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Study of the Distribution of Available Phosphorus in Soils Using Various GIS-Based 
Spatial Interpolation Methods 

 

Abstract 

The study, conducted from January, 2022 to December, 2024 at Jawaharlal Nehru 
KrishiVishwaVidhyalaya, Jabalpur, Madhya Pradesh (482004), India. We have collected two 
thousand two hundred sixteen (2216) Global Positioning System (GPS) based soil samples 
from depth of 0–15 cm from farmer's field of the Kymore Plateau and Satpura Hills zone of 
Madhya Pradesh, India. Laboratory analysis showed that the available P content ranged from 
1.11 to 117.7 kg ha⁻ ¹ (mean: 10.64 kg ha⁻ ¹). Significant correlations were found between 
pH, electrical conductivity (EC), organic carbon (OC), and P (r = 0.073). 

The stud aimed to identify the most suitable interpolation method for mapping 
available P in soils, employing three geo-statistical (Ordinary Kriging, Simple Kriging, and 
Empirical Bayesian Kriging) and three deterministic methods (Radial Basis Function, Local 
Polynomial Interpolation, and Inverse Distance Weighting), as well as two barrier-based 
methods (Kernel Smoothing and Diffusion Kernel).Geo-statistical results indicated OK(Box-
Cox) spatial interpolation method for estimating available P distribution in soils which 
followed exponential modelwith ranges of 3652.22 meters,  nugget values of 16.90 and a N/S 
ratio of 0.47 which showed moderate spatial dependency.Among the methods tested, 
Empirical Bayesian Kriging (EBK) provided the most accurate estimates of Olsen P 
distribution, followed by Ordinary Kriging (OK) and Simple Kriging with Box-Cox 
transformation. 
Keywords: Phosphorus, Spatial Variability Map, Geo-Statistical,GIS, GPS 

1. Introduction 
 Soil consists of physical, chemical, and biological characteristics, all of which play a 
vital role in maintaining fertility. Soil fertility plays a crucial role in determining agricultural 
productivity, and the availability of phosphorus is vital for energy transfer, root development, 
and overall plant metabolism (Saito et al., 2019). Soil, being a complex and heterogeneous 
medium, exhibits significant variations over short distances.In the domain of soil science 
(Khallouf et al., 2020; Criado et al., 2021), geo-statistics plays a crucial role in understanding 
the spatial variability of soil parameters. 
 The issues of P have become increasingly critical due to their complex reactions and 
transformations in the soil, as well as the small amounts available in the soil. The spatial 
distribution of P is often uneven due to factors like soil type, climate, land management 
practices, and parent material. Understanding this variability is crucial for developing site-
specific nutrient management strategies to optimize fertilization and improve crop production 
(Kaur et al., 2020). Imbalances in soil nutrients can adversely affect crop productivity, 
making the systematic assessment and crucial for effective soil management which helps 
farmers to determine the type of crop yield that can be expected under specific soil 
conditions.Understanding nutrient variability in soil provides a scientific basis for effective 
nutrient management in agriculture. 

The application of spatial interpolation and geo-statistical techniques has been 
recommended in varied scientific fields for parameter distribution in soil sciences (Brus et 
al. 1996; Bourennane et al. 2000; Bishop and Mcbratney 2001; Robinson and 
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Metternicht 2006).The spatial distribution of soil parameters at the unsampled sites could not 
be determined using the traditional statistical approach. Therefore, geo-statistics is an 
effective technique for analysing the spatial distribution of soil attributes and also for 
significantly reducing the variation of evaluation error and associated costs (Davis et al., 
2009; Nickel et al., 2014; Bhunia et al., 2018; Fischer et al., 2021).Geo-statistical methods 
such as kriging, are particularly useful in analyzing spatial patterns and modeling the 
variability of soil properties (Goovaerts, 1997).Geo-statistics also recommended for 
mappingand identifying areas requiring specific interventions (Kumar et al., 2021, OpenShaw 
and Clarke, 2019; Wang and Liu, 2023). 

