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Short Research Article 

Quasi-Matroid on connectivity system 

 
Abstract: Matroids are versatile concepts with applications across optimization theory, combinatorial 
mathematics, topology, algebra, graph algorithms, game theory, geometry, and network theory, garnering 
substantial interest. Quasi-matroids, as defined in reference [7] (cf. [8]), represent a conceptual 
extension of matroids, known for their generalized nature. In this concise paper, we introduce the 
concept of quasi-matroids on a connectivity system and discuss the relationship between quasi-matroids 
and linear decomposition. 
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1. Introduction 
Graph theory is a fundamental branch of mathematics that focuses on the study of networks formed by 
nodes and edges, examining their paths, structures, and properties [39]. A crucial metric within this field 
is the "graph width parameter," which measures the width of a graph. This parameter represents the 
maximum width across all cuts or layers in a hierarchical decomposition of the graph and is essential for 
analyzing the complexity and properties of a graph's structure. 
 
The concept of the width parameter holds a significant place within the realm of graph theory. Among its 
various iterations, linear-width has garnered considerable attention, undergoing extensive exploration not 
only within graph theory but also across disciplines such as network theory, topology, geometry, and 
combinatorial mathematics. Scholars have dedicated ample research efforts to investigating linear-width 
and its related parameters (see, for instance, [1-6, 15-30]). 
 
Matroids are mathematical structures that generalize the notion of linear independence in vector spaces. 
They provide a framework for optimization and combinatorial problems, characterized by a ground set 
and a collection of independent subsets satisfying specific axioms. Matroids, versatile concepts with 
applications spanning optimization theory, combinatorial mathematics, topology, algebra, graph 
algorithms, game theory, geometry, and network theory, have garnered substantial interest. Numerous 
studies have delved into this subject matter (see, for example, [9-14,31-33]). 
Quasi-matroids, as defined in reference [7] (cf. [8]), represent a conceptual extension of matroids, known 
for their generalized nature.  
 
In this paper, we embark on an exploration of the relationship between quasi-matroids on connectivity 
systems and linear-width. At first glance, the idea that seemingly unrelated concepts can become 
relevant when considered within the context of a connectivity system is both profound and surprising. 
 
2. Preparation 

This section provides mathematical definitions of each concept. 
First, we explain the basic notation used in this paper. In this paper, we use expressions like A ⊆ X 

to indicate that A is a subset of X, A ∪ B to represent the union of two subsets A and B, both of which 
are subsets of X, or A = ∅to signify an empty set. Specifically, A ∩ B denotes the intersection of subsets 
A and B. A similar logic applies to A \ B.A∈X indicates that A is an element of X.∀means "for all" or "for 

every." ∃ means "there exists." 
 
2.1 Symmetric submodular function and connectivity system 
A symmetric submodular function demonstrates symmetry and adheres to the principle of diminishing 
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returns, often applied in optimization and decision-making contexts, as well as in graph theory and 
discrete mathematics. The definition of a symmetric submodular function is provided below. 
 
Definition 1: Let X be a finite set. A function f: X → ℕis called symmetric submodular if it satisfies the 
following conditions: 
· ∀A⊆X, f(A) = f(X\A). 
· ∀A, B⊆X, f(A) + f(B) ≥ f(A∩B) + f(A∪B). 
 
A symmetric submodular function satisfies the following lemma. 
Lemma 1 [15,16]: A symmetric submodular function f satisfies 
1. ∀A⊆X, f(A) ≥ f(∅) = f(X), 
2. ∀A, B⊆X, f(A) + f(B) ≥ f(A\B) + f(B\A). 

In this short paper, a pair (X, f) of a finite set X and a symmetric submodular function f is called a 
connectivity system. The concept of a connectivity system is commonly employed when discussing 
graph width parameters. And we use the notation f for a symmetric submodular function, a finite set X, 
and a natural number k.  

