parameter tuning frameworks proposed by [9],[10]. These advances have demonstrated that 
ACO is a highly flexible algorithm that can handle the challenges of truck routing, logistics, and other 
real-world applications [11],[12]. Even with these advances, some limitations still exist. According to 
[13],[14], hybrid models often lead to increased computational cost, and parameter tuning remains a 
major hurdle to maximizing ACO performance. Future studies should address the scalability and 
complexity of TSP by leveraging quantum computing, machine learning-based parameter automation, and 
lightweight hybrid frameworks [15],[16],[17]. Addressing these issues would help ACO maintain its 
position as a core component of optimization research. This review study examines the evolution of ACO 
and its applications to TSP, identifies its limitations, and outlines possible avenues for innovation. By 
combining the findings of previous research, this work helps to fill knowledge gaps and encourage further 
progress in this important area of improvement studies. 

Theoretical Framework 

The Traveling Salesman Problem (TSP)It is a well-studied reference problem in 
combinatorial optimization due to its practical importance and computational difficulty. The goal is to 
determine the quickest way for a seller to travel to a group of cities at once and then return to the starting 
location.The complexity of solving this seemingly simple task increases with the number of cities, making 
it NP-hard. TSP is used in a variety of fields where efficient resource allocation and direction is essential, 
including bioinformatics, robotics, telecommunications, and logistics [1]. Ant colony optimization (ACO) 
has been a prominent approach among heuristic and metaheuristic approaches due to the inability of 
traditional methods to scale well to large problem sizes [4],[13] as shown in Figures 1 and 2. 

 

 

 

Ant Colony Optimization (ACO) 

 

 

Ant Colony Optimization (ACO),It's a biologically inspired metaheuristic algorithm that mimics the way 
ants eat in the wild. In their natural environment, ants use pheromones—chemicals that signal routes 
between their colony and food sources—for indirect communication. As more ants use shorter, more 

Figure 1: The Traveling Salesman Problem 
(TSP) is represented on a map with red 
pathways signifying the shortest path and 
nodes representing cities. 



 
effective pheromone trails, it gradually strengthens the colony and leads it in the direction of the best 
solutions. Using artificial ants to explore the solution space and using pheromone trails and heuristic 
information to iteratively build high-quality solutions, ACO computationally simulates this process [1], as 
shown in Figure 3. 

 

 

Figure 3: The Five ACOs Discovered Two Ideal Routes[13]. 

In the ACO framework, artificial ants move around a graphical representation of the problem space, 
choosing paths in a probabilistic manner by combining problem-specific heuristic values and pheromone 
intensity. Three basic elements are the foundation of an ACO: 

Pheromone Trails 

The desirability of paths in the solution space is represented by pheromone paths. On their travels, 
artificial ants leave behind virtual pheromones, the amount of which often correlates with the titer of the 
treatment detected. Pheromones gradually dissipate, which reduces their effectiveness and promotes 
research into various methods. This evaporation maintains the diversity of the search process and prevents 
the algorithm from stumbling upon less-than-optimal solutions. Improved pheromone updating 
mechanisms have been used in studies such as those by [12] and [4],[5]to improve solution convergence 
and prevent premature stagnation. [7]used mutational techniques to improve pheromone updates, resulting 
in higher results in domain-specific applications such as DNA sequencing. 

Heuristic Information 



 
Ants are given more guidance when choosing a path through heuristic knowledge. Shorter distances are 
preferred in the context of TSP, as indicative values are usually determined from distances between cities. 
Ants are able to balance local and global exploration efficiently using this information along with 
pheromone levels to calculate metamorphosis probabilities. According to research by [9]and [10], 
adaptive heuristic weight ad 

justments are essential to enhance algorithm performance in dynamic problem contexts. 

Exploration vs. Exploitation 

An ACO's ability to balance exploitation (improving existing high-quality solutions) and exploration 
(finding new solutions) is a critical element. Pheromone evaporation rates and the effect of signal 
information are two examples of parameters that regulate this balance. While over-exploration can slow 
the convergence process, over-exploitation can lead to premature convergence on poor solutions. 
According to [2], improving these factors can significantly improve the ability of ACOs to solve complex 
optimization problems. In order to improve conflicting goals in routing issues, [14]created a multi-
objective ACO framework that adaptively modified exploration and exploitation. 

Applications of ACO in Optimization 

ACO is very good at tackling complex optimization problems, especially TSP and its variations, because 
of its decentralized structure, flexibility, and iterative optimization. Studies by [2] and [8] have 
demonstrated the effectiveness and scalability of ACO in practical applications such as supply chain 
management and logistics. [13] used adaptive exploration and ACO techniques to balance path stability 
and profits in a team routing problem (TOP). The utility of the algorithm in guiding unmanned 
underwater vehicles was demonstrated by[14], who addressed issues including resource allocation and 
dynamic constraints. 

By effectively solving combinatorial optimization problems, Ant Colony Optimization (ACO) has proven 
to be a flexible technology with a wide range of commercial applications. Here are some important areas 
where ACO has shown significant impact:  1.Supply Chain Management and Logistics: ACO has been 
widely used to improve inventory control, warehouse operations, and truck routing. For example, ACO-
based solutions enable efficient planning of delivery routes in last-mile logistics, reducing delivery times 
and travel costs.                                                        2.Robotics and Path Planning: ACO is used in robotics 
to find the best paths for autonomous robots to follow when navigating complex situations. It manages 
dynamic path changes to make real-time decisions in unmanned aerial vehicles and warehouse robots 
efficiently.                                                             3.Communications: In wireless and mobile networks in 
particular, ACO is used to optimize network routing. By identifying the fastest paths and distributing the 
load evenly across the network, it ensures efficient data transmission.                                                                                   
4.Smart city applications include scheduling public transportation, optimizing traffic flow, and allocating 
resources efficiently to promote sustainable urban growth.                                                                                         
5.Medical Imaging and Healthcare: ACO is used for tasks including image segmentation to identify 
diseases, scheduling surgeries, and improving patient flow in hospitals.                                                                     
These practical uses highlight the versatility and efficiency of ACO in tackling challenging optimization 
problems across a range of industries. Its practical value is demonstrated by its rapid delivery of near-
optimal solutions, even for large-scale problems. 

 

Advancements in ACO 



 
By incorporating cutting-edge computing methods and hybridizing with other algorithms, ACO has seen 
tremendous development over time. ACO was combined with the Firefly algorithm by [6] to improve 
convergence rates and adjust parameters dynamically. By combining ACO with genetic algorithms,[18] 
increased the power and diversity of their solutions. Applications of parallel computing, including those 
introduced by [8], have greatly enhanced the capabilities of ACO and made it possible to compute large-
scale problems more quickly. ACO has become a mainstay in optimization research by taking advantage 
of these advances, successfully dealing with both theoretical problems and real-world applications. Its 
continued progress highlights its adaptability and importance in resolving a wide range of consensual and 
practical issues. 

 

Metaheuristic Algorithms in TSP 
Because metaheuristic algorithms can effectively explore and exploit enormous, complicated solution 
spaces, they have become essential tools for solving the Traveling Salesman Problem (TSP). 
Metaheuristics use probabilistic techniques to iteratively improve solutions, in contrast to deterministic 
algorithms that depend on exhaustive search or preset rules. Its adaptability to various problem constraints 
and its ability to escape local optima make it particularly useful for NP-hard problems such as TSP [1]. 

Key Features of Metaheuristic Algorithms 

The power, scalability and adaptability of meta-algorithms define it. To traverse the solution space, they 
use strategies including population-based search, heuristic-based routing, and random selection. These 
properties allow metaphysics to achieve a balance between exploitation (intensifying searches in 
promising locations) and exploration (searching in new areas). Some well-known meta-methods of TSP 
annealing (SA), particle swarm optimization (PSO), genetic algorithms (GA), and ant colony optimization 
(ACO) are simulated [2], [9]. 