The geo-statistical analysis aids in characterizing spatial variability (AbdelRahman et 
al., 2020), creating spatial models (Zakeri and Mariethoz, 2021), and making reliable 
predictions (Kingsley et al., 2019) of soil properties at unsampled locations. Modern geo-
statistical tools and techniques, such as semivariograms, spatialauto-correlogram, and various 
interpolation approaches, are employed to assess the spatialvariability (Gokmen et al., 2023; 
Khan et al. 2021) of soil properties.In contrast, classical statistical techniques typically rely 
on descriptive statistical tools like mean, median, mode, coefficient of variation, etc., to 
measure soil property variability without considering its spatial dependence on the sampling 
point. However, they fail to adequately explain the continuous spatial variability pattern. Key 
tools of geostatistics (Gangopadhyay and Reddy, 2022) include variogram, kriging 
interpolation, spatial uncertainty, and crossvalidation.  
  Madhya Pradesh, located in central India, is known for its diverse agro-
climatic zones, including the Kymore Plateau and Satpura Hills, which have distinct soil 
characteristics and agricultural practices. This zone is characterized by varying topography, 
climate, and soil types, leading to differential nutrient availability across the landscape. 
However, information on the spatial variability of available P in this region remains limited. 
Understanding the spatial distribution of P in thearea can help farmers and agronomists adopt 
more efficient nutrient management practices, improving agricultural sustainability and 
productivity.This study aimed to assess the spatial variability of available P in the soils that 
can aid in the targeted management of P for improved soil fertility and crop productivity. 
2. Materials and Methods 
2.1. Location of study  

The investigation was performed from January, 2022-December, 2024 at Jawaharlal 
Nehru KrishiVishwaVidhyalaya, Jabalpur, Madhya Pradesh (482004), India. The Kymore 
Plateau and Satpura Hill Zone in central Madhya Pradesh, India encompassing the districts of 
Jabalpur, Katni, Seoni, Panna, Rewa, Sidhi, Singrauli, and Satna, was selected for this study. 
Located between 21° to 24° north latitude and 79° to 83° east longitude, this region exhibits 
diverse geographical features (Figure 1). The zone showed significant variation in 
physiography, soil types, rainfall, irrigation practices, and cropping patterns across different 
areas. The region receives an annual rainfall ranged from 1000–1400 mm.  
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Figure 1: Sampling sites in the study area 

2.2. Sample collection and analysis 

 In the off-season of 2022–2023, a total of 2216 soil samples at 0–15 cm depth were 
collected from farmers' fields using GPS. The soil samples were air dried to remove moisture, 
crushed with a wooden hammer and sieved through a 2 mm mesh. The available phosphorus 
in soilextracted by 0.5 M sodium bicarbonate (NaHCO3) with a pH of 8.5 and with the help 
of spectrophotometer assessed the intensity of the blue colour at a wavelength of 660 nm by 
Olsen et al. (1954).  

2.3 Statistical analysis: 

Data was calculated such as mean, median, minimum, maximum, standard deviation (SD), 
skewness and kurtosis in order to recognize how data is distributed and each soil 
characteristics were examined during descriptive statistics. 

 

2.4 Spatial interpolation analysis in GIS-Environment 
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 Geo statistics is a branch of statistics focusing on spatial or spatiotemporal datasets. 

The main tool in geo statistics is the semi variogram, which expresses the spatial dependence 

between neighboring observations. The semi variogram quantifies the relationship between 

the semi variance and the distance between sampling pairs by the following equation 

λ(ℎ) =
1

2ܰ(ℎ)
 [Z(X୧)
ே()

ୀଵ

− Z(X୧ + h)]ଶ 

Where N (h) is the number of all pair-wise Euclidean distances, and z (xi) and z (xi+h) are 

observations of the variable Z at spatial locations xi and xi+h, respectively. 

2.4.1 Semi-variogram parameters 

The semi-variogram parameters, the nugget, the sill and the range. Nugget (C0) 

represents the measurement and data errors or random spatial sources of variation at distances 

smaller than the sampling interval or both and represents the value of the initial variability. 

Range (a) is the distance where the semi-variogram reaches the total sill (C0 + C1) and after 

that distance, there is no spatial correlation of the data. Sill is the value that the semi-

variogram reaches the range and represents the maximum variability, while partial sill is the 

sill minus the nugget (C1-C0). The use of the nugget-sill ratio (C0/C0 + C1) was applied for the 

estimation of the spatial dependence of the variables (Jerosch 2013; Adhikary and 

Dash 2017; Tziachris et al. 2017). A ratio of less than 25% means strong spatial dependence, 

while a ratio between 25 and 75% indicates a moderate spatial dependence and a ratio over 

75% shows a weak spatial dependence (Cambardella et al. 1994). 

