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Abstract 
The traveling salesman problem (TSP) is a fundamental combinatorial optimization problem 
with applications in resource management, logistics, and communications. In order to address 
TSP and its differences, this paper discusses developments in Ant Colony Optimization (ACO), a 
biologically inspired algorithm. Inspired by the foraging activity of ants, ACO's decentralized 
and recursive methodology has proven successful in solving difficult routing problems. ACO's 
scalability, convergence speed, and solution quality have been greatly enhanced over time 
through innovations including hybridization with algorithms such as Firefly, genetic algorithms, 
parallel computing frameworks, and adaptation mechanisms. These developments have given the 
ACO the flexibility and efficiency to handle dynamic situations, such as real-time vehicle 
guidance and underwater navigation. Despite its progress, issues remain such as scalability in 
resource-limited contexts, processing overhead, and reliance on parameter modification. This 
work summarizes current developments in ACO, noting how revolutionary the TSP solution is, 
pointing out its drawbacks, and suggesting areas for further study. With the help of cutting-edge 
technologies such as machine learning and quantum computing, ACO has huge potential to 
progressively address challenging real-world problems. This review provides a comprehensive 
framework for developing uses of ACOs and reaffirms their status as a key component of 
improvement research. 

Keywords- Traveling Salesman Problem (TSP), Ant Colony Optimization (ACO), Metaheuristic 
Algorithms, Dynamic Routing, Hybrid Optimization Techniques, Parallel Computing in Optimization, Real-
World Applications of ACO. 

Introduction 
In combinatorial optimization, the Travel Salesman Problem (TSP) is one of the most difficult 
and well-researched problems. It is an NP-hard problem that finds the fastest way for a travel 
salesman to a set of cities precisely once and then back to the starting point. The practical 
importance of this topic extends to industries where efficient routing and allocation of resources 
is critical, including manufacturing, bioinformatics, logistics, and telecommunications [1]. 
Although TSP is a straightforward formula, its computational complexity requires the application 
of heuristics and methods to find near-optimal solutions. Ant colony optimization (ACO) is one 
such technique that has become very popular [2], [3]. Developed by  [1]in the 1990s, ACO is 
based on the foraging behavior of ants, which use pheromone trails to collectively explore and 
optimize routes. This biologically inspired method has shown great potential in tackling a range 
of optimization problems, especially TSP and its variations. However, traditional CCOs suffer 
from some drawbacks such as slow convergence and weakness in the face of local optimal 



 

 

conditions. The pheromone mutation and reconfiguration techniques pioneered by [4],[5] were 
among the early developments that effectively mitigated some of these problems. Hybrid 
strategies have been more effective tools for improving CCO performance in recent years. 

For example in [6] combined ACO with the Firefly algorithm, achieving higher convergence 
time and solution quality, while [7] used ACO with mutation techniques to optimize DNA 
sequencing workloads. ACO can now efficiently handle large-scale problems thanks to 
parallelism, which has increased its application. Studies by [8],[2]have shown how parallel ACO 
can be used in real-world applications because it reduces computation time without sacrificing 
solution accuracy. Adaptive mechanisms have improved the flexibility of ACO in dynamic and 
constrained situations. Examples of such mechanisms are the dynamic parameter tuning 
frameworks proposed by [9],[10]. These advances have demonstrated that ACO is a highly 
flexible algorithm that can handle the challenges of truck routing, logistics, and other real-world 
applications [11],[12]. Even with these advances, some limitations still exist. According to 
[13],[14], hybrid models often lead to increased computational cost, and parameter tuning 
remains a major hurdle to maximizing ACO performance. Future studies should address the 
scalability and complexity of TSP by leveraging quantum computing, machine learning-based 
parameter automation, and lightweight hybrid frameworks [15],[16],[17]. Addressing these 
issues would help ACO maintain its position as a core component of optimization research. This 
review study examines the evolution of ACO and its applications to TSP, identifies its 
limitations, and outlines possible avenues for innovation. By combining the findings of previous 
research, this work helps to fill knowledge gaps and encourage further progress in this important 
area of improvement studies. 

Theoretical Framework 

The Traveling Salesman Problem (TSP)It is a well-studied reference problem in 
combinatorial optimization due to its practical importance and computational difficulty. The goal 
is to determine the quickest way for a seller to travel to a group of cities at once and then return 
to the starting location.The complexity of solving this seemingly simple task increases with the 
number of cities, making it NP-hard. TSP is used in a variety of fields where efficient resource 
allocation and direction is essential, including bioinformatics, robotics, telecommunications, and 
logistics [1]. Ant colony optimization (ACO) has been a prominent approach among heuristic 
and metaheuristic approaches due to the inability of traditional methods to scale well to large 
problem sizes [4],[13] as shown in Figures 1 and 2. 



 

 

 

 

 

Ant Colony Optimization (ACO) 

Ant Colony Optimization (ACO),It's a biologically inspired metaheuristic algorithm that mimics 
the way ants eat in the wild. In their natural environment, ants use pheromones—chemicals that 
signal routes between their colony and food sources—for indirect communication. As more ants 
use shorter, more effective pheromone trails, it gradually strengthens the colony and leads it in 
the direction of the best solutions. Using artificial ants to explore the solution space and using 
pheromone trails and heuristic information to iteratively build high-quality solutions, ACO 
computationally simulates this process [1], as shown in Figure 3. 

 

Figure 1: The Traveling Salesman Problem 
(TSP) is represented on a map with red 
pathways signifying the shortest path and 
nodes representing cities. 

Figure 2: A condensed TSP graph 
that effectively connects every 
node using the shortest path. 



 

 

Figure 3: The Five ACOs Discovered Two Ideal Routes[13]. 

In the ACO framework, artificial ants move around a graphical representation of the problem 
space, choosing paths in a probabilistic manner by combining problem-specific heuristic values 
and pheromone intensity. Three basic elements are the foundation of an ACO: 

Pheromone Trails 

The desirability of paths in the solution space is represented by pheromone paths. On their 
travels, artificial ants leave behind virtual pheromones, the amount of which often correlates with 
the titer of the treatment detected. Pheromones gradually dissipate, which reduces their 
effectiveness and promotes research into various methods. This evaporation maintains the 
diversity of the search process and prevents the algorithm from stumbling upon less-than-optimal 
solutions. Improved pheromone updating mechanisms have been used in studies such as those by 
[12] and [4],[5]to improve solution convergence and prevent premature stagnation. [7]used 
mutational techniques to improve pheromone updates, resulting in higher results in domain-
specific applications such as DNA sequencing. 

Heuristic Information 

Ants are given more guidance when choosing a path through heuristic knowledge. Shorter 
distances are preferred in the context of TSP, as indicative values are usually determined from 
distances between cities. Ants are able to balance local and global exploration efficiently using 
this information along with pheromone levels to calculate metamorphosis probabilities. 
According to research by [9]and [10], adaptive heuristic weight ad 

justments are essential to enhance algorithm performance in dynamic problem contexts. 

Exploration vs. Exploitation 

An ACO's ability to balance exploitation (improving existing high-quality solutions) and 
exploration (finding new solutions) is a critical element. Pheromone evaporation rates and the 
effect of signal information are two examples of parameters that regulate this balance. While 
over-exploration can slow the convergence process, over-exploitation can lead to premature 
convergence on poor solutions. According to [2], improving these factors can significantly 
improve the ability of ACOs to solve complex optimization problems. In order to improve 
conflicting goals in routing issues, [14]created a multi-objective ACO framework that adaptively 
modified exploration and exploitation. 

