

Reliability of the Type System in TypeScript in Software Development

Abstract. The article examines the TypeScript type system as a critical element

influencing its use in software development. The primary objective of the study is to

analyze the characteristics of the type system and identify methods for improving the

accuracy of type checking. The article explores the principles underlying the type

system, its vulnerabilities such as the use of the any type, type assertions, issues with

object and array indexing, and proposes approaches to enhancing system reliability.

The methodology includes an analysis of TypeScript's structure, the principles of its

compiler, and the application of tools for static code analysis. The study references

academic articles available in open-access online repositories, providing a broad

perspective on the topic. Additionally, examples of code presented in the work

illustrate key concepts and methods for working with type systems. Results

demonstrate that configuring the compiler, avoiding the any type, and leveraging

libraries for data validation improve the quality of type safety.

The findings, based on the analysis of relevant sources, will be useful for programmers

and corporate professionals. This review paper is a guide for software developers

to understand the essence and the reliability of the Type System in TypeScript.

This is a requirement to the scientific community as it guides software developers

with the understanding and methods for efficiency in Type Checking. Principles,

vulnerabilities and practice in code analysis are explicitly enumerated.

Keywords: TypeScript, type system, static typing, type safety, reliability, compiler,

static analysis, programming.

Introduction

The article examines the TypeScript type system, its role in software development, and

methods for improving type safety and soundness. TypeScript's popularity stems from

its well-designed type system and a robust compiler. However, the type system has

limitations that reduce its reliability. The use of the any type, type assertions and

indexing operations leads to errors in the code, thus weakening type control. These

aspects emphasize the need to analyze the system's capabilities, identify its

weaknesses, and subsequently improve its efficiency. In this context, it is necessary to

understand how different programming languages address these challenges. By

studying the approaches of the programming languages used, it is possible to identify

the best methods to improve type handling.

The growing use of TypeScript in web application and software system development

underscores the relevance of this topic. The reliability of the type system is a critical

criterion for selecting programming languages and developer tools, as it directly

impacts development time, code quality, and application security. Research on

methods to optimize TypeScript's type system contributes to the creation of more

robust software solutions.

The advantages of static typing in programming languages include:

● Identifying errors during the development phase, which reduces development

costs and enhances the quality of the final product.

● Enhancing the capabilities of development tools, particularly code editors

(IDEs). The type system enables development tools to better understand the

written code, automating scenarios such as code editing. For example,

renaming a variable automatically updates all instances of its usage within the

program.

● Facilitating the division of large programs into smaller modules by defining

interaction contracts through the type system. This improves project

scalability, enabling the development of large software systems without

compromising quality.

The objective of this study is to explore the reliability of the TypeScript type system

and to identify methods for improving the efficiency of type checking during

TypeScript program compilation.

Materials and Methods

Recent studies on the application of TypeScript cover various areas, including code

quality improvement, type automation, data security, and information flow analysis.

These topics address several key aspects that influence the efficiency of development

and the functionality of software systems.

One of the reasons for choosing TypeScript is its ability to enhance code quality

through static typing. Emmanni P. [1] demonstrated that the use of TypeScript reduces

the number of errors during development, improves code structure, and simplifies the

comprehension of program logic. This is particularly relevant for JavaScript

applications that require type control and clear data structure definitions.

The study by Rani M. [2] highlights how strict typing facilitates debugging and

refactoring processes. Type annotations make error detection easier, minimize the

occurrence of errors during code modifications, and accelerate the development

process.

Works by Merkel M. [4] and Bogner J., Merkel M. [5] provide a comparative analysis

of code written in TypeScript and JavaScript. Their results confirm that using

TypeScript enhances code readability and maintainability while reducing errors. This

demonstrates the creation of more stable solutions.

The work by Wu Z. et al. [3] focuses on performance, examining methods for

optimizing TypeScript programs. For instance, technologies such as inline caching are

proposed to increase execution speed, along with improvements to type hierarchies that

reduce overhead associated with type checking, thereby accelerating program

execution.

TypeScript is employed to address tasks related to data security and information flow

analysis. In the article by Chadalawada A. [6], the use of static typing for security

analysis is discussed. The proposed approach allows for the detection of data leaks at

early stages of development, preventing them before the final assembly of the

application.