2.2 Quasi-Matroids on Boolean algebra (X,∪,∩) 
First, we explain matroids. A matroid is a mathematical structure that generalizes the notion of 
independence in linear algebra. 
The definition of matroid onBoolean algebra (X,∪,∩) is shown below. Axiom (MB2) is frequently 
recognized as the hereditary property, whereas axiom (MB3) is commonly referred to as the 
augmentation property or independent set exchange property. 

Definition 2: In Boolean algebra (X,∪,∩), the set family M⊆2Xis called a matroidif the following axioms 
hold true: 
(MB1) ∅∈ M, 
(MB2) if A ∈ M and B ⊆ A then B ∈ M, 
(MB3) if A, B ∈ M, |A| < |B| then there exists e ∈ B \ A such that A ∪ {e} ∈ M. 
 
The conjunction of axiom (MB1) and axiom (MB2) defines a combinatorial notion known as an 
independence system, which is also referred to as an abstract simplicial complex on Boolean algebra. 
 
Next, let's explain Quasi-Matroids. Quasi-Matroids, as defined in reference [7] (cf. [8]), represent a 
conceptual extension of Matroids known for their generalized nature. A quasi-matroid Q is characterized 
as a pair (E, I), where E is a simplicial complex on Boolean algebra and I is a matroid on Boolean 
algebra such that I is a subset of E. Following condition is essential for defining the relationship between 
the simplicial complex and the matroid. 
(MB4) For each pair (X, M) ∈ E × I such thatM⊂ X and Y ∉ I for any M ⊊ Y ⊆ X, if 
e ∈∪E with M∪{e}∈ E, then X ∪{e}∈ E. 
 
2.3.Quasi-Matroids on a connectivity system (X,f) 
We explain about Quasi-Matroids on a connectivity system (X,f). 
First, we explain matroid on a connectivity system (X,f). 
 
Definition3 [29]:Let X be a finite set and f be a symmetric submodular function.In a connectivity 
system(X,f), the set family M ⊆2Xis called a matroid of order k+1 on (X,f) if the following axioms hold 
true: 
(M0) For every A ∈M, f(A) ≤ k, 
(M1)∅∈ M, 
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(M2) if A ∈ M, B ⊆ A, and f(B) ≤ kthen B ∈ M, 
(M3) if A, B ∈ M, |A| < |B| ,e ∈X, f({e})  ≤ k, and f(A ∪ {e})≤ k, , thene ∈ B \ A such thatA ∪ {e} ∈ M. 
 
Furthermore, let us define an order k+1 matroid M ⊆ 2Xon connectivity system (X,f) as an Ultra Matroid 
on a connectivity system (X,f) if it satisfies the following Axiom (M4): 
(M4): For any subset A ⊆ X, if f(A) ≤ k, then either A ∈ M or X\A ∈ M. 
 
The combination of axiom (M0), axiom (M1) and axiom (M2) establishes a combinatorial concept called 
an independence system on a connectivity system, also known as an abstract simplicial complex on a 
connectivity system. Axiom (M4) mirrors the concept of Ultrafilters, asserting that "either a set A or its 
complement belongs to the (Ultra)filter." 
 
Next, let's explain quasi-Matroids on a connectivity system. Let X be a finite set and f be a symmetric 
submodular function. A quasi-matroid Qon a connectivity system (X,f) is characterized as a pair (E, I), 
where E is a simplicial complex on a connectivity system and I is a matroid on a connectivity system 
such that I is a subset of E. The following condition is crucial for establishing the connection between the 
simplicial complex and the matroid within a connectivity system.  
The definition of Boolean algebra is extended to encompass conditions for symmetric submodular 
functions, which then become axioms on the connectivity system (X, f). 
(M5) For each pair (X, M) ∈ E × I such that M ⊂ X and Y ∉ I for any M ⊊ Y ⊆ X, if 
e ∈∪E with M ∪{e} ∈ E, f({e}) ≤ k, f(X ∪{e})≤ kthen X ∪{e} ∈ E. 
 