Applications of ACO in Optimization 

ACO is very good at tackling complex optimization problems, especially TSP and its variations, 
because of its decentralized structure, flexibility, and iterative optimization. Studies by [2] and 
[8] have demonstrated the effectiveness and scalability of ACO in practical applications such as 
supply chain management and logistics. [13] used adaptive exploration and ACO techniques to 
balance path stability and profits in a team routing problem (TOP). The utility of the algorithm in 
guiding unmanned underwater vehicles was demonstrated by[14], who addressed issues 
including resource allocation and dynamic constraints. 



 

 

Advancements in ACO 

By incorporating cutting-edge computing methods and hybridizing with other algorithms, ACO 
has seen tremendous development over time. ACO was combined with the Firefly algorithm by 
[6] to improve convergence rates and adjust parameters dynamically. By combining ACO with 
genetic algorithms,[18] increased the power and diversity of their solutions. Applications of 
parallel computing, including those introduced by [8], have greatly enhanced the capabilities of 
ACO and made it possible to compute large-scale problems more quickly. ACO has become a 
mainstay in optimization research by taking advantage of these advances, successfully dealing 
with both theoretical problems and real-world applications. Its continued progress highlights its 
adaptability and importance in resolving a wide range of consensual and practical issues. 

 

Metaheuristic Algorithms in TSP 
Because metaheuristic algorithms can effectively explore and exploit enormous, complicated 
solution spaces, they have become essential tools for solving the Traveling Salesman Problem 
(TSP). Metaheuristics use probabilistic techniques to iteratively improve solutions, in contrast to 
deterministic algorithms that depend on exhaustive search or preset rules. Its adaptability to 
various problem constraints and its ability to escape local optima make it particularly useful for 
NP-hard problems such as TSP [1]. 

Key Features of Metaheuristic Algorithms 

The power, scalability and adaptability of meta-algorithms define it. To traverse the solution 
space, they use strategies including population-based search, heuristic-based routing, and random 
selection. These properties allow metaphysics to achieve a balance between exploitation 
(intensifying searches in promising locations) and exploration (searching in new areas). Some 
well-known meta-methods of TSP annealing (SA), particle swarm optimization (PSO), genetic 
algorithms (GA), and ant colony optimization (ACO) are simulated [2], [9]. 

Ant Colony Optimization (ACO) as a Metaheuristic 

An important metaphysical factor to solve the TSP problem is ACO, which was inspired by the 
feeding habits of ants. Large solution spaces can be explored efficiently thanks to the 
decentralized search process and pheromone-based learning mechanism. ACO also has some 
disadvantages, such as the possibility of early convergence and its sensitivity to changes in 
parameters. To address these issues, researchers have created hybrid algorithms that incorporate 
the benefits of multiple metaheuristics techniques [7],[13]. 

Hybridization with Other Metaheuristics 

By introducing complementary technologies, hybrid MTs improve ACO performance. The ACO 
algorithm and Firefly (FA) were combined into a hybrid algorithm by [6], where the FA 
continuously adjusted ACO parameters to avoid stagnation and accelerate convergence. In large-
scale TSP cases, this integration reduced computation time and improved solution quality. 
Similar to this, [7] improved search diversity and achieved better results in DNA sequencing 
tasks designed by TSP by incorporating mutational techniques into the ACO pheromone 



 

 

updating process. The drawbacks of ACO have also been successfully addressed by combining it 
with genetic algorithms (GA). [18] proposed a hybrid strategy in which refined solutions were 
optimized by ACO and the solution space was diversified using crossover and mutation 
operators in GA. Convergence rates and solution power are enhanced by this synergy, especially 
in dynamic TSP settings. To improve parameter tuning and adapt to changing problem 
constraints, Particle Swarm Optimization (PSO) has also been used with ACO [17],[12]. 

Advantages of Hybrid Metaheuristics 

There are various advantages to metaheuristic hybridization: 

1. Increased convergence speed: The number of iterations needed to produce high-quality 
solutions is reduced when ACO is combined with fast convergence algorithms such as 
PSO [14]. 

2.  Better solution quality: To avoid local optimization and investigate different regions of 
the solution space, hybrid algorithms take advantage of complementary [6]. 

3.  Robustness in dynamic environments: Adaptive approaches allow hybrid algorithms to 
continue working even when faced with various constraints, including changing resource 
availability or flight times [12],[11]. 

 

 

Applications of Hybrid Metaheuristics 

Several real-world applications of TSP have demonstrated the effectiveness of hybrid methanes. 
For example, [13] balanced path stability and profit maximization using a hybrid ACO-FA 
algorithm to solve the team routing problem (TOP). [14] Optimizing flight time and resource 
allocation in unmanned underwater vehicle routing using a multi-objective hybrid ACO 
framework. These experiments demonstrate how hybrid metaheuristics can deal with a variety of 
challenging optimization problems. 

 

 

Optimization Techniques for TSP 
The performance of Ant Colony Optimization (ACO) in solving the Traveling Salesman Problem 
(TSP) has improved significantly over time through advances in optimization techniques. These 
developments address fundamental issues including preventing premature convergence, 
enhancing the level of solutions, and dynamically adapting to problem boundaries. From simple 
problems to complex real-world applications, ACO's cutting-edge capabilities have allowed it to 
successfully handle a wide range of TSP variables[2]. 



 

 

 

Figure 4: How ants locate food in the wild [2]. 

 

Pheromone-Based Strategies 

The key to the effectiveness of an ACO is the administration of pheromones. Artificial ants leave 
behind pheromone trails that guide further search iterations, encouraging the search for better 
solutions while discouraging the pursuit of less useful methods. However, fixed pheromone 
updating techniques may cause suboptimal solutions to converge too early. Improved 
pheromone-based tactics have been created to solve this problem: 

 Mutation-enhanced pheromone updates, introduced by[4], provide more diversity in the 
search and stasis-avoidance process. The algorithm can avoid local optima and search for 
alternative routes by regularly changing pheromone levels. 
 

 In [8] suggested resetting pheromone levels at regular intervals while conducting research. 
This method preserves ACO's exploratory capabilities over the long term by preventing the 
algorithm from being too biased toward a single solution path. 

 
 Quality-based pheromone deposition: In order to ensure that high-performance solutions 

receive further enhancement, [7] Tailor-made deposition of pheromones in proportion to 
solution quality. The ability of the algorithm to recognize the best routes and use them 
efficiently is enhanced by this optimization. 

 

 

Local Search Methods 

ACO is frequently used in conjunction with local search strategies to improve results within the 
communities of a given search space. These techniques work on the principle of incremental 



 

 

improvement, which involves making small modifications to an already existing solution to 
increase its quality. The ability of ACO to converge to optimal or near-optimal solutions is 
improved by incorporating local search: 

 2-opt and 3-opt heuristics:[19] showed how to optimize trajectories in TSP situations by 
incorporating 3-opt moves into ACO. This method systematically removes crossings from 
the route, increasing the overall length of the trip. 
 

 Neighborhood exploration: [12] used adaptive neighborhood search strategies in addition to 
ACO, which allowed the algorithm to investigate alternative solutions that were close to the 
optimal solution at the moment. This integration improved convergence rates while requiring 
less computing power. 

 

Figure 5:Height in a one-dimensional space scene is where the objective function exists. 