The work by Seidel L. et al. [8] explores type inference for data flow analysis in

TypeScript. The results indicate that strict typing aids in analyzing data dependencies,

improving processing and enhancing security.

The article by Cristiani F. and Thiemann P. [7] describes the process of automatically

generating declarations for TypeScript based on existing JavaScript code. This

approach simplifies the integration of third-party libraries, improving the security and

reliability of interactions with external components.

The data from source [9] on the papl.cs.brown.edu website outlines a theoretical

approach to type safety. It discusses concepts such as type safety and soundness, which

are fundamental to ensuring program correctness.

Source [10], found on the www.executeprogram.com website, describes the practical

aspects of ensuring type safety in TypeScript development. It explores techniques and

approaches for achieving type safety, as well as potential errors that may arise if the

type system is used incorrectly.

A review of scientific studies demonstrates that TypeScript enhances development

quality, simplifies code management, and improves program performance. This is

especially significant for projects requiring a high degree of code structuring. However,

several issues remain unresolved. Additionally, the integration of TypeScript with non-

standard JavaScript libraries and methods for ensuring type safety in large dynamic

applications have been insufficiently studied. These topics require further research.

The methodology of this study includes an analysis of TypeScript's architecture, the

study of compiler principles, and the use of tools for static code analysis.

http://www.executeprogram.com/

Results and Discussion

The type systems of modern programming languages ensure strict data validation,

reducing the likelihood of errors during program development and execution.

When discussing type safety, many operations in a language are partial: they are

defined over a certain domain, accepting some but not all elements of that domain. A

safe language provides developers with an important guarantee: no operation will

execute on nonsensical data [1,2]. This guarantee is achieved through a multi-level

type checking process, encompassing both static and runtime checks, as illustrated in

Figure 1 below.

Fig.1. Components of type checking

The reliability of a language's type system lies in the fact that the type environment

binds identifiers to types, while the interpreter environment binds identifiers to values

or locations. A type-checking mechanism compresses potentially infinite sets of values

into types, while the interpreter processes individual elements of those sets differently.

The primary result desired for this type of system is referred to as soundness.

The standard method for proving this theorem is to divide it into two parts, known as

progress and preservation. Progress states that if a term passes type-checking, it can

take a computational step (unless it is already a value); preservation states that the

result of this step will retain the same type as the original. When either of these

properties fails—such as an array index is out of bounds—the program lacks a

meaningful type. Therefore, every type of soundness theorem implies a set of

documented, permissible exceptions or error conditions that may arise. A developer

using the type system implicitly agrees to accept this set [9].

TypeScript offers features that provide development flexibility and software reliability.

It is designed as a statically typed language. However, its type system cannot be

considered fully sound. The Figure 2 below illustrates key approaches for improving

TypeScript's type system reliability.

Fig.2. Approaches to enhance the TypeScript type system reliability

Unlike many other statically typed languages (e.g., C, Java, C#), TypeScript is built as

a superset of JavaScript, which means it must support all JavaScript constructs and

features. This fundamental design choice leads to certain vulnerabilities in TypeScript's

type system. These vulnerabilities are deliberately introduced by the language's authors

to ensure that TypeScript can work seamlessly with JavaScript code. JavaScript, being

a dynamically typed language, was never designed with type systems in mind. Table 1

below outlines the reasons why the TypeScript type system cannot be considered

entirely sound.

Table 1. The reasons why the type system is not reliable [10].

Reason Description

Iterative development of the

language led to

overcomplication of the

compiler's configuration

The compiler has been evolving since 2012, gradually

improving the reliability of the type system. To maintain

backward compatibility with existing projects, many new type

checks are included in the compiler through configuration files

and are disabled by default.

Decisions made to simplify

learning for new developers

and increase the language's

popularity

An absolutely reliable type system would require developers

to put significantly more effort into describing types during

program development. This entails learning new design

patterns, gaining a deeper understanding of type theory, and

writing substantial additional code.