Furthermore, let us define an order k+1 quasi-matroid M ⊆ 2Xon connectivity system (X,f) as an Ultra 
Quasi-Matroid on a connectivity system (X,f) if it satisfies the following Axiom (M4): 
(M4): For any subset A ⊆ X, if f(A) ≤ k, then either A ∈ M or X\A ∈ M. 
 
2.4 Linear tangle 
Linear tangle, which obstructs Linear branch-decomposition, was first introduced in the literature [1]. A 
linear branch-decomposition is a method for organizing a graph into a linear structure. Each node in the 
decomposition represents an edge of the graph, and the arrangement helps measure the graph's width. 
This approach simplifies the analysis of the graph's properties and complexity. As stated in the 
introduction, the study of linear branch-decomposition is important, and therefore, the study of linear 
tangles is also considered significant. In this paper, we investigate the relationship between linear 
tangles and quasi-matroids. 
 
The definition of a linear tangle on a connectivity system (X,f)  is given below.  
 
Definition 4 [1]: Let X be a finite set and f be a symmetric submodular function. A linear tangle of order 
k+1 on a connectivity system (X,f) is a family L  ⊆2X, satisfying the following axioms: 
(L1) ∅∈L 
(L2) A ⊆ X, f(A) ≤ k ⇒  either A ∈M or X\A ∈M. 
(L3) If A,B∈L, e∈X, and f({e})≤k, then A∪B∪{e}≠X holds. 
 
In this article, we suggest leveraging the augmentation property inherent in Quasi-Matroids, a defining 
characteristic, by introducing the following axiom (L3') in place of (L3). We designate a linear tangle of 
order k+1 on a connectivity system (X,f) fulfilling axioms (L1), (L2), and (L3') as a restricted linear tangle 
of order k+1. 
(L3’) If A,B∈L, |A|≠|B|, e∈X, and f({e})≤k, then A∪B∪{e}≠X holds. 
 
3 Main Theorem 
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The main theorem in this paper is as follows. It is surprising that the seemingly unrelated concepts of 
linear tangles and quasi-matroids have the following relationship. 
 
Theorem 2:Let X be a finite set and f be a symmetric submodular function.Under the assumption that 
f({e})≤k for every e ∈ X, the family W⊆2X being anorder k+1 restricted linear tangle and W⊆2X being 
anorder k+1 ultra Quasi-matroid are equivalent necessary and sufficient conditions. 
Proof: First, we show that W satisfies the axioms (L1) and (L2) of a restricted linear tangle. Since W is 
an ultra quasi-matroid of order k+1, it satisfies Axiom (M4), which implies that for any subset A ⊆ X, if 
f(A) ≤ k, then either A ∈ W or X \ A ∈ W. In particular, for the empty set ∅, we havef(∅) = f(A) ≤ k, and 
hence ∅∈ W. Moreover, if A ⊆ X and f(A) ≤ k, then either A ∈ W or X \ A ∈ W by Axiom (M4), which 
shows that W satisfies Axiom (L2) as well. 
Next, we prove that W satisfies the axiom (L3’) of a restricted linear tangle. Let A, B ∈ W and e ∈ X be 
such that f({e}) ≤ k. We need to show that A ∪ B ∪ {e} ≠ X. Suppose, on the contrary, that A ∪ B ∪ {e} 
= X. We choose a triple (A,B,{e}) that minimizes |A ∩ B| among such triples. First, we claim that A ∩ B = 
∅. Since 2k ≥ f(A) + f(B) ≥f(A \ B) + f(B \ A), at least one of f(A \ B) or f(B \ A) is at most k. Without loss of 
generality, assume that f(A \ B) is at most k. Hence, by axiom (M2), A \ B ∈ M. If A ∩ B ≠∅, then we have 
|A ∩ B| >|(A \ B) ∩ B|, which contradicts the choice of the triple. Thus, we have shown that A ∩ B = ∅. 
Next, we claim that e ∉ A and e ∉ B. Suppose, on the contrary, that e ∈ A or e ∈ B. If e ∈ A, then A ∪ 
B = X, which implies that X \ A = B ∈ M, but this contradicts the axiom (M4). Similarly, we know that e ∉ 
B holds. Now, we know that the triple (A,B,{e}) consists of a partition of X. Hence, we havef(A ∪ {e}) = 
f(X \ B) = f(B) ≤ k. If |A| < |B|, by axiom (M3) there exists e' ∈ B \ A such that A ∪ {e'} ∈ M. This 
contradicts that there not exists e' ∈ B \ A such that A ∪ {e'} ∈ M because the triple (A,B,{e}) consists of 
a partition of X. If |B| < |A|, by axiom (M3) there exists e'' ∈ A \ B such that B ∪ {e''} ∈ M. This 
contradicts that the triple (A,B,{e}) consists of a partition of X.SoW satisfies the axiom (L3’). 
Therefore, we have shown that W satisfies all the axioms (L1), (L2), and (L3’) of a restricted linear tangle. 
Hence, W is a restricted linear tangle of order k+1 on the connectivity system (X,f). 
 