Adaptive Parameter Tuning 

Adaptability is one of the main advantages of an ACO, and new advances in adaptive parameter 
tuning have made it even more flexible. The performance of conventional ACO may be limited 
in dynamic problem scenarios due to its reliance on fixed factors, such as fixed pheromone 
evaporation rates and heuristic weights. Adaptive parameter tuning effectively adjusts these 
parameters according to the problem condition and algorithm performance: 

• Dynamic evaporation rates:[9] presented a system that adjusts pheromone evaporation rates 
according to the solution quality. Early iterations use lower evaporation rates to enhance 
exploration, while later iterations use higher rates to focus on exploiting interesting paths. 

Heuristic Weight Adjustment: [10]Proposed heuristic weighting methods that adjust the 
relative importance of heuristic information according to mission parameters, such as time limits 
and city density. This ensures that the method will continue to work well in a variety of TSP 
conditions. 

 



 

 

Hybrid Models in ACO 

Overcoming the limitations has become largely possible thanks to hybrid models that combine 
ACO with free algorithms. The efficiency of combining ACO with the Firefly algorithm was 
demonstrated by [6], where the FA actively adjusts the ACO settings to avoid local optimum 
stagnation. ACO was combined with genetic algorithms by [18] to enhance exploration 
capabilities and ensure a variety of solution methods. In order to improve pheromone pathways 
for applications such as DNA sequencing, [7] Integrating mutation techniques into ACO. In 
addition to improving the quality of solutions, these hybrid models increase the scalability of 
ACO, qualifying it to address optimization problems with large constraints and size. 

Dynamic Routing Applications 

Important issues arise from dynamic routing problems, when environmental factors such as 
traffic, time, and resource availability change over time. Due to its versatility, an ACO is the 
perfect choice for these issues.[13]presented strategies to balance path stability and revenue by 
applying ACO to the team routing problem (TOP). A non-supervised sorting ACO (NSMOACO) 
was created by [14] in a similar way to maximize flight time and resource utilization in guiding 
unmanned underwater vehicles. These experiments demonstrate how well ACO can handle real-
world dynamic routing problems. 

 

 

Figure 6: According to the general rule ߩρ, the expected consumer availability difficulty is the 
initial circumstance (initial state), where only six of fifteen clients are available for the service. 

Parallel Computing in ACO 

Ant colony optimization (ACO) has been transformed by parallel computing, which greatly 
increases its scalability and efficiency. When used for large-scale problems, traditional ACO 



 

 

algorithms often face computational difficulties due to their stringent pheromone updating 
procedures and the requirement to evaluate a large number of possible solutions. Researchers 
have overcome these limitations through the use of parallel computing, which allows ACO to 
solve more complex and large-scale problems in an acceptable amount of time. ACO is an 
effective tool for industrial-scale optimization problems because of its incorporation of 
parallelism, which not only accelerates convergence but also maintains or improves the quality 
of the solution. 

The Need for Parallelism in ACO 

Particularly for large-scale cases of the Traveling Salesman Problem (TSP) and its variations, the 
computing complexity of ACO grows exponentially with the problem size. This intricacy results 
from: 

1. Iterative solution construction: Each artificial ant builds an exhaustive solution in each 
iteration, which requires a large amount of computing power. 

2. Pheromone updates: It takes a lot of resources to update the pheromone trails based on all the 
solutions generated. 

3. Exploration of the search space: Since there are many possible paths in large-scale 
problems, exhaustive exploration is not practical. 

Applications of Parallel ACO 

Several industrial-scale optimization challenges have seen the successful application of 
parallel ACO: 

1. Supply chain management and logistics 

In order to optimize delivery routes in large-scale logistics networks taking into account time 
windows and vehicle capacities, [2] used parallel ACO. This technology was able to easily 
handle datasets containing thousands of nodes thanks to the parallel framework, which reduced 
the overall computing time. 

2. Design of communications networks 

Parallel ACO has been used by [8]in the design of communications networks, where capacity 
utilization and latency minimization are crucial. Evaluation of potential network configurations 
was accelerated through parallel execution, producing optimal designs in a fraction of the time 
needed for classic ACO. 

3. Dynamic resource allocation 

[13]provided an example of how parallel ACO can be used in situations involving dynamic 
resource allocation, such as assigning real-time tasks to cloud servers. The algorithm actively 
adjusts to changing resource availability and task priorities by balancing solution production and 
pheromone updates. 



 

 

The advantages of parallel ACO 
 
ACO's incorporation of parallel computing provides several important benefits. 
 

1. Faster convergence: ACO can converge to optimal solutions more quickly thanks to 
parallel execution, which significantly reduces the time needed for each iteration[8]. 

2.  Scalability: ACO is suitable for industrial-level challenges where parallel frameworks 
can manage large data sets and complex problem instances [2]. 

3.  Improved exploration: Parallel ACO maintains search diversity by dividing the 
computation among many processors, reducing the possibility of premature convergence 
[13]. 

 
Literature Review 

Sciannaet al.,[1] A modified version of the ant colony optimization (ACO) algorithm, 
AddACO, is presented in the study to overcome the shortcomings of traditional ACO methods 
for the traveling salesman problem (TSP). The three algorithmic variations involving pheromone 
trajectories, unpredictability, and inertia, as well as the linear convex composition method for 
decision making, are important innovations. The AddACO variations outperform classical ACO 
systems in terms of efficiency and heuristic capabilities, as experimental results on medium- and 
large-scale TSP examples reveal. It also increases the solution quality, computation time, and 
convergence speed. 

Baydogmus et al,[2] This study focuses on using parallel ACOs to deal with the 
increasing computational complexity of TSPs as the number of cities increases. While 
maintaining the quality of the solution, the parallelization technique significantly reduces the 
execution time. By using parallel processing, Baydogmus showed that while more colonies speed 
up the optimization process, they also increase the time complexity. Parallel ACOs can be very 
effective at solving large-scale TSPs, according to the paper, making them suitable for practical 
uses such as transportation and logistics. 

Dou et al., [3] proposed to extend the multiple travel vendor problem with visitation 
constraints (VCMTSP) to include ACOs. This strategy complicates the problem by taking into 
account vendor accessibility constraints. To solve the multiple travel vendor problem with hub 
cities, Chen (2024) modified the ant colony system (ACS) so that many vendors visit the cities 
with the highest demand. This approach balances the length of each agent’s route while 
minimizing travel cost. Both studies demonstrate how ACOs can adapt to complex routing 
situations with additional constraints. 

Ratanavilisagul et al., [4]In this paper, a mutation technique applied to pheromones is 
used to improve the ant colony optimization (ACO) for the traveling salesman problem (TSP). 
The proposed method increases the search diversity without requiring additional evaluation cost 
by introducing mutation whenever the ant colony encounters a local best. Twenty-two maps from 
the TSPLIB library were used to evaluate the effectiveness of this modified algorithm, which 
performed better than previous mutation-based ACO methods and traditional ACO. The results 
demonstrated the ability of the method to avoid local best bests and produce more optimal 
solutions while maintaining computational efficiency. 



