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A Comprehensive Study on Stability and Data
Dependency for a New Jungck-Type Iteration

ABSTRACT

This study presents a novel Jungck-type iterative algorithm designed to approximate
coincidence points under contractive conditions. The research explores the iterative
algorithm's strong convergence, stability, and data dependency results. Numerical
experiments show that the introduced Jungck-type iterative approach achieves faster
convergence than other Jungck-type methods previously documented in the literature.
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1. INTRODUCTION AND PRELIMINARIES

The Jungck-type fixed-point iteration extends classical fixed-point theory to address
scenarios involving multiple mappings with defined interrelations. This approach
demonstrates particular efficacy in addressing problems in which the interaction between
two operators plays a crucial role, ensuring convergence to a common fixed point under
specific contractive conditions. By expanding the scope of the fixed-point theory to
encompass more complex and hybrid systems, Jungck-type iterations have demonstrated
significant applicability in domains such as optimization, economic modeling, and coupled
differential equations. Recently, substantial advancements have been achieved in both the
theoretical analysis and numerical exploration of various explicit iterative techniques [1-9].

Consider (W, |||) be a Banach space, V an arbitrary set, J,H : V — W be arbitrary non-self

mapping with HV) < J(V), J(V) is a complete subspace of W, and a, € V.
For a, € [0,1], Singh et al. [4] defined the Jungck-Mann iterative scheme as follows:

Jani = (1 — ay)ja, + a,Hay,. (1.1)

Olantinwo [5] defined the Jungck-Noor (J-Itrl) iteration scheme as
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J, =(1-u,)da, + u,Ha,,

Jb, =(1-5,)Ja, +,Hc,, (1.2)
Ja,,, =(1-4,)Ja, + 4,Hb,,

where {1} o {00} oo+ 14 neo < [0.1]

A new three-step iteration process, known as the Jungck-Khan (J-1tr2) method, was
proposed by Khan et al. [6] as follows

Je, =(1- u, ) Ja, + u,Hay,
I, =(1-5, - 4,)Ja, +5,Hc, + 4, Ha,, (1.3)
Ja,,, =(1-6, - 7,)Ja, +6,Hb, +y,Ha,,
where  {u,}" A8} A4 A6}, and {r}  <[0,1], satisfying {5,}  +{4} .
{0} +{rah o <[01]:

To demonstrate the strong convergence of both the Jungck-Mann and Jungck-Ishikawa
iterative process, Olatinwo and Imoru [7] introduced the following contractive definition

||Hu—Hv||s2/3||Ju—Hu||+ﬂ||Ju—Jv|| vu,veV, 0<p8<L (1.4

In [8, 9], building on result (1.4), Olatinwo showed the stability and strong convergence of
various iterative techniques. This was achieved by employing a more comprehensive
contractive condition, which is represented as

||Hu - Hv|| <y (”Ju - Hu||) + ,B”Ju - Jv” vu,veV, 0<p8<], (1.5)

where the monotonically increasing function i : R" — R™ satisfying  (0) = 0.

Definition 1 ([10]). Consider V a non-empty set and J,H:V - W be two mappings. A
coincidence point exists when J(v) = f = H(v) for some v in V, and the associated value f
is referred to as the point of coincidence or coincidence value of J and H. If J(v) = v = H(v)
for an element v in V then v is called the common fixed point of J and H. The pair (J,H)
commutes at the coincidence point, and is said to be weakly compatible.

Definition 2 ([11]). Consider the operators J,H : V - W suchthat HV) c J(V) and Jv = f =
Hv, where f is a point of coincidence of J and H. Suppose a, € V is the initial approximation,
g is some function, and {Ja,}m, € W, be the sequence converges to f, generated by an
iterative procedure

]an+1 :g(Hian) ;n:0,1,2, PR

Let {Jh,}x_o € W be an arbitrary sequence. Set
Pp =9 —g(H.N). n=012,...
Then, the iterative procedure Ja,,, = g(H,a,)Iis said to be stable iff lim p,, = 0 implies
n—oo
lim Jh, = f.