 
Fig.2 Workflow for sample acquisition and geo-statistical interpolation 

2.5 Spatial interpolation analysis in GIS-Interpolation methods 
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 Three geo-statistical techniques (OK, SK and EBK) , three deterministic (IDW, RBF 
and LPI) algorithms and two interpolation with barriers (Kernel smoothing and Diffusion 
Kernel) were implemented to interpolate the available P in soils.The Box-Cox transformation 
normalizes the data, stabilizing variance and improving the fitness of the model. 
2.5.1Deterministic models 
2.5.1.1 Inverse Distance Weighting (IDW): 
 IDW is one of the most widely used deterministic (mechanical) interpolation methods 
in soil researchwhich combines multivariate statistical analysis with GIS. This method 
assumes that the measured values at a closer distance have greater weight than those further 
away. The influence of a known value is inversely related to the distance from the unknown 
data point. Consequently, this method gives greater weights to values closest to the prediction 
position and the weights reduce as a function of distance (Qi et al., 2020). For this work, 
IDW calculations were performed on adjacent observed points. It is implied that the known 
observed points regulate themselves independently of one another (Bhuniaet al., 2018; Saha 
et al., 2022). 

 (݅݀⧵1) 1=݅݊∑ ⧵ (݅݀⧵ܼ݅) 1=݅݊∑ = ܼ
Where ܼ denotes the approximate value at an interpolated point; ܼ݅ denotes the 

computed values at point ݅; ݊ denotes the total number of values obtained in interpolation; ݀݅ 
denotes the distance between interpolated value ܼ and the computed value ܼ݅, and  denotes 
the weighting power.  
2.5.1.2 Radial Basis Functions (RBF):The RBF (also known as Spline) refers to a set of 
precise interpolation techniques that are based on artificial neural networks (ANN)  i.e. input 
layer, hidden layers, and output layer (Johnston et al., 2001; Antal et al., 2021, Ali et 
al. 2021). In addition, RBF can predict values above the maximum and below the 
minimum.The technique includes five distinct basis functions: thin-plate splines (TPS), spline 
with tension (ST), inverse multi-quadratic function (IMQ), completely regularized spline 
(CRS), and multi-quadratic function (MQ). RBF provides predictions about new values based 
on an operator-specified region, and each predicted value must carry through each measured 
value (Xie et al., 2011; Antal et al., 2021).  

 ( ݆݀ )݆ܾ߰ 1=݅݊∑ + (ݔ)݂݅݅ܽ 1=݅݉∑ = (ݔ)
Where ݆݀ represents the distance between each observed sample point and the estimated 
point ݔ, and (݆݀) represents the radial basis functions. The trend function ݂(ݔ) is regarded as a 
component of the basis for polynomials with degree ݉; ݊ is the total number of known points 
considered in the interpolation. In this study, we have assessed the completely regularized 
spline: radial basis functions (RBF-CRS). The following functional equations are used for 
this radial basis function case (Xie et al., 2011).  

(݀) = ln ( ܿ݀ 2 )2 + ߛ + 2 (݀ܿ)1ܧ 
Where ݀ represents the difference between the estimated and observed points, ܿ represents 
the smoothing factor, 1ܧ represents the modified Bessel function, and ߛ denotes the Euler’s 
constant.  
2.5.1.3 Local Polynomial Interpolation (LPI):The LP interpolation method only uses points 
in the predefined neighbourhood to match the specific polynomial order (Saha et al., 2022). 
This technique adjusts a unique polynomial equation for each region based on the maximum 
and minimum observed values, regions, observed neighbourhood types, and kernel types 
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(Johnston et al., 2001; Antal et al., 2021). The purpose of polynomial interpolation is to 
identify a polynomial that can access a group of specified observation points. Overall, a 
global polynomial may cover the entire surface; however, it cannot perfectly match the 
surface when there is more natural variation (Liao et al., 2018). The LP method provides a 
number of advantageous characteristics, including efficiency and the ability to successfully 
detrend data in a variety of geostatistical models (Gribov and Krivoruchko, 2011).  