 

 

Ratanavilisagul et al.,  [5] In order to overcome the early stagnation of the local optimum, 
this study builds on previous work by introducing an improved ACO algorithm that combines 
binary heuristics and pheromone re-initialization. When ants were stuck, the algorithm used the 
re-initialized pheromones, which greatly enhanced the heuristic capabilities. The method 
outperformed previous versions of ACO, such as multi-colony techniques, in terms of solution 
quality when tested on twenty-three TSPLIB maps. It is a powerful choice for difficult 
optimization problems such as TSP because of the study’s focus on finding a balance between 
computational feasibility and solution diversity. 

Xu et al.,[6] This paper presents a hybrid optimization technique that addresses the 
Traveling Salesman Problem (TSP) by combining Firefly (FA) and Ant Colony Optimization 
(ACO). By optimizing the initial parameters of ACO, FA increases the convergence rate and 
reduces the probability of stagnation in the local optimum. According to experimental data, the 
hybrid algorithm outperforms traditional ACO techniques in terms of path optimization and 
computation time. The method is proven to be adaptable to complex optimization challenges by 
dynamically changing the problem size. This study demonstrates the utility of hybrid 
metaheuristics in enhancing the flexibility and effectiveness of ACO. 

Mandal et al.,[7] Using the Traveling Salesman Problem (TSP) model, this work 
proposed an improved Ant Colony Optimization (ACO) algorithm for DNA sequencing tasks. 
To increase the answer quality and simplify the search process, the method used advanced 
pheromone updating algorithms and mutation procedures. Experimental results demonstrated the 
algorithm’s ability to surpass traditional variations of the TSP in pathfinding accuracy and 
computational efficiency. By optimizing the unique constraints present in DNA sequencing, the 
technique demonstrated exceptional effectiveness in handling complex routing situations. This 
study demonstrated how the TSP can be used to solve highly specialized variations of the TSP 
with domain-specific modifications. 

Fejzagićet al., [8] We investigated the use of parallel ACO to solve large TSP cases in an 
attempt to reduce computation time. Using the Task Parallel Library (TPL), the study found that 
parallel implementation improves the time efficiency of the algorithm while maintaining the 
quality of the answer. Since standard algorithms are too slow for large-scale TSP problems, the 
results demonstrate the suitability of parallel ACO. This study demonstrates the importance of 
using parallel computing to solve complex combinatorial optimization problems. 

Zeng et al., [9] This study presented an improved ACO algorithm using dynamic 
heuristics to solve the Traveling Salesman Problem (TSP) using replenishment arcs. The model 
optimized the utilization of people and equipment in the transportation sector and included 
cumulative travel limits. The results validated the application of ACO to dynamic variations of 
TSP by showing better performance in determining the shortest paths under complex constraints. 

Xu Li et al., [10]proposed the average absolute eigenvalue of the pheromone matrix 
(AAEPM) as a metric for assessing closeness. By analyzing the eigenvalues of the pheromone 
matrix, AAEPM provided a numerical evaluation of the convergence of the algorithm. The index 
demonstrated flexibility across different issue metrics and parameter configurations, providing a 
new viewpoint for tuning and tracking ACO performance. 

Houssein et al., [11]Proposed a strategy to narrow the solution space in order to solve the 
multiple traveling salesman problem (MTSP). Efficiency was given top priority in this method 
with the distribution of vendors to cities and scheduling of their trips. Its greater performance in 



 

 

reducing trip expenses and processing time has been proven through comparative trials, 
demonstrating its usefulness for real-world uses including resource allocation and logistics. 

Sheng et al., [12]proposed SOS-MMAS, a hybrid approach that optimizes solutions to the 
Traveling Salesman Problem (TSP) by combining the Max-Min Ant System (MMAS) with Search for 
Symbiotic Organisms (SOS). This technology optimizes important elements such as guiding weight and 
pheromone effect to increase proximity and flexibility.Experimental results show that SOS-MMAS 
outperforms SOS-ACO and standard ACO in terms of speed, flexibility, and solution quality, especially in 
large-scale TSP scenarios. With faster iterations and lower average errors, it has proven effective in 
solving real-world routing and scheduling problems. The study also suggested that SOS-MMAS could be 
extended to other optimization problems through the use of local research methodologies. 

Wu et al., [13] Ant system (AS) and ant colony system (ACS) are two of the five 
classical ant colony optimization (ACO) algorithms modified in this work to answer the team 
routing problem in TOP. The modifications sought to maximize the total profits while 
distributing rewards along the routes. To optimize the solutions, an innovative ant team selection 
process and an iterative optimization process were implemented. The elite ant system (EAS) 
showed superior stability in minimizing the profit disparity between routes, while the ACS was 
the best at maximizing profits, according to the experimental results. 

Yan et al., [14] The non-dominated multi-objective ant colony optimization 
(NSMOACO) algorithm is presented in this study to solve the path planning problem of 
unmanned underwater vehicles (UUV) in target search missions. The program uses tangent flight 
and adaptive mechanisms to dynamically adjust parameters in order to achieve two competing 
goals: search gain and flight duration. The global search capabilities of the algorithm are 
improved and premature convergence is avoided by combining non-dominated sorting and a 
novel pheromone updating technique. Comparative tests showed that NSMOACO performed 
better in terms of convergence speed and solution quality than other multi-objective optimization 
methods, including traditional ACO. This study highlighted the usefulness of NSMOACO in 
solving multi-objective problems in challenging real-world situations. 

Prado et al., [15] Variations of Ant Colony Optimization (ACO) in dynamic optimization 
contexts were evaluated in this study, with a particular focus on vehicle routing issues under 
changing conditions. By introducing criteria to evaluate the adaptability of the algorithm, the 
study demonstrated how well ACO can adapt to changes in constraints and objectives in real 
time. The proposed changes increased the efficiency of decision-making in dynamic situations, 
allowing ACO to successfully deal with changing demands. Experimental results showed 
improved performance compared to existing methods in terms of computational speed and 
solution quality. For real-world applications such as supply chain and logistics optimization, this 
work underscores the importance of dynamic adaptation in ACO. 

Tang et al.,  [16] This paper presents an Ant Colony System (ACS)-based approach to 
improve logistics scheduling, focusing on the Multi-Trip Seller Problem (MTSP) in hub cities. In 
order to minimize costs and fairly distribute routes among sellers, the proposed ACS-MTSP 
algorithm takes into account hub cities with different business needs. Experimental results 
demonstrate how well it can balance workload distribution and route duration. 

Kothari et al. [17] A comprehensive analysis of heuristic algorithms, such as ACO, for 
large-scale TSP examples is performed in this paper. The results highlight the competitive 



 

 

performance of ACO in finding the balance between computation time and solution quality. The 
paper also emphasizes how hybrid algorithms, which combine ACO with methods such as 
particle swarm optimization and genetic algorithms, can be used to solve scaling and 
optimization problems in TSP. 

Thongpiem et al., [18] This study proposed a hybrid approach to improve the quality of 
TSP solutions by integrating ACO and genetic algorithms. Genetic crossover and pheromone re-
initialization were used to increase search diversity and prevent local optimal results. The hybrid 
algorithm consistently outperformed traditional ACO algorithms in tests on 23 TSPLIB datasets. 
This strategy confirmed the advantages of integrating heuristics for complex optimization 
problems. The study demonstrated the efficiency of the hybrid approach in producing better 
results. 

Han et al. [19]The Color Mobile Salesman Problem (CTSP), a variant of TSP, was solved 
using an improved ACO. The study improved the algorithm’s ability to find optimal solutions in 
large-scale CTSP situations by enhancing pheromone updating through the use of the ITÔ 
process. According to the experimental data, the improved ACO performed better than other 
algorithms in terms of computational speed and solution quality. Task allocation is a crucial 
component of real-world problems such as intelligent transportation systems and multi-task 
collaboration, where this approach is particularly useful. 