Ant Colony Optimization (ACO) as a Metaheuristic 

An important metaphysical factor to solve the TSP problem is ACO, which was inspired by the feeding 
habits of ants. Large solution spaces can be explored efficiently thanks to the decentralized search process 
and pheromone-based learning mechanism. ACO also has some disadvantages, such as the possibility of 
early convergence and its sensitivity to changes in parameters. To address these issues, researchers have 
created hybrid algorithms that incorporate the benefits of multiple metaheuristics techniques [7],[13]. 

Hybridization with Other Metaheuristics 

By introducing complementary technologies, hybrid MTs improve ACO performance. The ACO 
algorithm and Firefly (FA) were combined into a hybrid algorithm by [6], where the FA continuously 
adjusted ACO parameters to avoid stagnation and accelerate convergence. In large-scale TSP cases, this 
integration reduced computation time and improved solution quality. Similar to this, [7] improved search 
diversity and achieved better results in DNA sequencing tasks designed by TSP by incorporating 
mutational techniques into the ACO pheromone updating process. The drawbacks of ACO have also been 
successfully addressed by combining it with genetic algorithms (GA). [18] proposed a hybrid strategy in 
which refined solutions were optimized by ACO and the solution space was diversified using crossover 
and mutation operators in GA. Convergence rates and solution power are enhanced by this synergy, 
especially in dynamic TSP settings. To improve parameter tuning and adapt to changing problem 
constraints, Particle Swarm Optimization (PSO) has also been used with ACO [17],[12]. 

Advantages of Hybrid Metaheuristics 



 
There are various advantages to metaheuristic hybridization: 

1. Increased convergence speed: The number of iterations needed to produce high-quality solutions is 
reduced when ACO is combined with fast convergence algorithms such as PSO [14]. 

2.  Better solution quality: To avoid local optimization and investigate different regions of the 
solution space, hybrid algorithms take advantage of complementary [6]. 

3.  Robustness in dynamic environments: Adaptive approaches allow hybrid algorithms to continue 
working even when faced with various constraints, including changing resource availability or 
flight times [12],[11]. 

 

 

Applications of Hybrid Metaheuristics 

Several real-world applications of TSP have demonstrated the effectiveness of hybrid methanes. For 
example, [13] balanced path stability and profit maximization using a hybrid ACO-FA algorithm to solve 
the team routing problem (TOP). [14] Optimizing flight time and resource allocation in unmanned 
underwater vehicle routing using a multi-objective hybrid ACO framework. These experiments 
demonstrate how hybrid metaheuristics can deal with a variety of challenging optimization problems. 

 

 

Optimization Techniques for TSP 
The performance of Ant Colony Optimization (ACO) in solving the Traveling Salesman Problem (TSP) 
has improved significantly over time through advances in optimization techniques. These developments 
address fundamental issues including preventing premature convergence, enhancing the level of solutions, 
and dynamically adapting to problem boundaries. From simple problems to complex real-world 
applications, ACO's cutting-edge capabilities have allowed it to successfully handle a wide range of TSP 
variables[2]. 

 



 
Figure 4: How ants locate food in the wild [2]. 

 

Pheromone-Based Strategies 

The key to the effectiveness of an ACO is the administration of pheromones. Artificial ants leave behind 
pheromone trails that guide further search iterations, encouraging the search for better solutions while 
discouraging the pursuit of less useful methods. However, fixed pheromone updating techniques may 
cause suboptimal solutions to converge too early. Improved pheromone-based tactics have been created to 
solve this problem: 

 Mutation-enhanced pheromone updates, introduced by[4], provide more diversity in the search and 
stasis-avoidance process. The algorithm can avoid local optima and search for alternative routes by 
regularly changing pheromone levels. 
 

 In [8] suggested resetting pheromone levels at regular intervals while conducting research. This 
method preserves ACO's exploratory capabilities over the long term by preventing the algorithm from 
being too biased toward a single solution path. 

 
 Quality-based pheromone deposition: In order to ensure that high-performance solutions receive 

further enhancement, [7] Tailor-made deposition of pheromones in proportion to solution quality. The 
ability of the algorithm to recognize the best routes and use them efficiently is enhanced by this 
optimization. 

 

 

Local Search Methods 

ACO is frequently used in conjunction with local search strategies to improve results within the 
communities of a given search space. These techniques work on the principle of incremental 
improvement, which involves making small modifications to an already existing solution to increase its 
quality. The ability of ACO to converge to optimal or near-optimal solutions is improved by incorporating 
local search: 

 2-opt and 3-opt heuristics:[19] showed how to optimize trajectories in TSP situations by incorporating 
3-opt moves into ACO. This method systematically removes crossings from the route, increasing the 
overall length of the trip. 
 

 Neighborhood exploration: [12] used adaptive neighborhood search strategies in addition to ACO, 
which allowed the algorithm to investigate alternative solutions that were close to the optimal solution 
at the moment. This integration improved convergence rates while requiring less computing power. 



 

 

Figure 5:Height in a one-dimensional space scene is where the objective function exists. 

Adaptive Parameter Tuning 

Adaptability is one of the main advantages of an ACO, and new advances in adaptive parameter tuning 
have made it even more flexible. The performance of conventional ACO may be limited in dynamic 
problem scenarios due to its reliance on fixed factors, such as fixed pheromone evaporation rates and 
heuristic weights. Adaptive parameter tuning effectively adjusts these parameters according to the 
problem condition and algorithm performance: 

• Dynamic evaporation rates:[9] presented a system that adjusts pheromone evaporation rates according 
to the solution quality. Early iterations use lower evaporation rates to enhance exploration, while later 
iterations use higher rates to focus on exploiting interesting paths. 

Heuristic Weight Adjustment: [10]Proposed heuristic weighting methods that adjust the relative 
importance of heuristic information according to mission parameters, such as time limits and city density. 
This ensures that the method will continue to work well in a variety of TSP conditions. 

 

Hybrid Models in ACO 

Overcoming the limitations has become largely possible thanks to hybrid models that combine ACO with 
free algorithms. The efficiency of combining ACO with the Firefly algorithm was demonstrated by [6], 
where the FA actively adjusts the ACO settings to avoid local optimum stagnation. ACO was combined 
with genetic algorithms by [18] to enhance exploration capabilities and ensure a variety of solution 
methods. In order to improve pheromone pathways for applications such as DNA sequencing, [7] 
Integrating mutation techniques into ACO. In addition to improving the quality of solutions, these hybrid 
models increase the scalability of ACO, qualifying it to address optimization problems with large 
constraints and size. 

Dynamic Routing Applications 

Important issues arise from dynamic routing problems, when environmental factors such as traffic, time, 
and resource availability change over time. Due to its versatility, an ACO is the perfect choice for these 



 
issues.[13]presented strategies to balance path stability and revenue by applying ACO to the team routing 
problem (TOP). A non-supervised sorting ACO (NSMOACO) was created by [14] in a similar way to 
maximize flight time and resource utilization in guiding unmanned underwater vehicles. These 
experiments demonstrate how well ACO can handle real-world dynamic routing problems. 

 

 

Figure 6: Ant colony optimization (ACO) 

According to the general rule ߩρ, the expected consumer availability difficulty is the initial circumstance 
(initial state), where only six of fifteen clients are available for the service. 

Parallel Computing in ACO 

Ant colony optimization (ACO) has been transformed by parallel computing, which greatly increases its 
scalability and efficiency. When used for large-scale problems, traditional ACO algorithms often face 
computational difficulties due to their stringent pheromone updating procedures and the requirement to 
evaluate a large number of possible solutions. Researchers have overcome these limitations through the 
use of parallel computing, which allows ACO to solve more complex and large-scale problems in an 
acceptable amount of time. ACO is an effective tool for industrial-scale optimization problems because of 
its incorporation of parallelism, which not only accelerates convergence but also maintains or improves 
the quality of the solution. 