  ( ܴ݅݀ − 1 ) = ܼ݅
Where ܼ݅ is the mean observed values made at the ݅th measurement point, ݀݅ represents the 
difference between observed and predicted points, ܴ denotes the neighbouring area carried 
into consideration, and  is the order of the polynomial function defined by the operator. 
 Therefore, LPI fits the specified order (zero, first, second and third) using all points 
only within the defined overlapping neighbourhood, which is used as a value for each 
prediction in the fitted polynomial at the centre of the neighbourhood (Johnston et al. 2001). 
GPI is useful for identifying long-range trends in the dataset, whereas LPI can produce 
surfaces that capture the short-range variation. 
2.5.2 Geo-statistical methods:Kriging 
 The Kriging method is based on a sequential interpolation technique that applies a 
semivariogram model to predict unknown values based on distance and variations in 
measured values (Paramasivam and Venkatramanan, 2019). Kriging method is a precise 
interpolation estimator used to find the best linear unbiased estimate. The general form of 
kriging equation: 

Z(ܺ) = λi	Z(x୧)


ୀଵ

 

This estimator has high application due to minimizing of error variance with unbiased 
estimation.  
2.5.2.1 Ordinary Kriging (OK) 
 The basis of OK is a statistical model that includes autocorrelation, or the statistical 
correlations between the observed points. However, geo-statistical algorithms not only have 
the proficiency to generate a prediction surface but also offer some indication of the 
reliability or efficiency of the prediction (Oliver and Webster, 1990;Hu et al., (2016) Ghosh 
et al., (2020).OK emphasizes the function that is spatially associated and represented as the 
following weighted sum of the data:  

 ( ݅ݔ )ܼ݅ߣ 1=݅݊∑ = (ݔ)
 denotes the observed value at (݅ݔ)ܼ ,ݔ denotes the estimated value at point (ݔ) 
position ݅ߣ ,ݔ indicates the weight applied to the residual of ܼ(݅ݔ), and ݊ represents the 
number of sample data utilised at specific points within the neighbourhood. 
2.5.2.2 Simple Kriging (SK) 

In contrast with OK, the application of Simple Kriging (SK) presupposes the assumption of 
stationarity. SK considers µ to be known and constant all over the study area, unlike with the 
OK type, where the µ is unknown and is considered to fluctuate locally, maintaining the 
stationarity within the local neighbourhood (Moral et al., 2010). The equation used for SK 
interpolation is: 

ZSK(xo)=∑i=1NλιZ(xi)+(1−∑i=1Nλι)μ 
where µ is a known stationary mean 

 
2.5.2.3 Empirical Bayesian Kriging (EBK) 



 

7 
 

 EBK is a combination of two geo-statistical concepts: intrinsic random function 
kriging (IRFK) and linear mixed model (LMM) (Schabenberger and Gotway, 2017). In EBK, 
the stochastic spatial process is represented locally as a stationary or nonstationary random 
field and the parameters of the locally defined random field are allowed to vary across space 
(Gribov and Krivoruchko 2020). EBK is a geo-statistical interpolation method that automates 
the most difficult aspects of building a valid kriging model through a process of subsetting 
the study area, coupled with multiple simulations to obtain the best fit (Krivoruchko and 
Gribov 2019). This process finally creates a spectrum of semi-variograms and each of these is 
an estimate of the true semi-variogram for the subset (Pellicone et al. 2018). 

 …… 1 = ݅ ,݅ߝ + ( ݅ݏ) = ܼ݅
2.5.3 Interpolation with barriers 
2.5.3.1 Kernel smoothing interpolation with Barrier is the variance of the first-order local 
polynomial interpolation method, which uses methods similar to those used in ridge 
regression. As a moving window predictor, the kernel interpolation model uses the shortest 
distance between two points, and points located on the arbitrary side of a specified absolute 
line barrier are connected through a series of straight lines. However, the kernel interpolation 
method without absolute barriers has higher smoothness at the contour line of the interpolated 
surface. KIB consists of six different kernel functions, including Exponential, Gaussian, 
Quartic, Epanechnikov, Polynomial and Constant function. The Polynomial function was 
used in this study as a kernel function, with the degree of the polynomial being the default 
value 1, and other parameters remaining default. 
2.5.3.2 Diffusion Interpolation with Barrier (DIB) uses a kernel interpolation surface based 
on the heat equation and allows the distance between input points to be redefined using raster 
and element barriers. In the absence of barriers, the estimations obtained by diffusion 
interpolation are approximately identical to those by kernel interpolation with a Gaussian 
kernel. 
2.6 Performance metrics 
 In this study,the performance metrics like RMSS (Root Mean Square Standardized 
Residuals), RMS (Root Mean Square Error), and ASE (Average Squared Error). It is ideal to 
have the RMSSE close to one. If the RMSSE > 1, then it indicates a general under-estimation 
in the inconsistency of the estimated/ predicted variable. If the RMSSE < 1, then it indicates a 
general overestimation in the inconsistency of the estimated/predicted variable. ASE 
measures the arithmetic average of the prediction standarderrors. It represents the error 
magnitude showing the method’s accuracy.MSE provides the average of the standardized 
errors. The value of MSE is better if it is close to 0  
3. Results and Discussion 