 

Cheong et al., [20] The study evaluated the effectiveness of ACO using algorithms such 
as Kohonen and Christofides and investigated variations in ACO parameters for solving TSP. 
The study showed how parameter adjustments affected optimization results across different 
variables including pheromone levels, colony size, and evaporation rates. The results confirmed 
the strength of ACO as a heuristic approach and showed it to be competitive in small to medium-
sized TSP situations. 

De Oliveira et al., [21] In this paper, ant colony optimization (ACO) techniques are 
investigated for the traveling salesman problem (TSP) with dynamic demands. The P-ACO 
algorithm, which modifies the pheromone memory to solve dynamic problems, is presented. The 
importance of local search and parameter settings is highlighted by comparing P-ACO with the 
max-min ant system (MMAS). The results show that MMAS performs better when using local 
search, while P-ACO performs better in dynamic conditions without it. The study also 
emphasizes the importance of adaptive configurations to improve ACO algorithms in dynamic 
combinatorial optimization problems. 

Dewantoro et al., [22] The hybrid ACO-TS technique was developed in this study by 
combining ant colony optimization (ACO) and taboo search (TS) to solve the TSP problem. By 
enhancing path optimization and accelerating convergence, the hybrid approach enhanced the 
performance of ACO. Experimental results showed that the ACO-TS algorithm outperforms the 
standalone ACO, especially when it comes to avoiding local optima and reducing computation 
time. 

Duan et al., [23]This study presented a new approach to solving the TSP problem using a 
probe machine model, which accelerates problem solving using DNA-based computing 
techniques. When it comes to handling small-sized TSP portfolios, the PROBE4TSP solution 



 

 

outperforms traditional techniques with significant gains. The work showed how non-Turing 
computational models can be used to solve NP-hard problems such as TSP. 

 

Ekmekciet al., [24]The study proposed a new form of ACO called Ant Colony 
Optimization Memorizing Better Solutions (ACO-MBS), which optimizes pheromone updates 
based on solution costs. ACO-MBS enhanced exploration and exploitation capabilities by 
including memory-based methods. Comparative research revealed that ACO-MBS performed 
better on standard TSP problems than regular ACO versions, obtaining higher convergence rates 
and higher quality solutions. 

Fei et al., [25] ACO was extended to include multi-objective optimization with a focus on 
vehicle routing that balances fuel usage and trip duration. ACO and a dynamic approach were 
used to increase computational efficiency and solution quality. When compared to other heuristic 
algorithms, the method produced competitive results. Sheng (2022) also used ACO to address 
multi-objective vehicle routing problems with dynamic constraints, such as traffic conditions. In 
real-world logistics situations, the method demonstrated greater flexibility and adaptability. 

Latha et al. [26] In this paper, the application of Ant Colony Optimization (ACO) to 
routing protocols for Traveling Salesman Problem (TSP) applications in Wireless Body Area 
Networks (WBAN) is investigated. A novel variation of ACO is proposed in combination with 
energy and distance-based TOPSIS to reduce packet transmission delays. The end-to-end delays 
are significantly reduced through the comparative study, indicating the potential of the algorithm 
in emergency health monitoring situations. 

Liu et al.,[27]The mucus mold ant colony fusion algorithm (SMACFA) is presented, 
which improves the ant colony optimization (ACO) for TSP solutions. The combination of the 
mucus mold algorithm (SMA) and ACO in the model shortens the convergence time and 
prevents the algorithm from reaching the local best practices. When the experimental results are 
compared with the original ACO algorithm, the path length is improved by 1.42%, and the 
convergence time is reduced by 73.55%. In addition, compared with other optimization 
algorithms, the fusion performance is better. Large TSP cases benefit from the increased 
computational efficiency of this hybrid approach and the solution quality. 

Meng et al., [28] The Generalized Travel Salesman Problem (GTSP) was investigated 
using a modified ACO technique. In order to enhance the path length optimization and maintain 
the job balance among multiple travel agents, this improved approach incorporates a binary 
choice algorithm. According to the study, the modified ACO outperforms the traditional 
techniques in terms of convergence and stability. The proposed method showed better results in a 
variety of conditions and was particularly successful in distributing tasks among agents in a 
balanced manner. For this reason, the method is useful for practical applications such as task 
scheduling and vehicle routing. 

Murugananthan et al., [29]The main objective of this study was to improve the Ant 
Colony Optimization (ACO) algorithm to handle large-scale traveling retailer problems. The 
incorporation of genetic algorithms to balance exploration and exploitation, as well as adaptive 
pheromone updates, were important developments. These changes significantly increased the 
convergence rate of ACO and the solution quality. On benchmark datasets, experimental results 
showed that the algorithm outperformed traditional ACO algorithms in solving difficult 



 

 

optimization problems. For large datasets, the study highlighted the scalability and adaptability 
of the hybrid ACO approach. 

Qian et al., [30]This study is designed as a kind of traveling salesman problem, and a 
multi-objective ant colony system (MOACS) is proposed to handle multi-agent pick-up and 
delivery tasks. The algorithm uses dual pheromone sets to simultaneously maximize competing 
objectives, such as task completion speed and workload balancing. The well-balanced 
exploration and exploitation approach and creative pheromone updating rules improve the 
flexibility of the algorithm. According to the experimental results, MOACS produces better 
solution quality than traditional ACO and other heuristic techniques. The study demonstrates 
how multi-objective optimization can be used to address challenging logistics problems in the 
real world. 

Sharma et al., [31] This study aims to solve dynamic vehicle routing problems using real-
time ACO. By using real-time traffic data to dynamically update pheromone levels, the software 
enables faster and more accurate routing decisions. The ACO is modified to account for time-
dependent travel expenses in multi-objective vehicle routing, following a similar technique was 
introduced this authorFor sectors such as supply chain management and logistics that rely on 
real-time optimization, these developments are particularly useful. Both studies show that in 
dynamic contexts, real-time ACO can significantly increase operational efficiency. 

Silalahi et al., [32] The Traveling Salesman Problem (TSP) was solved in this work using 
Ant Colony Optimization (ACO). Performance tests of the algorithm on a variety of paths 
showed that it could identify optimal and near-optimal solutions. The effectiveness of ACO was 
attributed to its powerful pheromone updating mechanism, which guided the ants towards 
efficient paths. The study demonstrated how well ACO can handle small to medium-sized 
datasets. This paper highlights the promise of ACO as a heuristic tool for generative optimization 
problems. 

Steven et al., [33] By combining clustering methods with ACO, the study addressed the 
multi-traveler retailer problem (MMTSP). The MMTSP was partitioned into multi-traveler 
retailers in order to solve the problem efficiently using k-means and clustered clustering. The 
results showed that while clustered clustering with ACO gave better results than k-means, it also 
took longer to compute. The effectiveness of the approach in simplifying complex optimization 
tasks was confirmed by simulations performed on the TSPLIB dataset. This strategy confirmed 
the importance of clustering for improving ACO functions. 