n—-oo

Lemma 1 ([12]). If B € [0,1) and sequence of positive numbers {wy,}mo With lim w, =0,
n—-oo

then for every sequence of positive numbers {u, };_,, which satisfies

Uppr S Puy+ w,, n=012,..
one has lim u, = 0.

n-oo
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Definition 3 ([6]). Assume an arbitrary set V and the non-self mapping pairs
(J,H),(J,Hy): V »> W with HWV) € J(V) and H, (V) < J,(V). If for fixed &; > 0 and &, > 0, and
for all v € V, one gets

m(Hv, H;v) < g,

m(Jv,J;v) < &,
then, (J;, H,) is said to be an approximate mapping pair of (J, H).

This paper presents a novel Jungck-type iteration algorithm for determining the coincidence
points of contractive-type mappings. The proposed method exhibits an enhanced
convergence rate and stability compared to the already existing Jungck-type iteration
approaches. Additionally, we have derived data dependence findings for our newly
introduced process.

We now define our novel Jungck-type iteration (New-Itr) scheme, as follows:
For a, € V, the sequence {Ja,}»_, in W is given by

S 1
Jd, =—Ja, +—Ha,,
s+1 s+1

3 = ha ~thd

"o e M (1.6)
Jb = Jc, + Hc_,

"ogrl " oger "
‘]an+1 = an

where s > 1 and s’ > 0 are real numbers.

Remark. If we put V =W, and J is identity operator in (1.6), then we get the following
iteration outlined in [13, equation(18)]:

1 sa,+Ha
b,==| (s+1)Ha,—-H| ———" | |,
ns(< Han-H[ 01 jj

1.7
s'bn+an] (1.7

an1=H
n+l ( s'+1

where s > 1 and s’ > 0 are real numbers.

2. MAIN RESULTS

Theorem 2.1. Consider (W,||) a Banach space and V be an arbitrary set. Suppose J, H:V —
W be non-self mappings with H(V)c J(V), and J(V) is a complete subspace of W.
Suppose J and H have a coincidence point v, (i.e., Jv = f = Hv) and also J, H satisfies the
contractive condition (1.5) with g < \/ig Let {Jan}:’:0 be the new iteration process defined by
(1.6). Then, {Ja,}
point f provided that V = W and H,] are weakly compatible.

is strongly converges to f. Moreover, (J, H) has a uniqgue common fixed

Proof. We shall prove that lim ja, = f. Using (1.6), one has
n—oo
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Jod, ~ 1] =

1
s+1 s+1

£—||Jan - f||+—||Han —Hy|,

1
<9, = 1l v (19—l + B3, -],

S+
=—""|Ja — f|. 2.1
— 18] (2.0
Now,
Joc, -~ £1= " e, —H:l”—fH,
s+1 1
=22 (Ha, - f)-=(Hd_ - )|,
e, 1)-3(d, - 1)
<L+1||Ha Hy]+ 2 [Hd, — v,
S n
1
<y (Jav- )+ 5193, - 3]+ 2 ag, - v
—ﬁ(s”)uJa f1+2 0, 1]. @2)
Substituting (2.1) in (2.2), we obtain
e !
_ 1 s+p _
—ﬂ(1+s+s(s+1)j||Jan f]. (2.3
Also,
S 1
90, - £1= s'+1 s+1 " H
sf_'||Jcn _ f||+|i||ch ~Hy,
1
<—||Jc - ||+—[ (v = Hv])+ B 3c, —Jv||]
-2 L43e, - 1] (2.4)
And;
a,,, — ]| =[Hb, - Hv],
< |, — 1|, (2.5)

By using (2.3), (2.4); (2.5) yields
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oo 27 (52 ) 2o S - 1],

s'+1 s s(s+1)

(5181, 1, s+8 )| 1y
S(ﬂ[gwi]@+s+s@+ﬂjJ 92 = 11l (26)

Since, s = 1,s" > 0; and Osﬂ<i,we have

Ng)
0<s+ﬁ

—~ <1 and 0<1+l+ S
s+1 s s(s+1)

Hence,

ﬂﬂéiﬁj@+l+ S+P j<L

s'+1 s s(s+1)

and therefore

) ﬂ l S+ﬂ n+l B
(ﬂ [s‘+1)[1+s+s(s+1)ﬂ —>0asn— oo,

Therefore, (2.6) implies that Lim||‘]an+l - f|=0.