The Need for Parallelism in ACO 

Particularly for large-scale cases of the Traveling Salesman Problem (TSP) and its variations, the 
computing complexity of ACO grows exponentially with the problem size. This intricacy results from: 

1. Iterative solution construction: Each artificial ant builds an exhaustive solution in each iteration, 
which requires a large amount of computing power. 

2. Pheromone updates: It takes a lot of resources to update the pheromone trails based on all the 
solutions generated. 



 
3. Exploration of the search space: Since there are many possible paths in large-scale problems, 
exhaustive exploration is not practical. 

Applications of Parallel ACO 

Several industrial-scale optimization challenges have seen the successful application of parallel 
ACO: 

1. Supply chain management and logistics 

In order to optimize delivery routes in large-scale logistics networks taking into account time windows 
and vehicle capacities, [2] used parallel ACO. This technology was able to easily handle datasets 
containing thousands of nodes thanks to the parallel framework, which reduced the overall computing 
time. 

2. Design of communications networks 

Parallel ACO has been used by [8]in the design of communications networks, where capacity utilization 
and latency minimization are crucial. Evaluation of potential network configurations was accelerated 
through parallel execution, producing optimal designs in a fraction of the time needed for classic ACO. 

3. Dynamic resource allocation 

[13]provided an example of how parallel ACO can be used in situations involving dynamic resource 
allocation, such as assigning real-time tasks to cloud servers. The algorithm actively adjusts to changing 
resource availability and task priorities by balancing solution production and pheromone updates. 

The advantages of parallel ACO 
 
ACO's incorporation of parallel computing provides several important benefits. 
 

1. Faster convergence: ACO can converge to optimal solutions more quickly thanks to parallel 
execution, which significantly reduces the time needed for each iteration[8]. 

2.  Scalability: ACO is suitable for industrial-level challenges where parallel frameworks can manage 
large data sets and complex problem instances [2]. 

3.  Improved exploration: Parallel ACO maintains search diversity by dividing the computation 
among many processors, reducing the possibility of premature convergence [13]. 

 
Literature Review 
Marco Dorigo, In the early 1990s, Marco Dorigo invented Ant Colony Optimization (ACO) as part of his doctoral research. It 
is generally accepted that Dorigo's 1992 dissertation and subsequent work introduced ACO. Chiana is not credited with the 
original development of ACO, although she may have helped create a modified version of it.. 

Sciannaet al.,[1] A modified version of the ant colony optimization (ACO) algorithm, AddACO, is 
presented in the study to overcome the shortcomings of traditional ACO methods for the traveling salesman 
problem (TSP). The three algorithmic variations involving pheromone trajectories, unpredictability, and inertia, as 
well as the linear convex composition method for decision making, are important innovations. The AddACO 
variations outperform classical ACO systems in terms of efficiency and heuristic capabilities, as experimental 
results on medium- and large-scale TSP examples reveal. It also increases the solution quality, computation time, 
and convergence speed. 



 
Baydogmus et al,[2] This study focuses on using parallel ACOs to deal with the increasing 

computational complexity of TSPs as the number of cities increases. While maintaining the quality of the 
solution, the parallelization technique significantly reduces the execution time. By using parallel 
processing, Baydogmus showed that while more colonies speed up the optimization process, they also 
increase the time complexity. Parallel ACOs can be very effective at solving large-scale TSPs, according 
to the paper, making them suitable for practical uses such as transportation and logistics. 

Dou et al., [3] proposed to extend the multiple travel vendor problem with visitation constraints 
(VCMTSP) to include ACOs. This strategy complicates the problem by taking into account vendor 
accessibility constraints. To solve the multiple travel vendor problem with hub cities, Chen (2024) 
modified the ant colony system (ACS) so that many vendors visit the cities with the highest demand. This 
approach balances the length of each agent’s route while minimizing travel cost. Both studies demonstrate 
how ACOs can adapt to complex routing situations with additional constraints. 

Ratanavilisagul et al., [4]In this paper, a mutation technique applied to pheromones is used to 
improve the ant colony optimization (ACO) for the traveling salesman problem (TSP). The proposed 
method increases the search diversity without requiring additional evaluation cost by introducing 
mutation whenever the ant colony encounters a local best. Twenty-two maps from the TSPLIB library 
were used to evaluate the effectiveness of this modified algorithm, which performed better than previous 
mutation-based ACO methods and traditional ACO.  

Ratanavilisagul et al.,  [5] In order to overcome the early stagnation of the local optimum, this 
study builds on previous work by introducing an improved ACO algorithm that combines binary 
heuristics and pheromone re-initialization. When ants were stuck, the algorithm used the re-initialized 
pheromones, which greatly enhanced the heuristic capabilities. The method outperformed previous 
versions of ACO, such as multi-colony techniques, in terms of solution quality when tested on twenty-
three TSPLIB maps. It is a powerful choice for difficult optimization problems such as TSP because of 
the study’s focus on finding a balance between computational feasibility and solution diversity. 

Xu et al.,[6] This paper presents a hybrid optimization technique that addresses the Traveling 
Salesman Problem (TSP) by combining Firefly (FA) and Ant Colony Optimization (ACO). By optimizing 
the initial parameters of ACO, FA increases the convergence rate and reduces the probability of 
stagnation in the local optimum. According to experimental data, the hybrid algorithm outperforms 
traditional ACO techniques in terms of path optimization and computation time. The method is proven to 
be adaptable to complex optimization challenges by dynamically changing the problem size. This study 
demonstrates the utility of hybrid metaheuristics in enhancing the flexibility and effectiveness of ACO. 

Mandal et al.,[7] Using the Traveling Salesman Problem (TSP) model, this work proposed an 
improved Ant Colony Optimization (ACO) algorithm for DNA sequencing tasks. To increase the answer 
quality and simplify the search process, the method used advanced pheromone updating algorithms and 
mutation procedures. Experimental results demonstrated the algorithm’s ability to surpass traditional 
variations of the TSP in pathfinding accuracy and computational efficiency. By optimizing the unique 
constraints present in DNA sequencing, the technique demonstrated exceptional effectiveness in handling 
complex routing situations.  

Fejzagićet al., [8] We investigated the use of parallel ACO to solve large TSP cases in an attempt 
to reduce computation time. Using the Task Parallel Library (TPL), the study found that parallel 
implementation improves the time efficiency of the algorithm while maintaining the quality of the answer. 
Since standard algorithms are too slow for large-scale TSP problems, the results demonstrate the 
suitability of parallel ACO. This study demonstrates the importance of using parallel computing to solve 
complex combinatorial optimization problems. 



 
Zeng et al., [9] This study presented an improved ACO algorithm using dynamic heuristics to 

solve the Traveling Salesman Problem (TSP) using replenishment arcs. The model optimized the 
utilization of people and equipment in the transportation sector and included cumulative travel limits. The 
results validated the application of ACO to dynamic variations of TSP by showing better performance in 
determining the shortest paths under complex constraints. 

Xu Li et al., [10]proposed the average absolute eigenvalue of the pheromone matrix (AAEPM) as 
a metric for assessing closeness. By analyzing the eigenvalues of the pheromone matrix, AAEPM 
provided a numerical evaluation of the convergence of the algorithm. The index demonstrated flexibility 
across different issue metrics and parameter configurations, providing a new viewpoint for tuning and 
tracking ACO performance. 