Stodola et al.,[34] Node clustering, adaptive pheromone evaporation, and novel 
termination conditions are the three innovative strategies used in the adaptive ACO algorithm in 
this study. By clustering nodes according to proximity, clustering increased the solution diversity 
and search efficiency. The termination condition depends on the population diversity, but 
adaptive pheromone evaporation exploited the information entropy to avoid stagnation. The 
approach outperforms state-of-the-art techniques in terms of convergence speed and solution 
quality when tested on 30 TSPLIB instances. These advances address some of the major 
drawbacks of the traditional ACO algorithm. 

Sun et al., [35] The problem of multiple travel sellers with revisitable cities (MTSPR) 
was addressed in the study using a unique ACO algorithm. For revisitable cities, a balanced path 
selection approach was implemented, ensuring efficient path generation. To further improve the 
solution quality, the algorithm used a local binary search to optimize the elite ant path. When 



 

 

addressing the limitations of MTSPR, comparative tests showed that the proposed ACO 
performed better than alternative algorithms. This study demonstrated how ACO can be used for 
resource planning and logistics. 

Thong-ia et al., [36] proposed the Gene-Ants algorithm, which overcomes the early-stage 
optimization limitations of ACO by combining genetic algorithm (GA) and ACO. Selectivity, 
exchange, and mutation are some of the genetic operations of the genetic algorithm that help 
avoid the local optimality problem that ACO usually faces. Tests on several TSP benchmarks 
have shown that the Gene-Ants algorithm performs better than the basic ACO algorithm in terms 
of convergence rate and global optimization. This hybridization makes it possible to provide a 
more reliable TSP solution. 

Tuani et al., [37] An improved solution to TSP using a three-option local search in a 
heterogeneous adaptive ACO is presented. By continuously adjusting the parameters throughout 
the search process, the model enables the algorithm to successfully balance exploration and 
exploitation. Without the need for pre-defined parameters, the self-adaptive function of the 
algorithm improves performance and reduces the amount of time required for human adjustment. 
For large-scale TSP examples, experimental results show that the proposed approach 
outperforms traditional ACO methods. 

Wang et al., [38] A better pheromone update model is introduced in ACO to address the 
multiple traveler-supplier (MTSP) problem with constraints such as capacity and time frame. 
The approach minimizes path length while meeting capacity and time requirements by solving 
the MTSP by combining a single tree with a minimum span ACO. The search efficiency and 
solution quality are improved by the hybrid approach. This development demonstrates the ability 
of ACO to solve increasingly complex variations in TSP under realistic logistical constraints. 

Wang et al., [39] Modifying parameters such as α and β was proposed to enhance 
convergence in optimizing ACO-based TSP parameters. By introducing the hybrid symbiotic 
organism search (SOS) and ACO (SOS-ACO) technique, the study improved the quality of the 
result by adaptively optimizing the parameters. SOS-ACO was able to achieve solutions that 
were within 2.33% of the best TSP solutions, according to the results. Using a variety of TSP 
cases from TSPLIB, this  author evaluated the model and demonstrated its effectiveness. This 
technique greatly simplifies the process of manually tuning ACO parameters. 

Chen et al.,  [40]This paper presented an ant colony system (ACS)-based approach to 
improve logistics scheduling for the multiple traveling vendor problem (MTSP) with hub cities. 
In order to reduce the cost and fairly distribute the route among salespeople, the proposed ACS-
MTSP algorithm takes into account hub cities with different business requirements. The results 
of the experiments showed how successful it was in shortening the path lengths and distributing 
the load evenly. 

Chang et al.,  [41]K-means clustering was used in this work to improve the TSP solution 
efficiency of ACO. K-means was used to cluster cities into clusters, and before merging paths, 
ACO was applied independently to each cluster. In some city distributions, this method has 
improved performance while reducing compute costs by more than 30%. “Significant promise 
for improving ACO in complex TSP settings has been shown through this hybrid approach.” 

Table 1- Related work summary table   



 

 

#Re
ff 

Author 
(Year) Method Dataset Advantag

e 
Disadvanta

ge Result Accuracy 

 
[1] 

Scianna et 
al., (2024) 

TSPLIB Paralleliza
tion 
enhances 
performan
ce on 
large 
problems 

Still faces 
scalability 
issues for 
very large 
datasets 

Parallel ACO 
provided 
better 
scalability 
than 
standard 
ACO 

High 
efficiency 

 

[2] Baydogmus 
et al.,  (2022) 

Parallelized 
ACO 

TSPLIB, 5 
problems 

Reduced 
memory 
usage, 
faster due 
to 
parallelizat
ion 

Time 
complexity 
increases 
with 
number of 
colonies 

50% faster 
than 
normal 
ACO 
operation 

 

[3] Dou et al., 
(2024) 

ACO for 
Multiple 
Traveling 
Salesmen 
with 
Constraints 

VCMTSP 
benchmar
k set from 
TSPLIB 

Effective 
for 
handling 
accessibilit
y 
constraints 

Requires 
further 
improveme
nt for 
complex 
datasets 

ACO and 
GA both 
addressed 
VCMTSP, 
but 
performan
ce could be 
improved 

 

[4] Ratanavilisag
ul et al.,  
(2017) 

Modified 
ACO with 
Pheromon
e Mutation 

TSP 
(TSPLIB) 

Avoids 
local 
optima, 
enhanced 
search 
diversity 

Increased 
computatio
nal cost due 
to mutation 
steps 

Outperfor
med 
standard 
ACO in 
solution 
quality 

Better 
solutions 
than 
standard 
ACO 

[5] Ratanavilisag
ulet al., 
(2018) 

Modified 
ACO with 
Leader and 
Re-
initializatio
n 

TSP 
(TSPLIB) 

Re-
initializatio
n prevents 
local 
optima 
trapping 

Higher 
complexity 
with 
multiple 
colony re-
initialization
s 

Outperfor
med 
standard 
ACO and 
PACO-
3OPT 

Improved 
solution 
quality and 
convergenc
e 

[6] Xu et al., 
(2023) 

ACO and 
FA hybrid 
 

TSPLIB 
standard 
 

Improved 
convergen
ce and 
local 
optima 
avoidance 
 

Depending 
on the FA's 
initial 
performanc
e 
 

Enhanced 
path 
optimizati
on and 
decreased 
processing 
time 
 

High 
(increased 
accuracy 
in 
pathfindin
g) 
 

[7] Mandal et 
al., (2022) 

Modified 
ACO for 
Generalize
d TSP 

GTSP 
benchmar
k set 

Good 
stability 
and 
optimizati
on 

Increased 
complexity 
with more 
agents 

2.59% 
optimizatio
n in 
average 
path length 

Optimized 
by 2.59% in 
average 
path 



 

 

accuracy over ACO 
[8] Fejzagić 

2013 
Parallel 
ACO 

TSP 
(varied 
city sizes) 

Improved 
execution 
time via 
parallelizat
ion, same 
solution 
quality 

Increased 
complexity 
in 
parallelizati
on 
implementa
tion 

Parallel 
ACO 
reduced 
execution 
time but 
with 
similar 
quality 

Speed 
improveme
nt, solution 
quality 
maintained 

[9] Zeng et al., 
(2021) 

Enhanced 
ACO 
using 
dynamic 
heuristic 
data 
 

TSP in 
transporta
tion 
situations 
with 
replenishi
ng arcs 
 

Effective 
in 
resolving 
dynamic 
limitation
s 
 

High 
processing 
demands 
for bigger 
datasets 
 

shortest 
routes 
when 
cumulativ
e travel 
restriction
s are in 
place 
 

For 
dynamic 
restrictions
, accurate 
 

[10] Xu Li et al., 
(2024) 