Hence, {Ja,}  convergesto f.

To demonstrate that f is the unique common fixed point of H and J, assume that v and v,
are coincidence points of H and J such that Hv = f = Jv and Hv, = f; = Jv,, where f; is
another point of coincidence of H and J. Applying the contractive condition (1.5), we have:

|f =t =Hv=Hu] < plav=dv] <[ f -],

this leads to a contradiction. Hence, f; = f means point of coincidence is unique. Given that
H and | are weakly compatible, we have
Hf = HHv = Hjv = JHv = Jf.

which implies Jf = f = Hf. This verifies that H and J have f as the point of coincidence.
The uniqueness of the point of coincidence indicates that f is a unigue common fixed point
of H,].

Theorem 2.2. Let / and H be the same as in Theorem 2.1, and {Ja,} be the iteration

n=0

scheme generated by (1.6) converging to f. Then {Jan} is (J, H)- stable.

Proof. Suppose {Jpn}(::0 cW be an arbitrary sequence, such that
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H, = ”mel - an " '

where anzli\]rﬁlilHr Jr, _S—+1Hp —thn, and Jh, :_Jpn+i Hp, .
S'+

1 S+ S S S+ s+1
To prove that the iterative scheme (1.6) is (J, H)-stable; we have to show that lim x, =0 if

and only if limJp, = f.
Let lim 4, =0. We have

"‘Jpn+l - f" = "‘Jpn+1 —Haq, +Haq, - f”’
< [9p,.2 —Ha, |+ [Ha, - £
= Ha +"an - f"'
< 1, + B, - ]. 27)

s' 1
= Jr +—Hr —f
9o, f1= 5+1Jr+s+l " H

< o= £l -
1
< g0 = F v (19v =)« o135 - ],

-y, - 1], @9)

With ease; similar to estimate (2.3); one can get

_ 1,548 _
|, f||Sﬂ(1+S+S(S+1)j||Jpn fl. (29)

Substituting (2.8) and (2.9); estimate (2.7) yields

1
199, — ] < 1, + = “ﬂ e 11 (2.10)
S

As f° (S+ﬁj l +B <1, using Lemma 1; inequality (2.10) yields Ilme =f.
s'+1 S ( + )

Conversely; let limJp, = f .
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Hy, = ||‘]pn+1 - an"'
:"‘]pn+1_ f+f- an"’

< 9pn.. = ]+ [Ha, - £

< ||‘]pn+1 - f||+ﬁ (

By taking limit as n — oo of both sides of (2.11), we get lim g, =0.

s+ 4
s+1

S+ pf
—+S(S—+:L)]"Jpn = f"

(2.11)

Theorem 2.3. Let (J,H) be the same as in Theorem 2.1, and (J;,H;) be an approximate
mapping pair of (J, H) according to Definition 3 such that J; (V) is complete in W. Suppose

hv=fi
fand {J;

Suppose that {J,e

= H,v. Consider {Ja,

en}::0 be the sequence defined by

‘]len+1: 1gn’
J,9,=—3Jh +— ! H.h
I | s+1 "
s+1 1 ..
Jh =—=H,e —=H,i_,
1''n S 1~n 5 1'n
. S 1
Jji=——Je +——H.e.
sl M g1 M

n}n:() converges to f;. Then; we have

”f_f|r<6(%f*ﬂ32)
< ———===.

1-3p°

Proof. Using (1.6) and (2.12), we have

||‘]len+1 - Jan+1|| = "ngn - an"'

S "ngn - Hgn||+||Hgn -
<&, +y(|b, ~ Hb,|)+ £dg, - Jb
W)+ 5199, -

Now,

H‘Jlgn -

S€1+!//(

1gn||+ﬁ||‘llgn _‘]bn ’

<g +¢//(||an - an||)+ﬁ52 +£)3,9,-3b,|.