Houssein et al., [11]Proposed a strategy to narrow the solution space in order to solve the multiple 
traveling salesman problem (MTSP). Efficiency was given top priority in this method with the 
distribution of vendors to cities and scheduling of their trips. Its greater performance in reducing trip 
expenses and processing time has been proven through comparative trials, demonstrating its usefulness 
for real-world uses including resource allocation and logistics. 

Sheng et al., [12]proposed SOS-MMAS, a hybrid approach that optimizes solutions to the Traveling 
Salesman Problem (TSP) by combining the Max-Min Ant System (MMAS) with Search for Symbiotic Organisms 
(SOS). This technology optimizes important elements such as guiding weight and pheromone effect to increase 
proximity and flexibility.Experimental results show that SOS-MMAS outperforms SOS-ACO and standard ACO in 
terms of speed, flexibility, and solution quality, especially in large-scale TSP scenarios. With faster iterations and 
lower average errors, it has proven effective in solving real-world routing and scheduling problems. 

Wu et al., [13] Ant system (AS) and ant colony system (ACS) are two of the five classical ant 
colony optimization (ACO) algorithms modified in this work to answer the team routing problem in TOP. 
The modifications sought to maximize the total profits while distributing rewards along the routes. To 
optimize the solutions, an innovative ant team selection process and an iterative optimization process 
were implemented. The elite ant system (EAS) showed superior stability in minimizing the profit 
disparity between routes, while the ACS was the best at maximizing profits, according to the experimental 
results. 

Yan et al., [14] The non-dominated multi-objective ant colony optimization (NSMOACO) 
algorithm is presented in this study to solve the path planning problem of unmanned underwater vehicles 
(UUV) in target search missions. The program uses tangent flight and adaptive mechanisms to 
dynamically adjust parameters in order to achieve two competing goals: search gain and flight duration. 
The global search capabilities of the algorithm are improved and premature convergence is avoided by 
combining non-dominated sorting and a novel pheromone updating technique. Comparative tests showed 
that NSMOACO performed better in terms of convergence speed and solution quality than other multi-
objective optimization methods, including traditional ACO. This study highlighted the usefulness of 
NSMOACO in solving multi-objective problems in challenging real-world situations. 

Prado et al., [15] Variations of Ant Colony Optimization (ACO) in dynamic optimization contexts 
were evaluated in this study, with a particular focus on vehicle routing issues under changing conditions. 
By introducing criteria to evaluate the adaptability of the algorithm, the study demonstrated how well 
ACO can adapt to changes in constraints and objectives in real time. The proposed changes increased the 
efficiency of decision-making in dynamic situations, allowing ACO to successfully deal with changing 
demands. Experimental results showed improved performance compared to existing methods in terms of 
computational speed and solution quality. For real-world applications such as supply chain and logistics 
optimization, this work underscores the importance of dynamic adaptation in ACO. 



 
Tang et al.,  [16] This paper presents an Ant Colony System (ACS)-based approach to improve 

logistics scheduling, focusing on the Multi-Trip Seller Problem (MTSP) in hub cities. In order to 
minimize costs and fairly distribute routes among sellers, the proposed ACS-MTSP algorithm takes into 
account hub cities with different business needs. Experimental results demonstrate how well it can 
balance workload distribution and route duration. 

Kothari et al. [17] A comprehensive analysis of heuristic algorithms, such as ACO, for large-scale 
TSP examples is performed in this paper. The results highlight the competitive performance of ACO in 
finding the balance between computation time and solution quality. The paper also emphasizes how 
hybrid algorithms, which combine ACO with methods such as particle swarm optimization and genetic 
algorithms, can be used to solve scaling and optimization problems in TSP. 

Thongpiem et al., [18] This study proposed a hybrid approach to improve the quality of TSP 
solutions by integrating ACO and genetic algorithms. Genetic crossover and pheromone re-initialization 
were used to increase search diversity and prevent local optimal results. The hybrid algorithm consistently 
outperformed traditional ACO algorithms in tests on 23 TSPLIB datasets. This strategy confirmed the 
advantages of integrating heuristics for complex optimization problems. The study demonstrated the 
efficiency of the hybrid approach in producing better results. 

Han et al. [19]The Color Mobile Salesman Problem (CTSP), a variant of TSP, was solved using an 
improved ACO. The study improved the algorithm’s ability to find optimal solutions in large-scale CTSP 
situations by enhancing pheromone updating through the use of the ITÔ process. According to the 
experimental data, the improved ACO performed better than other algorithms in terms of computational 
speed and solution quality. Task allocation is a crucial component of real-world problems such as 
intelligent transportation systems and multi-task collaboration, where this approach is particularly useful. 

 

Cheong et al., [20] The study evaluated the effectiveness of ACO using algorithms such as 
Kohonen and Christofides and investigated variations in ACO parameters for solving TSP. The study 
showed how parameter adjustments affected optimization results across different variables including 
pheromone levels, colony size, and evaporation rates. The results confirmed the strength of ACO as a 
heuristic approach and showed it to be competitive in small to medium-sized TSP situations. 

De Oliveira et al., [21] In this paper, ant colony optimization (ACO) techniques are investigated 
for the traveling salesman problem (TSP) with dynamic demands. The P-ACO algorithm, which modifies 
the pheromone memory to solve dynamic problems, is presented. The importance of local search and 
parameter settings is highlighted by comparing P-ACO with the max-min ant system (MMAS). The 
results show that MMAS performs better when using local search, while P-ACO performs better in 
dynamic conditions without it. The study also emphasizes the importance of adaptive configurations to 
improve ACO algorithms in dynamic combinatorial optimization problems. 

Dewantoro et al., [22] The hybrid ACO-TS technique was developed in this study by combining 
ant colony optimization (ACO) and taboo search (TS) to solve the TSP problem. By enhancing path 
optimization and accelerating convergence, the hybrid approach enhanced the performance of ACO. 
Experimental results showed that the ACO-TS algorithm outperforms the standalone ACO, especially 
when it comes to avoiding local optima and reducing computation time. 

Duan et al., [23]This study presented a new approach to solving the TSP problem using a probe 
machine model, which accelerates problem solving using DNA-based computing techniques. When it 
comes to handling small-sized TSP portfolios, the PROBE4TSP solution outperforms traditional 



 
techniques with significant gains. The work showed how non-Turing computational models can be used 
to solve NP-hard problems such as TSP. 

 

Ekmekciet al., [24]The study proposed a new form of ACO called Ant Colony Optimization 
Memorizing Better Solutions (ACO-MBS), which optimizes pheromone updates based on solution costs. 
ACO-MBS enhanced exploration and exploitation capabilities by including memory-based methods. 
Comparative research revealed that ACO-MBS performed better on standard TSP problems than regular 
ACO versions, obtaining higher convergence rates and higher quality solutions. 

Fei et al., [25] ACO was extended to include multi-objective optimization with a focus on vehicle 
routing that balances fuel usage and trip duration. ACO and a dynamic approach were used to increase 
computational efficiency and solution quality. When compared to other heuristic algorithms, the method 
produced competitive results. Sheng (2022) also used ACO to address multi-objective vehicle routing 
problems with dynamic constraints, such as traffic conditions. In real-world logistics situations, the 
method demonstrated greater flexibility and adaptability. 

Latha et al. [26] In this paper, the application of Ant Colony Optimization (ACO) to routing 
protocols for Traveling Salesman Problem (TSP) applications in Wireless Body Area Networks (WBAN) 
is investigated. A novel variation of ACO is proposed in combination with energy and distance-based 
TOPSIS to reduce packet transmission delays. The end-to-end delays are significantly reduced through 
the comparative study, indicating the potential of the algorithm in emergency health monitoring 
situations. 