3.1. Status of available P content in soil 

The result presented in Table 1 showed that the Olsen phosphorus content ranged 

from 1.15 to 95.18 kg ha-1, 1.11 to 96.3 kg ha-1,1.11 to 117.17 kg ha-1, 1.73 to 50.05 kg ha-1, 

1.44 to 53.52 kg ha-1, 1.44 to 27.19 kg ha-1, 1.19 to 50.67 kg ha-1 and 1.44 to 67.12 kg ha-1, 

with a mean value of 13.32, 11.2, 11.03, 10.88, 9.77, 9.32, 9.22 and 8.92kg ha-1 in soils of 

Jabalpur, Satna, Sidhi, Seoni,  Panna, Katni, Rewa and Singraulidistrict, respectively. The 

available Pcontent in districtsexhibited the 



 

8 
 

orderJabalpur>Satna>Sidhi>Seoni>Panna>Katni>Rewa>Singrauli.Overall,availableP content 

in the Kymore Plateau and Satpura hill zone ranged from 1.11 in Satnato 117.7 kg ha-1in 

Sidhiwith amean 10.64 kg ha-1. 

The CV of 87.38, 51.83, 64.66,  52.81, 74.29, 92.16,72.90, and 99.61 % indicating 

substantial heterogeneity in soils ofJabalpur, Katni, Panna,Seoni,  Rewa,Sidhi, Singrauli and 

Satna district, respectively. The high kurtosis value (8.08) suggests that the data distribution 

is leptokurtic, with a higher peak and more outliers than a normal distribution. The skewness 

value of 2.24 indicates a right-skewed distribution, meaning that the phosphorus in Jabalpur 

are generally clustered toward the lower end, but with a few areas exhibiting higher P 

concentrations. This could be indicative of relatively uniform agronomic practices and soil 

conditions across the district. In the Sidhidistrict a skewness of 6.20, indicating an extremely 

right-skewed distribution. The very high kurtosis value (58.13) suggests a distribution with 

very pronounced peaks and heavy tails. The skewness of 3.83 indicate strong skew. The high 

kurtosis value (19.56) further suggests a distribution with a sharp peak, implying that while 

most of the phosphorus concentrations are low, there are several areas with higher values. 

Panna and Seoni exhibited skewness values of 2.52 and 2.42, respectively, indicating right-

skewed distributions;High variability was evident, as reflected by the standard deviation (SD) 

of 8.61 and a CV of 80.96%, indicating a significant spread of P availability across the 

region. 

Table 1: Status of available P (kg ha-1) in soils of Kymore Plateau and Satpura hills zone 

Kymore Plateau & 
Satpura Hills Zone (n) 

Available P (kg ha-1) 
Min Max Mean SE SD CV% Kurtosis Skewness 

Jabalpur (379) 1.15 95.18 13.32 0.6 11.64 87.38 8.08 2.24 
Katni (220) 1.44 27.19 9.30 0.32 4.82 51.83 1.54 1.00 
Panna (301) 1.44 53.52 9.77 0.36 6.32 64.66 11.09 2.52 
Seoni (300) 1.73 50.05 10.88 0.33 5.74 52.81 10.96 2.42 
Rewa (284) 1.19 50.67 9.22 0.41 6.85 74.29 6.05 2.07 
Sidhi (210) 1.44 117.17 11.03 0.70 10.17 92.16 58.13 6.20 
Singrauli (222) 1.44 67.12 8.92 0.44 6.50 72.90 29.51 3.96 
Satna (300) 1.11 96.30 11.20 0.64 11.15 99.61 19.56 3.83 
Overall (2216) 1.11 117.17 10.64 0.18 8.61 80.96 26.63 3.81 