Assume that f({e}) ≤ k for every e ∈ X and let W be a restricted linear tangle of order k+1 on the 
connectivity system (X,f). We will show that W satisfies the axioms of an ultra quasi-matroid of order k+1 
on the connectivity system (X,f). 
(M0) For any A ∈ W, we have by definition of a restricted linear tangle that f(A) ≤ k, hence (M0) is 
satisfied. 
(M1) Since ∅ is an element of W by definition of a restricted linear tangle, it is also an element of W, 
hence the axiom (M1) is satisfied. 
(M2) Let A ∈ W, B ⊆ A, and f(B) ≤ k. We need to show that B ∈ W. Suppose, to the contrary, that there 
exist subsets A and B such that A ⊆ B, f(A) ≤ k, B ∈ W, and A ∉ W. Then, we have X \ A ∈ W by the 
axiom (L2), and for any e ∈ X, (X \ A) ∪ {e} ∪ B = X holds, but this contradicts the axiom (L3’) of a 
restricted linear tangle. So the axiom (M2) is satisfied. 
(M4) For any subset A ⊆ X, if f(A) ≤ k, then either A ∈ M or X \ A ∈ M. This directly follows from the 
definition of a restricted linear tangle, satisfying (L2). 
(M5) Let (X,M) ∈ E × I such that M ⊂ X and Y ∉ I for any M ⊊ Y ⊆ X. If e ∈∪E with M ∪ {e} ∈ E, then 
X ∪ {e} ∈ E. Suppose, on the contrary, that there exists (X,M) ∈ E × I such that M ⊂ X and Y ∉ I for 
any M ⊊ Y ⊆ X, and e ∈∪E with M ∪ {e} ∈ E, but X ∪ {e} ∉ E. By (M4), we have either X ∪ {e} ∈ E 
or (X ∪ {e}) \ (X ∪ {e}) = ∅∈ W, contradicting (L2). 
Therefore, W satisfies all the axioms of an ultra quasi-matroid of order k+1 on the connectivity system 
(X,f). This proof is completed. 
 
4 Future tasks 
This section briefly outlines the future directions of this study. 
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We plan to explore the concept of feeble matroids [31] within the framework of connectivity systems. 
Additionally, we aim to investigate their relationships with fuzzy matroids [34–37] and neutrosophic 
matroids [38]. 
 
Data Availability 
This research is purely theoretical, involving no data collection or analysis. We encourage future 
researchers to pursue empirical investigations to further develop and validate the concepts introduced 
here. 
 
 
Ethical Approval 
As this research is entirely theoretical in nature and does not involve human participants or animal 
subjects, no ethical approval is required. 
 
Disclaimer 
This work presents theoretical concepts that have not yet undergone practical testing or validation. 
Future researchers are encouraged to apply and assess these ideas in empirical contexts. While every 
effort has been made to ensure accuracy and appropriate referencing, unintentional errors or omissions 
may still exist. Readers are advised to verify referenced materials on their own. The views and 
conclusions expressed here are the authors’ own and do not necessarily reflect those of their affiliated 
organizations. 
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