Liu et al.,[27]The mucus mold ant colony fusion algorithm (SMACFA) is presented, which 
improves the ant colony optimization (ACO) for TSP solutions. The combination of the mucus mold 
algorithm (SMA) and ACO in the model shortens the convergence time and prevents the algorithm from 
reaching the local best practices. When the experimental results are compared with the original ACO 
algorithm, the path length is improved by 1.42%, and the convergence time is reduced by 73.55%. In 
addition, compared with other optimization algorithms, the fusion performance is better. Large TSP cases 
benefit from the increased computational efficiency of this hybrid approach and the solution quality. 

Meng et al., [28] The Generalized Travel Salesman Problem (GTSP) was investigated using a 
modified ACO technique. In order to enhance the path length optimization and maintain the job balance 
among multiple travel agents, this improved approach incorporates a binary choice algorithm. According 
to the study, the modified ACO outperforms the traditional techniques in terms of convergence and 
stability. The proposed method showed better results in a variety of conditions and was particularly 
successful in distributing tasks among agents in a balanced manner. For this reason, the method is useful 
for practical applications such as task scheduling and vehicle routing. 

Murugananthan et al., [29]The main objective of this study was to improve the Ant Colony 
Optimization (ACO) algorithm to handle large-scale traveling retailer problems. The incorporation of 
genetic algorithms to balance exploration and exploitation, as well as adaptive pheromone updates, were 
important developments. These changes significantly increased the convergence rate of ACO and the 
solution quality. On benchmark datasets, experimental results showed that the algorithm outperformed 
traditional ACO algorithms in solving difficult optimization problems. For large datasets, the study 
highlighted the scalability and adaptability of the hybrid ACO approach. 

Qian et al., [30]This study is designed as a kind of traveling salesman problem, and a multi-
objective ant colony system (MOACS) is proposed to handle multi-agent pick-up and delivery tasks. The 
algorithm uses dual pheromone sets to simultaneously maximize competing objectives, such as task 



 
completion speed and workload balancing. The well-balanced exploration and exploitation approach and 
creative pheromone updating rules improve the flexibility of the algorithm. According to the experimental 
results, MOACS produces better solution quality than traditional ACO and other heuristic techniques. The 
study demonstrates how multi-objective optimization can be used to address challenging logistics 
problems in the real world. 

Sharma et al., [31] This study aims to solve dynamic vehicle routing problems using real-time 
ACO. By using real-time traffic data to dynamically update pheromone levels, the software enables faster 
and more accurate routing decisions. The ACO is modified to account for time-dependent travel expenses 
in multi-objective vehicle routing, following a similar technique was introduced this authorFor sectors 
such as supply chain management and logistics that rely on real-time optimization, these developments 
are particularly useful. Both studies show that in dynamic contexts, real-time ACO can significantly 
increase operational efficiency. 

Silalahi et al., [32] The Traveling Salesman Problem (TSP) was solved in this work using Ant 
Colony Optimization (ACO). Performance tests of the algorithm on a variety of paths showed that it could 
identify optimal and near-optimal solutions. The effectiveness of ACO was attributed to its powerful 
pheromone updating mechanism, which guided the ants towards efficient paths. The study demonstrated 
how well ACO can handle small to medium-sized datasets. This paper highlights the promise of ACO as a 
heuristic tool for generative optimization problems. 

Steven et al., [33] By combining clustering methods with ACO, the study addressed the multi-
traveler retailer problem (MMTSP). The MMTSP was partitioned into multi-traveler retailers in order to 
solve the problem efficiently using k-means and clustered clustering. The results showed that while 
clustered clustering with ACO gave better results than k-means, it also took longer to compute. The 
effectiveness of the approach in simplifying complex optimization tasks was confirmed by simulations 
performed on the TSPLIB dataset. This strategy confirmed the importance of clustering for improving 
ACO functions. 

Stodola et al.,[34] Node clustering, adaptive pheromone evaporation, and novel termination 
conditions are the three innovative strategies used in the adaptive ACO algorithm in this study. By 
clustering nodes according to proximity, clustering increased the solution diversity and search efficiency. 
The termination condition depends on the population diversity, but adaptive pheromone evaporation 
exploited the information entropy to avoid stagnation. The approach outperforms state-of-the-art 
techniques in terms of convergence speed and solution quality when tested on 30 TSPLIB instances. 
These advances address some of the major drawbacks of the traditional ACO algorithm. 

Sun et al., [35] The problem of multiple travel sellers with revisitable cities (MTSPR) was 
addressed in the study using a unique ACO algorithm. For revisitable cities, a balanced path selection 
approach was implemented, ensuring efficient path generation. To further improve the solution quality, 
the algorithm used a local binary search to optimize the elite ant path. When addressing the limitations of 
MTSPR, comparative tests showed that the proposed ACO performed better than alternative algorithms. 
This study demonstrated how ACO can be used for resource planning and logistics. 

Thong-ia et al., [36] proposed the Gene-Ants algorithm, which overcomes the early-stage 
optimization limitations of ACO by combining genetic algorithm (GA) and ACO. Selectivity, exchange, 
and mutation are some of the genetic operations of the genetic algorithm that help avoid the local 
optimality problem that ACO usually faces. Tests on several TSP benchmarks have shown that the Gene-
Ants algorithm performs better than the basic ACO algorithm in terms of convergence rate and global 
optimization. This hybridization makes it possible to provide a more reliable TSP solution. 



 
Tuani et al., [37] An improved solution to TSP using a three-option local search in a 

heterogeneous adaptive ACO is presented. By continuously adjusting the parameters throughout the 
search process, the model enables the algorithm to successfully balance exploration and exploitation. 
Without the need for pre-defined parameters, the self-adaptive function of the algorithm improves 
performance and reduces the amount of time required for human adjustment. For large-scale TSP 
examples, experimental results show that the proposed approach outperforms traditional ACO methods. 

Wang et al., [38] A better pheromone update model is introduced in ACO to address the multiple 
traveler-supplier (MTSP) problem with constraints such as capacity and time frame. The approach 
minimizes path length while meeting capacity and time requirements by solving the MTSP by combining 
a single tree with a minimum span ACO. The search efficiency and solution quality are improved by the 
hybrid approach. This development demonstrates the ability of ACO to solve increasingly complex 
variations in TSP under realistic logistical constraints. 

Wang et al., [39] Modifying parameters such as α and β was proposed to enhance convergence in 
optimizing ACO-based TSP parameters. By introducing the hybrid symbiotic organism search (SOS) and 
ACO (SOS-ACO) technique, the study improved the quality of the result by adaptively optimizing the 
parameters. SOS-ACO was able to achieve solutions that were within 2.33% of the best TSP solutions, 
according to the results. Using a variety of TSP cases from TSPLIB, this  author evaluated the model and 
demonstrated its effectiveness. This technique greatly simplifies the process of manually tuning ACO 
parameters. 

Chen et al.,  [40]This paper presented an ant colony system (ACS)-based approach to improve 
logistics scheduling for the multiple traveling vendor problem (MTSP) with hub cities. In order to reduce 
the cost and fairly distribute the route among salespeople, the proposed ACS-MTSP algorithm takes into 
account hub cities with different business requirements. The results of the experiments showed how 
successful it was in shortening the path lengths and distributing the load evenly. 

Chang et al.,  [41]K-means clustering was used in this work to improve the TSP solution 
efficiency of ACO. K-means was used to cluster cities into clusters, and before merging paths, ACO was 
applied independently to each cluster. In some city distributions, this method has improved performance 
while reducing compute costs by more than 30%. “Significant promise for improving ACO in complex 
TSP settings has been shown through this hybrid approach.” 