 
 The high variability might be associated with differences in soil types, land use 
practices, and fertilizer application patterns. The relatively high phosphorus levels in some 
areas of Jabalpur could indicate localized soil conditions that promote better phosphorus 
availability, such as the presence of less P-fixing soil types.Lower phosphorus availability in 
Katni could be due to specific soil properties, such as high acidity, that limit the phosphorus 
availability to crops. The relatively uniform phosphorus levels across the district may also 
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reflect uniform agronomic practices.The higher available phosphorus in Sidhi could be due to 
the application of phosphorus-rich fertilizers or the presence of phosphorus-rich parent 
material. However, the high variability suggests that not all areas are equally enriched with 
phosphorus, highlighting the need for localized management.The lower P status may 
necessitate targeted interventions, such as phosphorus fertilization or soil amendments, to 
optimize crop yields in SingrauliSatna, Soils in this region likely suffer from high P fixation 
or low phosphorus content due to poor soil fertility management and the inherent 
characteristics of the local soils. The results on soil phosphorus availability in study area 
highlights the variability in P content due to factors like soil type, land use, and management 
practices. For instance, a study by Raghuwanshi et al. (2023) reported with mean P values in 
the range of 9-12 kg ha⁻¹ in central Indian soils. Desavathu et al. (2017) Maqbool et al. 
(2017) Sharma et al. (2021) andVerma et al. (2022) who also revealed that P, contents was 
low in  the cultivated land. 
3.2 Nutrient status in soils 

Data given in Table 2 showed that the P status in soils were about 52.77, 62.27, 62.13, 

71.83, 61.00, 51.00, 60.00 and 70.27; 28.50, 34.09, 32.56, 19.01, 29.00, 44.00, 30.48 and 

25.67 and 18.73, 3.64, 5.32, 9.15, 10.00, 5.00, 9.52 and 4.05 soil samples were observed to be 

low, medium and high, respectively. The nutrient index value of 1.66, 1.41, 1.43, 1.37, 1.49, 

1.54, 1.50 and 1.34 for P in Jabalpur, Katni, Panna, Rewa, Satna,Seoni, Sidhi and Singrauli 

districts, respectively. The P deficiency, is common in tropical and subtropical soils, where 

phosphorus is often fixed by iron and aluminium oxides, rendering it unavailable to plants, 

potassium deficiencies, despite its relatively high abundance in many soils, can still limit 

plant growth due to the high leaching rate in regions with high rainfall,Gupta& Joshi (2020). 

Similar observations were made by Yadav et al. (2023), who found diverse phosphorus 

distributions in the region, suggesting the need for targeted nutrient management strategies 

based on local soil fertility levels. 

Table 2.Available P status insoils of Kymore Plateau and Satpura hill zone  
Kymore Plateau 

and Satpurahill(n) 
Percent sample 

Low Medium High NI 
Jabalpur (n=379) 52.77 28.50 18.73 1.66 

Katni (n=220) 62.27 34.09 3.64 1.41 
Panna (n=301) 62.13 32.56 5.32 1.43 
Rewa (n=284) 71.83 19.01 9.15 1.37 
Satna (n=300) 61.00 29.00 10.00 1.49 
Seoni (n=300) 51.00 44.00 5.00 1.54 
Sidhi (n=210) 60.00 30.48 9.52 1.50 

Singrauli (n=222) 70.27 25.67 4.05 1.34 
Total(n=2216) 60.74 30.46 8.79 1.48 

 

3.3Correlation between soil physico-chemical properties and available P in soil 
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Data on correlation Table 3revealed significant relationships between soil pH, 
electrical conductivity (EC), and organic carbon with phosphorus (P) content. Specifically, 
soil pH, EC, and organic carbon showed positive correlations with P (r = 0.073**, r = 
0.068**, r = 0.133*), respectively. These results align with findings from Bania et al. (2024) 
who reported significant relationships between soil organic carbon and the availability of P in 
soils, highlighting the importance of organic matter in enhancing nutrient availability. Jadon 
et al., 2023 and Chen et al., 2020 found significant relationship among soil physic-chemical 
propertieson available P. 

Table 3 Correlation matrixbetween soil physico-chemical properties and available P 
 

Parameter pH EC OC 
EC 0.435** 
OC -0.055** 0.029NS 
P 0.073** 0.068** 0.133** 

*= significant at 5%, **= significant at 1%,       NS = Non significant 

3.4Comparison between different spatial interpolation methods 
 Comparative study between the deterministic, geo-statistical approaches and 
interpolation with barrierswas applied and the performance of each interpolation method 
given in Table 4, 5and 6.Figure 4  provides a comparison of various interpolation methods 
and highlighted key metrics like Mean, RMSS, RMS, MS and ASE.  