<5 o, -
s'+1

< on, -
s+1

g
<—J;h
s#lHl"

siHJ h, -

LB

S
7—41Jm +

1

JcH+

JcH+

—JCHH+.—5

JCH+

1

=y

s+1 s+1 s+l

——H ——Jc, ———Hc
s'+1

ng
thH+iHth_Hc I

ﬁ
(o, He )+ Lofon, - 3c, )

(HJC —Hc, H)+—(HJh =3[+ [3:h, -3

(HJc—HcH)+ S L)an, - sc,).

c|).

, be the iteration scheme generated by (1.6) converging to

(2.12)

(2.13)

(2.14)
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Also,
9., - 3c, || = S+1H —3H|—S—+1Ha+ Hd,
<L+1HHe HanHJerHliandnH,
1 . . .
< S|, e, [+ |He, — Ha, )+ ([, ~ Hiy |+ i, - Hel )
< 28D 2L (133, - Ha )+ (S”)HJE—Ja [+ 2 (J9d, ~ i, )+ £ i, - 30,
S+2 s+1 1 1 S+1
<ECD 54 ((0a, - Ha )+ Sy (194, - Hdnu)+@<uaen—alenuwulen—aanu>
+7(HJI _‘] InHJrH‘]lln_JdnH)’
<BE2 SR (j9a, ~Ha )+ Sy (Jod, - H )+ 22 e, P Dy ga - Bpaj e ) 2as)
And,
S 1 S 1
Ji —Jd ||= Je +—He ———Ja ———Ha |,
[, =3, s+1 7" s+l " s+l " s+l "
S
<T1"Jle"_‘]a""+s [H.e, —Ha,|,
S 1
< m"‘]len _‘]an ||+_(||H1en - Hen ||+||Hen - Han ")’

1o (P -Ha ||)+—||Je —Ja,|,
s+1+mw("Ja ~Ha ll) o, —da )+ L (106, - g+, - a,]).
21 s+
- Ja, -H 22203, - Ja. 2.16
<S+l+S+l v (|92, ~Hay]) + +18 * 3+1" €~ 9, (2.16)

By combining (2.13), (2.14), (2.15) and (2.16), we get

BE+As+2) . Bs+B)

H‘]len+1

B (5+/3)[ 5+ﬁjHJe

a, .| < $510) +1+—£= -Ja H+gl+s—1

1 s(s+1) at s(s+1)(s+1)
2
e+ L, (Ss:s/i)l(;* ) 2+S(S+(1s)(*s {”')1) o+ (|90, =)+ L (J36, - e, )
/3(8+ﬂ) B /3(8+ﬂ) _
+ D s+1+s+] (|92, —Ha, ])+ w (|9d, - Hd, ). (2.17)

Since,s > 1,s'>0,and B < 13 then (2.17) yields

19,6, — Ja,.,[ <387 ., — Ja, |+ 6(s, + Be,) +w (| Ib, = Hb, )+ (| Ic, — He, )

(s+1+%) (198, — Hay )+ y (|30, - Ha, ). (2.18)

Now,
|[Ja, —Ha,||<||Ja, — f[|+] f —Ha,|.
<|Ja, - f ||+1//(||Jv— Hv||)+ B9, = v,
=(1+p)|3a, - f. (2.19)
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Given that, !Lru”Jan - f|=0, equation (2.19) yields !iﬂ”;lan —Ha,||=0, which subsequently
leads to !,ij‘;‘/’("Jan —Ha,[)=0
Also,
9d, —Hd, [ <]3d, = £+ f —Hd,,
<(1+p)]3d, - f],
<o) - 1+ e, - 1)

<(1+) [ j||Ja ). (2.20)

Since, lim|JJa, - f| =0, equation (2.20) yields lim|Jd, -Hd,||=0, which further implies
lim l//("‘]dn - Hdn") =