The necessity to account for

JavaScript's dynamic typing

to ensure compatibility with a

large number of existing

JavaScript libraries

This significantly reduces the cost of transitioning from

JavaScript to TypeScript in existing projects and accelerates

the development of new products.

The main vulnerabilities in the TypeScript type system are as follows:

The any type. Its vulnerability lies in the concept that a variable can accept values of

any type without any checks from the compiler. While useful in situations where the

type of a value cannot be predicted in advance, it simultaneously reduces the type

safety provided by TypeScript. Using this type effectively disables the type system, as

the variable can be assigned any value without causing compilation errors. This can

lead to unexpected results during runtime, as type errors are only discovered at runtime

rather than at the compilation stage [4,5]. Below is a code example:

// Example of using the `any` type

function processData(data: any): void {

 // Runtime error if `data` does not have a 'name' property

 console.log(data.name);

}

const user = { name: "Alice", age: 30 };

processData(user); // Works fine because `user` has a 'name'

property

const notUser = { age: 40 };

processData(notUser); // Runtime error: 'name' property does not

exist

Given these vulnerabilities, implementing strict control over the any type usage

becomes essential for maintaining type system integrity. The static analysis capabilities

provided by the typescript-eslint library enable systematic identification and

elimination of the any type occurrences throughout the codebase. This methodology

ensures type safety not only in application code but also extends to interactions with

the standard library and third-party dependencies, ultimately achieving type system

reliability comparable to established statically typed languages such as Java, Go, and

Rust.

Type Assertions and Custom Type Guards in TypeScript represent a mechanism

that allows developers to inform the compiler that an object or variable has a specific

type, even if TypeScript cannot automatically guarantee this. Type Assertions are

particularly useful when the developer is confident in the type of a value, but the

compiler lacks sufficient context to infer it. However, it is important to note that this

mechanism is merely a way to "convince" the compiler and does not affect runtime

type checking [4, 3, 10]. Below is an example of code illustrating Type Assertions:

// Example using Type Assertion

function getElementById(id: string): HTMLElement {

 const element = document.getElementById(id);

 // By default, document.getElementById returns the type

HTMLElement | null

 // We assert that the element definitely exists (is not null)

 return element as HTMLElement;

}

const element = getElementById("myElement");

console.log(element.innerHTML);

A more robust approach to type safety involves implementing Type Guards. This

methodology enables developers to provide the necessary context for the compiler

while moving some of the checks to the runtime. In TypeScript Type Guards

represented by functions and operators that perform runtime checks. For instance, a

type guard can verify object type membership using the instanceof operator. Below is

an example of code illustrating Type Guards:

// Example using Type Guard

function getElementById(id: string): HTMLElement {

 const element = document.getElementById(id);

 if (!(element instanceof HTMLElement)) {

 // Runtime error indicating an incorrect developer's

assumption about the element type

 throw new Error('The element has unexpected type');

 }

 // The element now has the type HTMLElement

 return element;

}

The implementation of Type Guards should be approached selectively within the

application architecture. They should be implemented in scenarios where TypeScript’s

static code analysis proves insufficient for ensuring comprehensive type safety. The

key scenarios where Type Guards prove most valuable are presented in Table 2.

Table 2. Scenarios Requiring Type Guards.

Reason Description

Providing the compiler with

context about the execution

environment

TypeScript's static analysis capabilities are limited in

determining the complete runtime context of an application.

This limitation is particularly evident when dealing with

Document Object Model (DOM) structures, where the

compiler cannot perform static analysis of dynamic markup

elements during the compilation phase.

Integration with untyped

third-party JavaScript

libraries.

Integration of third-party JavaScript libraries into TypeScript

applications requires providing explicit type information to

the compiler. This type information facilitates static analysis

and ensures type safety during the integration process.

However, a significant number of JavaScript libraries lack

comprehensive type declarations in their native

implementation.

Handling untyped data from

I/O operations, including

network requests, disk reads,

and user input.

External data sources typically transmit data in an

unstructured binary format that requires parsing into

language-specific data structures. For instance, when an

application receives a JSON-formatted string, it must parse the

string using the JSON.parse() method before accessing the

data. When working with TypeScript, developers need to add

type definitions to this parsed data so the compiler can check

for potential type errors during static code analysis.