Table4 Selection value of input data for each interpolator 
Name Trans. Kernel Function  

(order) 
Others parameters 

Deterministic models 
IDW None  Min 10 and max 15 neighbors Sector 1 
RBF None CRS Min 10 and max 15 neighbors Sector 1 
LPI None Exponential (1)  
Geo-statistical methods -Kriging 
OK None  Min 2 and max 5 neighbors and 4 

Sectors with 45° offset 
OK Box cox   Polynomial5(2) Sector 1 Bandwidth47245.12 
SK Box cox  Polynomial5(2) Bandwidth47245.12 
EBK None   Transformation -Empirical Min 10 and 

max 15 neighbors sector 1 Semi 
variogram types Exponential Detrended 
Radius (7043.764) 

Interpolation with barriers 
Kernel 
smoothing (KS) 

None Exponential(1) (ridge 50) smoothing factor 0.2 and 
radius bandwidth 13881.05 

Diffusion 
Kernel (DK) 

None Gaussian Bandwidth 19470.42 (Iteration 100) 

 
 In the Figure 3 indicatedthat standard OK, the exponential semi-variogram structure a 
significant range (16,020.91 m). The nugget-to-sill(N/S) ratio of 0.58 is relatively high. The 
OK with Box-Cox transformation showed a reduced range of 3,652.22 m. The nugget 
(16.907) is also smaller, while the partial sill is slightly higher (19.055). The N/S ratio of 0.47 
is lower than that of the untransformed OK, suggesting that the Box-Cox transformation has 
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improved the model's ability to account for spatial variability and reduced the influence of 
unmodeled random noise.Molla et al., (2023) include the exponential model which aid in 
capturing the spatial correlation structure and are fundamental for accurate predictions and 
spatial analysis (Mondal et al., 2021). 
 
Table 5 Semi-variogram parameters for each interpolation method  
 

Kriging Type  Model Range(a) 
(m) 

Nugget 
(Co) 

Partial sill 
(C1) 

Sill Nugget-Sill 
ratio 

OK (none)  Exponential 16020.91 26.428 18.550 44.978 0.588 
OK(Box-cox)  Exponential 3652.22 16.907 19.055 35.962 0.470 
SK(Box-cox)  Exponential 5598.37 19.213 19.711 38.924 0.494 

 
 Fig.3Variogram parameters fitted to the data of available P in soils  

 
 
 The SK method with Box-Cox transformation exhibits a range of 5,598.37 m, which 
is intermediate between the untransformed OK and OK-Box-Cox models. The nugget 
(19.213) is slightly higher than that in OK-Box-Cox, and the partial sill (19.711) is slightly 
greater as well. The N/S ratio of 0.494 reflects a moderate proportion of spatial variability 
being explained by the model.The nugget-to-sill ratios, which quantify the proportion of 
unexplained variation relative to the total spatial variability, are lower in the transformed 
models (0.47 and 0.49 for OK-Box-Cox and SK-Box-Cox, respectively) compared to the 
untransformed OK (0.588). This suggests that the Box-Cox transformation helps in reducing 
the influence of noise and unexplained variability, leading to more reliable and interpretable 
predictions. 
  
 

Table 6 Parameters of accuracy of prediction 
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Method Mean RMSS RMS MS ASE Regression 
function 

Deterministic models 
IDW -0.0210  6.182   0.2446 x + 7.1080 
RBF -0.0557  5.957   0.1828 x + 7.8105 
Local polynomial 0.0119  5.972    0.1603 * x + 8.1764 
Geo-statistical methods - Kriging 
OK -0.0150 0.969 5.951 -0.0021 6.149  0.1862* x + 7.8329 
OK (Box cox) 0.0105 1.007 5.96 0.0016 5.917  0.2109 * x + 7.6234 
SK(Box-cox) 0.0112 0.986 5.900 0.0018 5.986 0.1891* x + 7.8425 
EBK -0.0327 0.989 5.774 -0.0050 5.784 0.2110* x + 7.6629 
Interpolation with barriers 
KS 0.0460 1.021 5.986 0.0080 5.888  0.1873* x + 7.9432 
DK 0.0230  6.163   0.0617* x + 9.1502 