Similarly,
[Je, —He, || <|l9¢, — f[|+]|f —Hc, |,

(1 ), - 1]
(1) b, - 1+ -Ha |

(1) 23, - )+ Ljaa, - 1)),

B(s+1) ,B(s+ﬂj
1+ Ja, — f|. 2.21
e e B 2y
Given that, Iim||Ja - f||=0, equation (2.21) yields lim|Jc, —Hc,|=0, which further implies
limy (3¢, - He,[[) =0
And,

"‘]bn - an " < ”‘]bn —f ||+|| f— an”’
<(1+ )], - f].

s(l+ﬁ)§(%)(s +1+%}||Jan = (2.22)

Since, lim|Ja, - f|=0, equation (2.22) yields lim||Jb, —Hb,|=0, which subsequently leads
to limy (b, — Hb,[}) =
As limJa, = f and IlmJe = f.

nN—o0
Taking limit n - o and using above facts, (2.18) yields
|f—f.|<38%|f —f.|+6(s + Be,)
which further gives
6(g + Pe,)
fofllc "2
" 1" 1_3ﬂ2
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To check out the numerical feasibility of Theorem 2.3, the following example has been
provided.

Example 2.4. Consider V =[0,1] and H,] : V - W is defined by H(v) = 5% and T(v) = &

7
1
satisfy the contractive condition (5) when (v) = vz and 8 = 0.2. Define operators H, and J;

as Hy(v) = =" and J;(v) = . It is clear that H(v) € J(), H,(v) € (), H1) = J(1) =2 = f

4 4 16
and H; (g) =/ (g) = = fi- We have rggng — H;| =0.257 = & (say) and TSVXU -1l =
0.857 = ¢, (say). Obviously, (H,,J;) is an approximate mapping pair of (H,J). With initial
approximation v, = 0.5 and s =9,s’' = 1—10 the iteratives schemes {Ja,;1}ne0 and {J;a,41}ne0
converges to S and g respectively as shown in Table 1 and the graphical convergence is
shown in Fig. 1. The values of the operators H(v), H;(v), J(v), and J,(v) displayed in Table
2 corresponding to different values of v € V and also the graphical representation of the
values of Table 2 is provided in Fig. 2(a) — 2(b). Therefore, we have the estimate:
6(e1 + Bey)

022 =|f - fil £ ———%—=2.92.
F = Al <5

Table 1. Comparison of Ja,,; and J,a, 4 iterations.

Iterations Jan1 Jians1
0 0.42857 0.40000
1 0.85423 0.64207
2 0.85703 0.64007
3 0.85703 0.64007
4 0.85703 0.64007
5 0.85703 0.64007

0.8 » + * h ®
g 0.6l L L i
g
2 04l
g -@- Ja, .
- 0.2 - J18551

0.0 I I L L =

1 2 3 4 5 6
Number of Iterations
Figure 1. Graph for Table 1.
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Table 2. Values of Operators on [0,1].

v H(v) H,(v) J) J1(v)
0. 0.71429 0.80000 0.00000 0.00000
0.1 0.72857 0.78000 0.08571 0.08000
0.2 0.74286 0.76000 0.17143 0.16000
0.3 0.75714 0.74000 0.25714 0.24000
0.4 0.77143 0.72000 0.34286 0.32000
0.5 0.78571 0.70000 0.42857 0.40000
0.6 0.80000 0.68000 0.51429 0.48000
0.7 0.81429 0.66000 0.60000 0.56000
0.8 0.82857 0.64000 0.68571 0.64000
0.9 0.84286 0.62000 0.77143 0.72000
1. 0.85714 0.60000 0.85714 0.80000
Y7 AR R N B B 08l
% 0.80F @
£ £ 06;
g 0.75 5
= =
S s 041
@ 0.70F @
S 065 S 02
0.60- | ‘ ‘ | . 0.0 ‘ ‘ . ‘ ‘
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 08 1.0
Variable (v)-values Variable (v)-values
— H(v) Mapping —— Hy(v) Mapping =— Jv) Mapping =—— Jj(v) Mapping
Figure 2(a). Graph for Operators H and H;. Figure 2(b). Graph for Operators J and J;.