Third-party JavaScript library integration in TypeScript development commonly uses

type definition packages distributed as separate modules. These type definition

packages follow the naming convention of using the @types/ namespace prefix. A

notable implementation of this approach is demonstrated by the lodash utility library,

which is complemented by its corresponding @types/lodash package containing

comprehensive type annotations for the library's API surface. Once installed, the

TypeScript compiler automatically identifies these type definition packages and

enables type-checking for the library usages throughout the application.

In scenarios where type definition packages are unavailable, developers can implement

type annotations at the application level using TypeScript's Module Augmentation

functionality. The following example demonstrates the implementation of type

declarations for the math library's sum method:

// Module Augmentation for the "math" library

declare module "math" {

 // Defining exported functions and their type signatures

 export function sum(a: number, b: number): number;

}

For processing unstructured data from I/O operations, it is essential to use TypeScript-

compatible data validation libraries such as zod, superstruct, or valibot. These

libraries provide schema-based validation to ensure data structures match their

expected types at runtime. This methodology enables developers to provide type

information to the compiler in a declarative and efficient manner, enhancing the

compiler's static analysis capabilities. The following example demonstrates data

validation utilizing the zod library:

import { z } from 'zod';

// Describe the schema for the external data

const personSchema = z.object({

 name: z.string(),

 age: z.number(),

});

// Infer the type

type Person = z.infer<typeof personSchema>;

function parsePerson(data: string): Person {

 // Safely parse and validate the data structure

 return personSchema.parse(JSON.parse(data));

}

The vulnerability of "Object and Array Lookups" in TypeScript arises when

developers attempt to access object properties or array elements using loosely typed

keys or without proper type validation during compilation. These types are often too

generalized and do not strictly enforce the structure of the data, which can lead to

runtime errors if developers assume an object has a particular structure or an array has

a specific length and elements. For instance, accessing objects or arrays using arbitrary

strings or indices can result in unauthorized operations or runtime errors if the actual

data structure does not match these assumptions. Effectively, such operations

generalize all objects and arrays, which reduces the type safety of their usage [1,5,7].

Below are examples illustrating this vulnerability:

// Example of vulnerability with objects

function getUserInfo(user: object): string {

 // Error if the object does not have a "name" property

 return user["name"].toUpperCase();

}

const user = { name: "Alice" };

console.log(getUserInfo(user)); // Works correctly because the

"name" property exists

const unknownUser = {};

console.log(getUserInfo(unknownUser)); // Runtime error: "name"

property does not exist

// Example of vulnerability with arrays

function getElementAtIndex(arr: unknown[], index: number): any {

 return arr[index]; // Does not check if the element exists at

the given index

}

const numbers = [1, 2, 3];

console.log(getElementAtIndex(numbers, 2)); // Returns 3

console.log(getElementAtIndex(numbers, 5)); // Returns undefined

but does not trigger a compile-time error

To address this vulnerability, TypeScript provides the noUncheckedIndexedAccess

compiler option. When enabled, this option enforces stricter type checking for object

and array access, making the type system more sound by requiring explicit handling of

potential undefined values.

When discussing error detection during compilation, TypeScript helps eliminate the

following defects:

● Incorrect assignments.

● Use of invalid arguments in functions.

● Access to non-existent object properties.

interface Person {

 name: string;

 age: number;

}

// The compiler reports a type mismatch.

const person: Person = { name: "Alice", age: "25" };

Such errors are addressed before runtime, preventing crashes during execution. Type

checking allows for safe data handling using conditional checks, eliminating the need

for complex additional validations. Example:

function getUserInfo(user: Person | null): number | undefined {

 return user?.age;

}

TypeScript enables defining contracts between software components, which is

particularly critical in collaborative development. Example:

interface UserModule {

 getName: () => string;

 getEmail: () => string | undefined;

}

This approach enhances consistency among developers and simplifies integration.

Despite its many advantages, TypeScript has some limitations that should be

considered. Since TypeScript is transpiled into JavaScript, certain errors can only

surface during runtime [2, 4, 9]. For instance:

const info= JSON.parse('{"name": "Alice"}');

info.age.toString(); // The error is detected during runtime.