AAEPM 
for 
assessing 
convergen
ce 
 

ACO 
situations 
that were 
simulated 
 

Strong 
convergen
ce 
assessmen
t 
independe
nt of 
parameter
s 
 

does not 
immediatel
y increase 
the 
effectivene
ss of 
pathfinding 
 

Precise 
ACO 
convergen
ce 
monitorin
g 
 

Precise 
assessment 
of 
convergen
ce state 
 

[11] Houssein et 
al.,  (2024) 

Space 
Reduction 
ACO for 
MTSP 

MTSP with 
varying 
number of 
tasks and 
salesmen 

Reduced 
solution 
space, 
faster 
computati
on time 

Performanc
e can drop 
with very 
large 
datasets 

Outperfor
med 
classical 
methods in 
execution 
time and 
path length 

Best 
execution 
time, 
competitive 
in path 
length 

[12] Sheng et al.,  
(2022) 

SOS-MMAS 
Hybrid ACO 

TSPLIB Improved 
task 
scheduling 
efficiency, 
avoids 
premature 
convergen
ce 

May 
increase 
computatio
nal 
complexity 
for larger 
datasets 

SOS-MMAS 
outperfor
ms 
standard 
ACO in TSP 
problem 
solving 

High 
performanc
e in large 
TSP 
instances 

[13] Wu et al.,  
(2024) 

ACS and 
EAS were 
modified 
for TOP. 
 

Artificial 
TOP 
datasets 
 

Improved 
route 
balance 
and profit 
maximiza
tion 
 

restricted 
to some 
TOP 
variations 
 

Enhanced 
efficiency 
and 
balanced 
earnings 
across 
routes 

High (ACS 
excelled in 
profit 
maximizati
on) 
 



 

 

 
[14] Yan et al.,  

(2024) 
For 
MOTSP, 
NSMOAC
O 
 

MOTSP 
scenarios 
that were 
simulated 
for UUV 
 

Superior 
adaptive 
algorithm
s and 
worldwid
e search 
capabilitie
s 
 

computatio
nally 
demanding 
for 
extensive 
MOTSP 
 

improved 
results and 
quicker 
convergen
ce than 
with 
conventio
nal 
techniques 
 

High 
(Outperfor
ming in 
jobs 
involving 
multi-
objective 
optimizatio
n) 
 

[15] Prado et al., 
(2024) 

Ant Colony 
Systems 
for 
Dynamic 
Vehicle 
Routing 

Vehicle 
Routing 
Problem 
(VRP) 

Adapts to 
real-time 
dynamic 
changes, 
good for 
real-time 
decision 
making 

Requires 
fast 
computatio
n for real-
time 
changes 

Evaluated 
multiple 
ACO 
variants for 
dynamic 
VRP, better 
real-time 
performan
ce 

95% 

[16] Tang et al., 
(2023) 

Ant 
Colony 
Adaptive 
Optimizati
on 
(AACO-
LST) 
 

45 TSP 
instances 

faster 
convergen
ce and 
more 
effective 
search 
 

Large-scale 
dimensiona
l 
catastrophe 
dilemma 
TSP 
 

Comparin
g AACO-
LST to 
ACS, the 
quality of 
the 
solution 
increased 
by 79%. 
 

79% 

[17] Kothari et.,  
(2024) 

Meta-
Heuristic 
Algorithms 
for TSP 

256-city 
TSP 
dataset 

Comprehe
nsive 
compariso
n of 
multiple 
algorithms 

Does not 
provide a 
clear 
comparison 
of hybrid 
approaches 

Christofide
s was most 
cost-
efficient, 
Simulated 
Annealing 
fastest 

 

[18] Thongpiem 
et al.,  (2024) 

Ant 
colony 
algorithm 
and hybrid 
genetic 
algorithm 
(HGAAC
O) 
 

TSPLIB (23 
instances) 

Combinin
g GA and 
ACO 
improved 
performan
ce over 
MACO-
LR. 
 

Additional 
computatio
nal 
resources 
are needed 
for the 
hybrid 
technique. 
 

HGAACO 
improved 
the speed 
and 
quality of 
the 
MACO-
LR 
solution. 
 

100% 

[19] Han et al.,  
(2020) 

Improved 
ACO for 
Large Scale 

Large-
scale CTSP 
problem 

Optimized 
for large 
scale, 

High 
computatio
nal cost, 

Better 
performan
ce than 

Improved 
solution 
quality 



 

 

CTSP avoids 
local 
optimum 
with ITÔ 
process 

complexity 
in 
pheromone 
updating 

classical 
algorithms 
for large-
scale CTSP 

[20] Cheong et 
al.,  (2017) 

ACO with 
parameter 
variation 

TSP 
(various 
datasets) 

Better 
performan
ce with 
varying 
colony 
sizes and 
other 
parameter
s 

Requires 
fine-tuning 
for optimal 
results 

ACO 
provided 
competitiv
e results 
compared 
to other 
algorithms 

Optimized 
route 
selection. 

[21] de Oliveira 
et al., (2021) 

ACO for 
dynamic 
TSP with 
dynamic 
demands 

TSP with 
dynamic 
demands 

Enhanced 
performan
ce in 
dynamic 
environme
nts using 
P-ACO 

P-ACO not 
as effective 
with local 
search 
components 

P-ACO 
outperfor
med MAX-
MIN Ant 
System 
(MMAS) 
without 
local 
search 

Enhanced 
pheromone 
reuse. 

[22] Dewantoro 
et al., (2019) 

Hybrid 
ACO-TS 
(ACO with 
Tabu 
Search) 

TSP 
(standard 
problems) 

Better 
route 
optimizati
on and 
faster 
runtime 

Hybrid 
algorithm 
increases 
complexity 

ACO-TS 
outperfor
med 
standard 
ACO in 
route 
quality and 
runtime 

Superior 
computatio
nal 
performanc
e. 

[23] Duan et al., 
(2024) 

Probe 
machine-
based 
approach 
for TSP 

TSP 
(various 
sizes) 

Significant 
speedup 
compared 
to classical 
solvers for 
small-scale 
problems 

Only 
effective for 
smaller 
problem 
sizes, not 
for large-
scale 
problems 

Faster than 
classical 
solvers for 
small TSP 
instances 

High 
performanc
e for 
smaller 
instances 

[24] Ekmekci et 
al., (2019) 

ACO-MBS 
(Memorizin
g Better 
Solutions) 

TSPLIB 
(eil51, 
kroA100) 

Increased 
exploitatio
n ability 
while 
maintainin
g 
exploratio
n 

Convergenc
e speed can 
be slower 
under 
certain 
conditions 

Outperfor
med 
standard 
ACS in 
convergenc
e speed 
and 
solution 
quality 

Achieved 
high 
accuracy in 
benchmark 
problems 
(eil51 and 
kroA100) 

[25] Fei et al.,  
(2022) 

Graph 
Convolutio
nal 

TSP 
datasets, 
engineerin

Improves 
initial 
convergen

Complex 
algorithm, 
requires 

Outperfor
med other 
classical 

High 
accuracy, 
faster 



 

 

Network 
Improved 
ACO 
(GCNIACO) 

g 
applicatio
n 

ce speed, 
enhances 
local 
optimum 
escape 

tuning for 
larger 
instances 

algorithms 
in solution 
quality 

convergenc
e 

[26] Latha Ra  et 
al., 2023 

Energy-
distance 
based 
TOPSIS-
ACO 

Wireless 
Body Area 
Networks 
(WBAN) 