Ghimire et al., 2023[42]A hybrid approach to large-scale traveling salesmen problems (TSPs) was 
created by combining parallel ant colony optimization (ACO) with the quantum approximate optimization 
algorithm (QAOA). Their approach focused on using QAOA to optimize subgraphs and ACO with 
pheromone sharing to optimize solutions. The approach produced near-optimal results for larger graphs 
and great accuracy on benchmark datasets up to 150 nodes. This study demonstrates how hybrid classical-
quantum systems can handle NP-hard problems. The investigation showed significant gains in 
computational efficiency and solution quality. 

Kalaiarasi, 2023 [43] proposed a framework for improving supply chain inventory management 
that combines fuzzy logic, machine learning, and ant colony optimization (ACO). Fuzzy logic was used 
for decision flexibility, machine learning for demand forecasting, and ant colony optimization (ACO) for 
reorder point optimization. Their approach improved operational efficiency and forecast accuracy while 
reducing inventory overhead. The study highlights how these approaches work well together for practical 
uses. It provides a novel, adaptable, and effective alternative to traditional inventory control techniques. 

 



 

Table 1- Related work summary table   

#Re
ff 

Author 
(Year) Method Dataset Advantage Disadvantag

e Result Accuracy 

 
[1] 

Scianna et al., 
(2024) 

TSPLIB Parallelizati
on 
enhances 
performanc
e on large 
problems 

Still faces 
scalability 
issues for 
very large 
datasets 

Parallel ACO 
provided 
better 
scalability 
than 
standard ACO 

High 
efficiency 

 

[2] Baydogmus et 
al.,  (2022) 

Parallelized 
ACO 

TSPLIB, 5 
problems 

Reduced 
memory 
usage, 
faster due 
to 
parallelizati
on 

Time 
complexity 
increases 
with number 
of colonies 

50% faster 
than normal 
ACO 
operation 

 

[3] Dou et al., 
(2024) 

ACO for 
Multiple 
Traveling 
Salesmen 
with 
Constraints 

VCMTSP 
benchmark 
set from 
TSPLIB 

Effective for 
handling 
accessibility 
constraints 

Requires 
further 
improvement 
for complex 
datasets 

ACO and GA 
both 
addressed 
VCMTSP, 
but 
performanc
e could be 
improved 

 

[4] Ratanavilisagu
l et al.,  (2017) 

Modified 
ACO with 
Pheromone 
Mutation 

TSP 
(TSPLIB) 

Avoids local 
optima, 
enhanced 
search 
diversity 

Increased 
computation
al cost due to 
mutation 
steps 

Outperform
ed standard 
ACO in 
solution 
quality 

Better 
solutions 
than 
standard 
ACO 

[5] Ratanavilisagu
let al., (2018) 

Modified 
ACO with 
Leader and 
Re-
initialization 

TSP 
(TSPLIB) 

Re-
initialization 
prevents 
local optima 
trapping 

Higher 
complexity 
with multiple 
colony re-
initializations 

Outperform
ed standard 
ACO and 
PACO-3OPT 

Improved 
solution 
quality and 
convergence 

[6] Xu et al., 
(2023) 

ACO and 
FA hybrid 
 

TSPLIB 
standard 
 

Improved 
convergenc
e and local 
optima 
avoidance 
 

Depending 
on the FA's 
initial 
performance 
 

Enhanced 
path 
optimizatio
n and 
decreased 
processing 
time 
 

High 
(increased 
accuracy in 
pathfinding) 
 

[7] Mandal et al., 
(2022) 

Modified 
ACO for 
Generalized 
TSP 

GTSP 
benchmark 
set 

Good 
stability and 
optimizatio
n accuracy 

Increased 
complexity 
with more 
agents 

2.59% 
optimization 
in average 
path length 
over ACO 

Optimized by 
2.59% in 
average path 

[8] Fejzagić 2013 Parallel ACO TSP (varied 
city sizes) 

Improved 
execution 
time via 
parallelizati

Increased 
complexity in 
parallelizatio
n 

Parallel ACO 
reduced 
execution 
time but 

Speed 
improvement
, solution 
quality 



 
on, same 
solution 
quality 

implementati
on 

with similar 
quality 

maintained 

[9] Zeng et al., 
(2021) 

Enhanced 
ACO using 
dynamic 
heuristic 
data 
 

TSP in 
transportat
ion 
situations 
with 
replenishin
g arcs 
 

Effective 
in 
resolving 
dynamic 
limitations 
 

High 
processing 
demands for 
bigger 
datasets 
 

shortest 
routes 
when 
cumulative 
travel 
restrictions 
are in place 
 

For dynamic 
restrictions, 
accurate 
 

[10] Xu Li et al., 
(2024) 

AAEPM 
for 
assessing 
convergenc
e 
 

ACO 
situations 
that were 
simulated 
 

Strong 
convergenc
e 
assessment 
independen
t of 
parameters 
 

does not 
immediately 
increase the 
effectivenes
s of 
pathfinding 
 

Precise 
ACO 
convergenc
e 
monitoring 
 

Precise 
assessment 
of 
convergence 
state 
 

[11] Houssein et 
al.,  (2024) 

Space 
Reduction 
ACO for 
MTSP 

MTSP with 
varying 
number of 
tasks and 
salesmen 

Reduced 
solution 
space, 
faster 
computatio
n time 

Performance 
can drop with 
very large 
datasets 

Outperform
ed classical 
methods in 
execution 
time and 
path length 

Best 
execution 
time, 
competitive 
in path 
length 

[12] Sheng et al.,  
(2022) 

SOS-MMAS 
Hybrid ACO 

TSPLIB Improved 
task 
scheduling 
efficiency, 
avoids 
premature 
convergenc
e 

May increase 
computation
al complexity 
for larger 
datasets 

SOS-MMAS 
outperforms 
standard 
ACO in TSP 
problem 
solving 

High 
performance 
in large TSP 
instances 

[13] Wu et al.,  
(2024) 

ACS and 
EAS were 
modified 
for TOP. 
 

Artificial 
TOP 
datasets 
 

Improved 
route 
balance 
and profit 
maximizati
on 
 

restricted to 
some TOP 
variations 
 

Enhanced 
efficiency 
and 
balanced 
earnings 
across 
routes 
 

High (ACS 
excelled in 
profit 
maximizatio
n) 
 

[14] Yan et al.,  
(2024) 

For 
MOTSP, 
NSMOAC
O 
 

MOTSP 
scenarios 
that were 
simulated 
for UUV 
 

Superior 
adaptive 
algorithms 
and 
worldwide 
search 
capabilities 
 

computation
ally 
demanding 
for extensive 
MOTSP 
 

improved 
results and 
quicker 
convergenc
e than with 
convention
al 
techniques 
 

High 
(Outperform
ing in jobs 
involving 
multi-
objective 
optimization
) 
 

[15] Prado et al., 
(2024) 

Ant Colony 
Systems for 

Vehicle 
Routing 

Adapts to 
real-time 

Requires fast 
computation 

Evaluated 
multiple 

95% 



 
Dynamic 
Vehicle 
Routing 

Problem 
(VRP) 

dynamic 
changes, 
good for 
real-time 
decision 
making 

for real-time 
changes 

ACO variants 
for dynamic 
VRP, better 
real-time 
performanc
e 

[16] Tang et al., 
(2023) 

Ant Colony 
Adaptive 
Optimizatio
n (AACO-
LST) 
 

45 TSP 
instances 

faster 
convergenc
e and more 
effective 
search 
 

Large-scale 
dimensional 
catastrophe 
dilemma 
TSP 
 

Comparing 
AACO-
LST to 
ACS, the 
quality of 
the solution 
increased 
by 79%. 
 