3. NUMERICAL EXAMPLES

To assess the effectiveness and capabilities of the proposed iterative approach thoroughly, it
is crucial to examine a wide array of mathematical challenges with varying levels of
complexity. By implementing the proposed iteration technique across these diverse equation
types, we seek to not only verify its broad applicability but also acquire a more
comprehensive understanding of its advantages and constraints when tackling intricate, real-
world scenarios.

Example 3.1. Consider the equation
v2—10 =3v
Let V = [5,7] c R be equipped with a standard metric. Establish H,J : [5,7] - [15,40] with
a coincidence point 5 by Hv =3v and Jv = v? — 10. Evidently, H([5,7]) € J([5,7]) and
J([5,7]) is a complete subset of [15, 40]. Assume the initial guess as v, = 7. Table 3
presents a comparative analysis of the convergence rates for the J-trl, J-1tr2, and New-Itr
methods towards the point of coincidence, and a graphical representation is shown in Fig. 3.
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Table 3. Comparison of iterative algorithms for Example 3.1. with s =9,s" = 1—10 and a, =B,

~ Jamy
Iterations J-ltrl Ja, J-tr2 Ja, 11 New-ltr Ja, 1

0 39.00000 39.00000 39.00000
1 15.50300 —9.14960 15.62000
2 15.01300 29.05400 15.02000
3 15.00500 11.43500 15.00100
4 15.00300 14.82800 15.00000
5 15.00200 14.96800 15.00000
6 15.00100 14.99100 15.00000
7 15.00100 14.99700 15.00000
8 15.00000 14.99900 15.00000
9 15.00000 14.99900 15.00000
10 15.00000 15.00000 15.00000
11 15.00000 15.00000 15.00000
12 15.00000 15.00000 15.00000

40t

': --@-- J-itr1
‘.“‘_ --W-- J-ltr2

30 '.‘-‘ - - -4~ - New-ltr
g 20 ‘
§ ‘--_5-0---“-.‘0--;:.—---c---—-t—-—-u----u—-------------a----tj
g 10+ . : L2l )

0 e

10+ .

Y T
Number of iterations
Figure 3. Graph for Table 3.

Example 3.2. Consider the transcendental equation as

e’ =Sinv + 2
Let V =[0,2] c R be equipped with a standard metric. We define H,J : [0,2] - [0, 8] with a
coincidence point 1.054127 by Hv = 2 + sinv and Jv = e". Evidently, H([0,2]) € J([0,2])
and j([0,2]) is a complete subset of [0,8]. Suppose the initial guess v, = —1.5. A
comparative study of the convergence between J-ltrl, J-Itr2, and New-Itr to the point of
coincidence is shown in Table 4, and a graphical representation is shown in Figure 4.
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Table 4. Comparison of iterative algorithms for Example 3.2. with s =9,s’ =% and

anzﬁnz),nzanzlnz

1

Ja+n)

Iterations J-ltrl Ja, 11 J-1tr2 Ja, 11 New-ltr Ja, 1
0 0.22313 0.22313 0.22313
1 2.63990 3.63310 2.60050
2 2.86810 2.04090 2.86710
3 2.86900 3.07580 2.86950
4 2.86930 2.85580 2.86950
5 2.86940 2.86810 2.86950
6 2.86940 2.86920 2.86950
7 2.86940 2.86940 2.86950
8 2.86940 2.86940 2.86950
9 2.86940 2.86950 2.86950
10 2.86950 2.86950 2.86950
11 2.86950 2.86950 2.86950
12 2.86950 2.86950 2.86950

3.5 -;

30 “-‘._,___":'_“:;..____‘_____._____.____.____,_____._____.____.

2.5 .',,’*” "‘ ’
S0 W
g 1.8 --@-- J-ltr1

1.0 . - M- - J-ltr2

::.. - -4~ - New-Itr
L
-
0.00
2 4 6 8 10 12
Number of iterations
Figure 4. Graph for Table 4.

4. CONCLUSION

We introduced an innovative Jungck-type iterative method, and examined its strong
convergence, stability, and data dependence characteristics followed by non-trivial
examples. Furthermore, computational experiments indicated that the proposed method
demonstrates a superior convergence speed compared to several established iteration
techniques.
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