 
Deterministic models 
 IDW showed a mean of -0.021, with an RMS of 6.18, suggesting it has a modest level 
of accuracy. The regression equation derived is 0.2446x + 7.1080. This means it tends to 
over-predict at higher values.RBF demonstrated a mean of -0.0557 and an RMS of 5.957, 
which indicates improved prediction accuracy compared to IDW. Its regression function, 
0.1828x + 7.8105, is indicative of a better fit with a steeper slope than IDW, making it more 
suitable for certain spatial patterns.With a mean of 0.0119 and an RMS of 5.972, the Local 
Polynomial method offers the smallest mean, and it shows improved performance with a 
regression function of 0.1603 * x + 8.1764.  
Geo-statistical methods 
 OK showed mean of -0.0150 and RMS of 5.951 shows that it performs comparably to 
the deterministic models. The regression function of 0.1862x + 7.8329 indicates that Kriging 
accounts for spatial correlation better than deterministic models.With a mean of 0.0105 and 
an RMS of 5.960, OK with Box-Cox model slightly outperforms the standard OK method. 
The regression function 0.2109x + 7.6234 shows a higher sensitivity to changes in x. Simple 
Kriging(SK) method with Box-Cox transformation performed well, with a mean of 0.0112 
and an RMS of 5.900. Its regression function, 0.1891 * x + 7.8425, shows a slight 
improvement over ordinary kriging due to the transformation's ability to better handle skewed 
data.EBK (Empirical Bayes Kriging) provides a robust alternative with a mean of -0.0327 
and an RMS of 5.774, both showing improved accuracy over the traditional Kriging methods. 
Its regression function of 0.2110 * x + 7.6629 suggests a highly adaptive model that might be 
preferable when dealing with uncertain or heteroscedastic data. 
Interpolation with barriers  
 With a mean of 0.0460 and an RMS of 5.986, the KS method provides a slightly 
higher mean error. The regression equation 0.1873 * x + 7.9432 reflects the importance of 
barriers in improving model accuracy in heterogeneous environments. The DK method 
presents a mean of 0.0230 and an RMS of 6.163, which indicates it performs reasonably well. 
The regression function of 0.0617 * x + 9.15029 demonstrates a lower sensitivity to changes 
in x compared to other methods, making it potentially useful in less variable data sets. 
 
 
 
Figure 4. Scatter plots of measured (y-axis) vs. predicted (x-axis) available P values from all 
interpolation methods 
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 From the results, it is evident that EBK stands out due to its ability to provide robust 
estimates under uncertain conditions. Geo-statistical methods usually have a better 
performance than the deterministic ones (Li and Heap 2011; Yao et al. 2014), According to 
Adhikary and Dash (2017) and Wen et al. (2022) RBF outperform the OK method and IDW. 
Zarco-Perello and Simões, (2017) estimated that the IDW outperform the OK method. Qiao 
et al., (2018) recommended that the prediction accuracy of IDW was higher than OK in the 
spatial prediction of As concentration in the soils of Beijing.Guan et al., (2017), Ramzan et 
al., (2017) and Valera et al., (2023) also reported a moderate spatial dependence of P contents 
indicating that P were controlled by both intrinsic and extrinsic factors. Tuncay et al., 2021 
found the OK methods yielded the lowest RMSE values.Bhunia et al., (2018) also proved that 
LPI had higher prediction accuracy than IDW and RBF in the spatial distribution of soil 
organic carbon (SOC). Chen et al (2016) and Daya and Bejari, (2015) calculated that OK is 
more efficient as an interpolator compared with the SK. 
 
 
3.5 Spatial variability map of available P 
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 Geo-statistical analysis was performed using the kriging interpolation technique 
within the spatial analyst extension module in Arc-GIS software package to determine the 
spatial dependency and spatial variability of soil properties. In this analysis, geo-statistical 
tools were applied to model the available P across different methods Figure 5.*Box-Cox 
transformed for normality 
 
Fig.5.Spatial distribution of available Pfrom different spatial interpolation methods 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. Conclusion 

(a) IDW (b) RBF (c) LP 

(d) OK (e) OK* (f) SK* 

(g) EBK (i) DK (h) KS 
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 This study demonstrates phosphorus availability in the Kymore Plateau and Satpura 
Hills Zone, is medium statusand highly variable with some districts exhibitedhigh Pstatus. 
The Box-Cox transformation improved spatial data fitting by reducing unexplained 
variability. Empirical Bayes Kriging (EBK) yielded the most accurate results, followed by 
Ordinary Kriging (OK) and Simple Kriging (SK) with Box-Cox Overall, geo-statistical tools 
provide valuable insights for managing soil fertility and informing agricultural decisions.  
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