79% 

[17] Kothari et.,  
(2024) 

Meta-
Heuristic 
Algorithms 
for TSP 

256-city 
TSP dataset 

Comprehen
sive 
comparison 
of multiple 
algorithms 

Does not 
provide a 
clear 
comparison 
of hybrid 
approaches 

Christofides 
was most 
cost-
efficient, 
Simulated 
Annealing 
fastest 

 

[18] Thongpiem et 
al.,  (2024) 

Ant colony 
algorithm 
and hybrid 
genetic 
algorithm 
(HGAACO
) 
 

TSPLIB (23 
instances) 

Combining 
GA and 
ACO 
improved 
performanc
e over 
MACO-
LR. 
 

Additional 
computation
al resources 
are needed 
for the 
hybrid 
technique. 
 

HGAACO 
improved 
the speed 
and quality 
of the 
MACO-LR 
solution. 
 

100% 

[19] Han et al.,  
(2020) 

Improved 
ACO for 
Large Scale 
CTSP 

Large-scale 
CTSP 
problem 

Optimized 
for large 
scale, 
avoids local 
optimum 
with ITÔ 
process 

High 
computation
al cost, 
complexity in 
pheromone 
updating 

Better 
performanc
e than 
classical 
algorithms 
for large-
scale CTSP 

Improved 
solution 
quality 

[20] Cheong et al.,  
(2017) 

ACO with 
parameter 
variation 

TSP 
(various 
datasets) 

Better 
performanc
e with 
varying 
colony sizes 
and other 
parameters 

Requires fine-
tuning for 
optimal 
results 

ACO 
provided 
competitive 
results 
compared to 
other 
algorithms 

Optimized 
route 
selection. 

[21] de Oliveira et 
al., (2021) 

ACO for 
dynamic TSP 
with 
dynamic 
demands 

TSP with 
dynamic 
demands 

Enhanced 
performanc
e in 
dynamic 
environmen
ts using P-
ACO 

P-ACO not as 
effective with 
local search 
components 

P-ACO 
outperforme
d MAX-MIN 
Ant System 
(MMAS) 
without 
local search 

Enhanced 
pheromone 
reuse. 



 
[22] Dewantoro et 

al., (2019) 
Hybrid ACO-
TS (ACO 
with Tabu 
Search) 

TSP 
(standard 
problems) 

Better route 
optimizatio
n and faster 
runtime 

Hybrid 
algorithm 
increases 
complexity 

ACO-TS 
outperforme
d standard 
ACO in route 
quality and 
runtime 

Superior 
computation
al 
performance. 

[23] Duan et al., 
(2024) 

Probe 
machine-
based 
approach for 
TSP 

TSP 
(various 
sizes) 

Significant 
speedup 
compared 
to classical 
solvers for 
small-scale 
problems 

Only effective 
for smaller 
problem 
sizes, not for 
large-scale 
problems 

Faster than 
classical 
solvers for 
small TSP 
instances 

High 
performance 
for smaller 
instances 

[24] Ekmekci et al., 
(2019) 

ACO-MBS 
(Memorizing 
Better 
Solutions) 

TSPLIB 
(eil51, 
kroA100) 

Increased 
exploitation 
ability while 
maintaining 
exploration 

Convergence 
speed can be 
slower under 
certain 
conditions 

Outperform
ed standard 
ACS in 
convergence 
speed and 
solution 
quality 

Achieved 
high accuracy 
in 
benchmark 
problems 
(eil51 and 
kroA100) 

[25] Fei et al.,  
(2022) 

Graph 
Convolution
al Network 
Improved 
ACO 
(GCNIACO) 

TSP 
datasets, 
engineering 
application 

Improves 
initial 
convergenc
e speed, 
enhances 
local 
optimum 
escape 

Complex 
algorithm, 
requires 
tuning for 
larger 
instances 

Outperform
ed other 
classical 
algorithms 
in solution 
quality 

High 
accuracy, 
faster 
convergence 

[26] Latha Ra  et 
al., 2023 

Energy-
distance 
based 
TOPSIS-ACO 

Wireless 
Body Area 
Networks 
(WBAN) 

Improved 
end-to-end 
delay and 
packet 
routing 
delay 
managemen
t 

High delay 
without 
routing 
strategy, 
delay under 
certain 
methods 

Improved 
delay times 
compared to 
non-routing 

0.126 ms 
(end-to-end 
delay) 

[27] Liu et al.,  
(2020) 

Slime Mold-
Ant Colony 
Fusion 
Algorithm 
(SMACFA) 

TSPLIB 
(chn31) 

Enhanced 
global 
optimizatio
n, faster 
convergenc
e, reduced 
complexity 

Susceptible 
to local 
optimization 
in certain 
settings 

1.42% 
improvemen
t in path 
length over 
ACO, faster 
convergence 

Improved by 
1.42% in 
path length 

[28] Meng et al., 
(2019) 

Modified 
ACO with 2-
opt 
algorithm 
for GTSP 

GTSP with 
16 cities 

Better 
optimizatio
n, task 
balancing 
among 
agents 

Increased 
variance with 
more agents 

2.59% 
average 
path length 
improvemen
t over ACO 

Optimized by 
2.59% in 
average path 
length 

[29] Murugananth
anet al., 
(2023) 

Ant Colony 
Optimizatio
n (ACO) 

TSPLIB and 
customized 
datasets 

Flexibility 
and ability 
to adapt to 
dynamic 

Susceptible 
to slow 
convergence 
for large 

Outperform
ed Cplex 
optimizer in 
multiple test 

Outperforme
d Cplex 
optimizer 



 
scenarios datasets cases 

[30] Qian et al., 
(2024) 

Multiobjecti
ve Ant 
Colony 
System 
(MOACS) 

Pickup and 
Delivery 
tasks 

Optimizes 
multiple 
objectives 
(working 
time and 
workload 
balance) 

Complexity 
increases 
with more 
agents and 
tasks 

MOACS 
outperforms 
other ACS-
based multi-
objective 
algorithms 

High 
performance 
in multi-
agent 
scenarios 

[31] Sharma et al., 
(2024) 

ACO-based 
Energy 
Efficiency 
Optimizatio
n for IoT-
Cloud 

IoT and 
Cloud 
Computing 
Resources 

Reduces 
energy 
consumptio
n in cloud 
environmen
ts 

High 
adaptability 
required for 
real-time IoT 
environments 

Outperform
ed 
conventiona
l resource 
allocation 
strategies 

Significant 
energy 
savings and 
reduced 
operational 
cost 

[32] Silalahiet al., 
(2019) 

ACO for TSP TSPLIB Faster 
execution 
compared 
to exact 
methods 

Struggles 
with larger 
cases 

ACO was 
faster than 
exact 
methods in 
solving TSP 

Execution 
time 
significantly 
reduced 

[33] Steven et al., 
(2017) 

Clustered 
ACO for 
MMTSP 

TSPLIB Clustering 
improves 
route 
optimizatio
n 

Agglomerativ
e clustering 
takes longer 
than K-means 
clustering 

Agglomerati
ve ACO 
outperforms 
K-means 
clustering 
and 
standalone 
ACO 

Best route 
with 
agglomerativ
e ACO 

[34] Stodola et al., 
(2022) 

Adaptive 
ACO with 
Node 
Clustering 

TSPLIB (51-
2392 
nodes) 

Improved 
performanc
e, reduces 
execution 
time and 
local 
optimum 
risk 

Parameter 
settings still 
affect 
performance 

Outperform
ed other 
ACO-based 
methods on 
benchmark 
tests 

Higher 
convergence 
speed, better 
solutions 

[35] Sun et al., 
(2024) 

RACO (ACO 
for MTSPR) 

TSPLIB Effective 
path design 
that 
balances 
salesmen's 
paths 
 

Construction 
of complex 
paths 
necessitates 
careful task 
balancing. 
 

When 
solving 
MTSPR, 
RACO 
performs 
better than 
other 
algorithm. 
 

Better 
results with 
well-
balanced 
routes. 