Thus, the type system cannot catch errors related to algorithms, as they fall outside the

scope of data validation. TypeScript provides developers with a set of tools that

enhance software reliability through strict typing and extensive type-related

capabilities. Despite its limitations, the language remains an effective choice for

creating modern software solutions.

Conclusion

The analysis of the TypeScript type system has confirmed its importance in the

development of software solutions. This study examined the theoretical foundations of

type systems, identified vulnerabilities in the type handling mechanism, and proposed

methods for addressing these issues. The results demonstrated that TypeScript, with its

flexibility, remains an effective tool for improving code quality and security.

TypeScript enables the detection of errors at early stages of development, simplifies

the maintenance of software systems, and facilitates project scaling. However,

constructs such as the any type, type assertions, and indexing operations reduce the

reliability of the system. To enhance type safety and minimize risks, the proposed

methods include compiler configuration, static code analysis, and the use of libraries

for data validation.

In conclusion, TypeScript offers a well-designed type system and a robust compiler.

However, type checking can be made significantly more reliable through compiler

options, incorporating static code analysis with tools like typescript-eslint, and

utilizing libraries for validating data structures.

COMPETING INTERESTS

Authors have declared that they have no known competing financial interests OR non-financial interests OR

personal relationships that could have appeared to influence the work reported in this paper.

Disclaimer (Artificial intelligence)

Option 1:

Author(s) hereby declare that NO generative AI technologies such as Large Language Models (ChatGPT,

COPILOT, etc.) and text-to-image generators have been used during the writing or editing of this

manuscript.

Option 2:

Author(s) hereby declare that generative AI technologies such as Large Language Models, etc. have been

used during the writing or editing of manuscripts. This explanation will include the name, version, model,

and source of the generative AI technology and as well as all input prompts provided to the generative AI

technology

Details of the AI usage are given below:

1.

2.

3.

References

1. Emmanni, P. The Role of TypeScript in Enhancing Development with

Modern JavaScript Frameworks // International Journal of Science and Research

(IJSR). - 2021. - Vol. 10 (2). - pp.1738-1741.

2. RaniM. Intelligent Coding Using TypeScript // Interantional journal of

scientific research in engineering and management. - 2023. - Vol. 7 (11). - pp. 1-3.

3. Wu Z. et al. Hidden inheritance: an inline caching design for TypeScript

performance //Proceedings of the ACM on Programming Languages. – 2020. – Vol. 4.

– no. OOPSLA. – pp. 1-29.

4. Merkel M. Do TypeScript applications show better software quality than

JavaScript applications?: a repository mining study in GitHub : dis. – 2021.

5. Bogner J., Merkel M. To type or not to type? a systematic comparison of

the software quality of javascript and typescript applications on github //Proceedings

of the 19th International Conference on Mining Software Repositories. – 2022. – pp.

658-669.

6. Chadalawada A. Static Taint Analysis via Type-checking in TypeScript.

– 2023.

7. Cristiani F., Thiemann P. Generation of typescript declaration files from

javascript code //Proceedings of the 18th ACM SIGPLAN International Conference on

Managed Programming Languages and Runtimes. – 2021. – pp. 97-112.

8. Seidel L. et al. Learning Type Inference for Enhanced Dataflow Analysis

//European Symposium on Research in Computer Security. – Cham : Springer Nature

Switzerland, 2023. – pp. 184-203.

9. Safety and Soundness. [Electronic resource] Access mode: https://papl.cs

.brown.edu/2014/safety-

soundness.html#:~:text=There%20is%20a%20good%20reason%20to%20be%20susp

icious%20of%20a%20type%20system%2C%20beyond%20general%20skepticism.%

20There%20are%20many%20differences%20between%20the%20way%20a%20type

%20checker%20and%20an%20interpreter%20work%3A(accessed date: 10.12.2024).

10. Everyday TypeScript: Type Soundness. [Electronic resource] Access

mode: https://www.executeprogram.com/courses/everyday-typescript/lessons/type-

soundness (date of application: 10.12.2024).