[36] Thong-iaet al., 
(2023) 

Ants Gene 
(ACO with 
GA) 
 

TSPLIB avoids 
local 
optima and 
improves 
global 
search by 
combining 
ACO and 

longer 
computation 
times as a 
result of the 
hybrid 
technique 
 

Gene-Ants 
fared better 
in global 
optimal 
solution 
discovery 
than simple 
ACO. 

Enhanced 
rate of 
convergence 
and quality 
of the 
solution 
 



 
GA. 
 

 

[37] Tuaniet al., 
(2020) 

Adaptive 
Heterogene
ous ACO 
with 3-opt 
Local 
Lookup 
 

TSPLIB Parameters 
are 
adaptively 
adjusted to 
prevent 
premature 
convergenc
e. 
 

costly to 
compute 
with large-
scale TSP 
 

Heterogene
ous ACO 
performed 
faster and 
better than 
traditional 
algorithms. 
 

Increased 
resilience 
and faster 
convergence 
 

[38] Wang et al., 
(2020) 

ACO for 
MTSP with 
an 
Enhanced 
Pheromone 
Model 
 

MTSP 
with time 
window 
and 
capacity 
restrictions 
 

A better 
pheromone 
model that 
manages 
capacity 
and 
logistics 
issues 
 

More 
intricacy as 
a result of 
the hybrid 
pheromone 
model 
 

superior 
search 
effectivene
ss and 
solution 
quality 
compared 
to 
alternative 
algorithms 
 

Shorter 
routes and 
improved 
logistics 
optimization 
performance 
 

[39] Wang et al., 
(2021) 

ACO and 
SOS hybrid 
 

TSPLIB 
standard 
 

Enhanced 
global 
search 
capability 
and 
convergenc
e rates 
 

intricate 
tweaking of 
parameters 
 

Solutions 
that fall 
between 
2.33% and 
the 
established 
optimal 
values 
 

High 
(deviation 
of 2.33% 
from ideal) 
 

 
[40] 

Chen et al., 
(2024) 

ACS-MTSP 
(Multiple 
TSP with 
hub cities) 

TSPLIB 
(att48, 
kroA100, 
etc.) 

Effective in 
reducing 
traveling 
salesmen 
costs 

Still 
computation
ally complex 
for larger 
datasets 

Path lengths 
minimized 
with stable 
results 

High 
performance 

[41] Chang et al., 
(2017) 

ACO 
combined 
with K-
means 
clustering 

TSP 
(various 
city 
distribution
s) 

Reduced 
computatio
nal cost, 
improved 
performanc
e for 
specific 
distribution
s 

May not 
generalize 
well to all city 
distributions 

32% faster 
than 
unclustered 
ACO 

Improved in 
specific 
setups 

 

Discussion  



 
The examined literature shows that ant colony optimization (ACO) techniques for solving the traveling 
salesman problem (TSP) and its many variations have advanced significantly. Hybridizing ACO with 
other optimization techniques to improve performance is a popular trend.For example, [6] used Firefly 
algorithm (FA) for parameter optimization, which enhanced the convergence speed and flexibility, while 
[7] Integrating mutagenesis techniques into ACO for DNA sequencing. Similarly, [12] improved task 
scheduling efficiency using a hybrid ACO for Multi-Depot Multiple TSP (MMTSP). The effectiveness of 
hybrid techniques in solving limited and multi-travel seller problems has been demonstrated by [3] and 
[11], demonstrating the flexibility of ACOs in dealing with difficult situations. By optimizing the 
competing objectives of unmanned underwater vehicle trajectories, Yan et al. (2024) developed a 
nondominated sorting multi-objective ACO (NSMOACO) which further developed this idea. Studies such 
as [2] and  [8]have shown how parallel ACO shortens execution times without sacrificing solution 
quality, making parallel computing another important issue. [13] and [9] have demonstrated how these 
advances have improved ACO's suitability for large-scale applications including supply chain 
optimization and logistics. In the literature, adaptive mechanisms are also frequently discussed. For 
example, [10]introduced the AAEPM for convergence evaluation, which offers reliable monitoring 
without directly improving pathfinding. Adaptive pheromone updates by[34] and dynamic heuristic 
algorithms by [27] also demonstrate the ability of ACO to manage dynamic and large-scale optimization 
problems. Even with these developments, there are still limitations. As shown by [7]and [6], because new 
technologies require significant resources, hybrid approaches often increase computational complexity. 
[8] point out that although parallel ACO increases scalability, its implementation may be hardware 
dependent. [4],[5] and [39] note that tuning parameters is still a great difficulty and that performance 
mostly depends on manual changes. While new approaches such as enhanced mutation techniques [19] 
and [10] address convergence, they do not immediately increase computing efficiency. According to [17], 
addressing these issues requires studying lightweight hybrid models in order to balance efficiency and 
solution quality. Studies such as [35] and [30] suggest that incorporating machine learning methods can 
automate parameter tuning and adjust ACO to real-time conditions. In addition, as suggested by potential 
works such as [15] and [16], using advances in quantum computing may create new opportunities to scale 
ACOs. Significant advances in hybridization, parallelism, and adaptability have been highlighted in the 
literature, confirming ACO's position as a reliable tool for solving challenging optimization problems in a 
variety of domains. 

 

Challenges and Future Directions 

ACO has made progress, but there are a number of barriers to its wider use. Although effective, hybrid 
models come with a computational cost and require advanced technology for parallel processing [8],[7]. 
Furthermore, parameter adjustment is critical to the effectiveness of an ACO, and less-than-optimal 
settings often lead to suboptimal results. While convergence evaluation is addressed by frameworks such 
as AAEPM [10], parameter selection is not automated. Future studies should investigate frameworks that 
rely on machine learning to adjust parameters to automate optimization, as well as lightweight hybrid 
models that strike a balance between computational efficiency and solution quality [15], [16]. ACO may 
be able to handle previously unheard-of problem sizes through the use of quantum computing [17]. 

Conclusion 

The traveling salesman problem (TSP) is the mainstay of combinatorial optimization, and is known for its 
complexity and wide range of practical applications in resource management, communications, and 
logistics. Inspired by the feeding habits of ants, ant colony optimization (ACO) has become a reliable and 



 
flexible way to address TSP. The program can efficiently find optimal or near-optimal solutions thanks to 
its iterative method, which relies on pheromone trails and heuristic information. Significant developments 
over time have improved ACO capabilities. By solving problems such as local optimal slack and 
scalability problems, hybrid models - which mix ACO with free algorithms - have enhanced their 
performance. These integrations have proven to produce high-quality solutions and faster convergence 
rates, especially in dynamic and multi-objective contexts. Moreover, the scalability of ACO has been 
transformed by parallel computing frameworks, which allow efficient processing of large data sets and 
solving scheduling and logistics problems at industrial scale. In dynamic routing applications, when 
variables such as traffic, time constraints, and resource availability change in real time, ACO has also 
shown remarkable adaptability. Their ability to adapt to these modifications shows how versatile they are 
at solving difficult problems in the real world. ACO has proven to be a useful and reliable solution to 
dynamic optimization problems, from emergency response and underwater navigation to vehicle routing 
in logistics. Even with its improvements, ACO still suffers from drawbacks, such as computational 
overhead in parallel and hybrid models, the need for human parameter adjustment, and scalability in 
contexts with limited resources. In order to improve scalability and efficiency, future research should 
focus on creating lightweight hybrid frameworks, including machine learning for automated parameter 
adjustments, and investigating quantum computing. The revolutionary importance that the ACO plays in 
the TSP solution and its changes is highlighted in this review. This article emphasizes the continuing 
importance and potential of ACOs by addressing current limitations and synthesizing important 
improvements. ACO is positioned to continue to be a pillar of optimization research as science and 
technology advance, solving more complex problems in a variety of fields. 
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