Improved 
end-to-end 
delay and 
packet 
routing 
delay 
manageme
nt 

High delay 
without 
routing 
strategy, 
delay under 
certain 
methods 

Improved 
delay times 
compared 
to non-
routing 

0.126 ms 
(end-to-end 
delay) 

[27] Liu et al.,  
(2020) 

Slime 
Mold-Ant 
Colony 
Fusion 
Algorithm 
(SMACFA) 

TSPLIB 
(chn31) 

Enhanced 
global 
optimizati
on, faster 
convergen
ce, 
reduced 
complexity 

Susceptible 
to local 
optimizatio
n in certain 
settings 

1.42% 
improveme
nt in path 
length over 
ACO, faster 
convergenc
e 

Improved 
by 1.42% in 
path length 

[28] Meng et al., 
(2019) 

Modified 
ACO with 
2-opt 
algorithm 
for GTSP 

GTSP with 
16 cities 

Better 
optimizati
on, task 
balancing 
among 
agents 

Increased 
variance 
with more 
agents 

2.59% 
average 
path length 
improveme
nt over 
ACO 

Optimized 
by 2.59% in 
average 
path length 

[29] Muruganant
hanet al., 
(2023) 

Ant Colony 
Optimizati
on (ACO) 

TSPLIB 
and 
customize
d datasets 

Flexibility 
and ability 
to adapt to 
dynamic 
scenarios 

Susceptible 
to slow 
convergenc
e for large 
datasets 

Outperfor
med Cplex 
optimizer 
in multiple 
test cases 

Outperform
ed Cplex 
optimizer 

[30] Qian et al., 
(2024) 

Multiobject
ive Ant 
Colony 
System 
(MOACS) 

Pickup 
and 
Delivery 
tasks 

Optimizes 
multiple 
objectives 
(working 
time and 
workload 
balance) 

Complexity 
increases 
with more 
agents and 
tasks 

MOACS 
outperfor
ms other 
ACS-based 
multi-
objective 
algorithms 

High 
performanc
e in multi-
agent 
scenarios 

[31] Sharma et 
al., (2024) 

ACO-based 
Energy 
Efficiency 
Optimizati
on for IoT-
Cloud 

IoT and 
Cloud 
Computin
g 
Resources 

Reduces 
energy 
consumpti
on in cloud 
environme
nts 

High 
adaptability 
required for 
real-time 
IoT 
environmen
ts 

Outperfor
med 
convention
al resource 
allocation 
strategies 

Significant 
energy 
savings and 
reduced 
operational 
cost 

[32] Silalahiet al., 
(2019) 

ACO for 
TSP 

TSPLIB Faster 
execution 
compared 
to exact 
methods 

Struggles 
with larger 
cases 

ACO was 
faster than 
exact 
methods in 
solving TSP 

Execution 
time 
significantly 
reduced 



 

 

[33] Steven et al., 
(2017) 

Clustered 
ACO for 
MMTSP 

TSPLIB Clustering 
improves 
route 
optimizati
on 

Agglomerati
ve 
clustering 
takes longer 
than K-
means 
clustering 

Agglomera
tive ACO 
outperfor
ms K-
means 
clustering 
and 
standalone 
ACO 

Best route 
with 
agglomerati
ve ACO 

[34] Stodola et 
al., (2022) 

Adaptive 
ACO with 
Node 
Clustering 

TSPLIB 
(51-2392 
nodes) 

Improved 
performan
ce, 
reduces 
execution 
time and 
local 
optimum 
risk 

Parameter 
settings still 
affect 
performanc
e 

Outperfor
med other 
ACO-based 
methods 
on 
benchmark 
tests 

Higher 
convergenc
e speed, 
better 
solutions 

[35] Sun et al., 
(2024) 

RACO (ACO 
for MTSPR) 

TSPLIB Effective 
path 
design 
that 
balances 
salesmen'
s paths 
 

Constructio
n of 
complex 
paths 
necessitate
s careful 
task 
balancing. 
 

When 
solving 
MTSPR, 
RACO 
performs 
better than 
other 
algorithm. 
 

Better 
results 
with well-
balanced 
routes. 

[36] Thong-iaet 
al., (2023) 

Ants Gene 
(ACO 
with GA) 
 

TSPLIB avoids 
local 
optima 
and 
improves 
global 
search by 
combinin
g ACO 
and GA. 
 

longer 
computatio
n times as a 
result of 
the hybrid 
technique 
 

Gene-Ants 
fared 
better in 
global 
optimal 
solution 
discovery 
than 
simple 
ACO. 
 

Enhanced 
rate of 
convergen
ce and 
quality of 
the 
solution 
 

[37] Tuaniet al., 
(2020) 

Adaptive 
Heterogen
eous ACO 
with 3-opt 
Local 
Lookup 
 

TSPLIB Parameter
s are 
adaptively 
adjusted 
to prevent 
premature 
convergen
ce. 
 

costly to 
compute 
with large-
scale TSP 
 

Heterogen
eous ACO 
performed 
faster and 
better than 
traditional 
algorithms
. 
 

Increased 
resilience 
and faster 
convergen
ce 
 

[38] Wang et al., 
(2020) 

ACO for 
MTSP 
with an 

MTSP 
with time 
window 

A better 
pheromon
e model 

More 
intricacy as 
a result of 

superior 
search 
effectiven

Shorter 
routes and 
improved 



 

 

Enhanced 
Pheromon
e Model 
 

and 
capacity 
restrictio
ns 
 

that 
manages 
capacity 
and 
logistics 
issues 
 

the hybrid 
pheromone 
model 
 

ess and 
solution 
quality 
compared 
to 
alternative 
algorithms 
 

logistics 
optimizatio
n 
performan
ce 
 

[39] Wang et al., 
(2021) 

ACO and 
SOS 
hybrid 
 

TSPLIB 
standard 
 

Enhanced 
global 
search 
capability 
and 
convergen
ce rates 
 

intricate 
tweaking 
of 
parameters 
 

Solutions 
that fall 
between 
2.33% and 
the 
establishe
d optimal 
values 
 

High 
(deviation 
of 2.33% 
from ideal) 
 

 
[40] 

Chen et al., 
(2024) 

ACS-MTSP 
(Multiple 
TSP with 
hub cities) 

TSPLIB 
(att48, 
kroA100, 
etc.) 

Effective in 
reducing 
traveling 
salesmen 
costs 

Still 
computatio
nally 
complex for 
larger 
datasets 

Path 
lengths 
minimized 
with stable 
results 

High 
performanc
e 

[41] Chang et al., 
(2017) 

ACO 
combined 
with K-
means 
clustering 

TSP 
(various 
city 
distributio
ns) 

Reduced 
computati
onal cost, 
improved 
performan
ce for 
specific 
distributio
ns 

May not 
generalize 
well to all 
city 
distributions 

32% faster 
than 
unclustere
d ACO 

Improved in 
specific 
setups 

 

Discussion  
The examined literature shows that ant colony optimization (ACO) techniques for solving the 
traveling salesman problem (TSP) and its many variations have advanced significantly. 
Hybridizing ACO with other optimization techniques to improve performance is a popular 
trend.For example, [6] used Firefly algorithm (FA) for parameter optimization, which enhanced 
the convergence speed and flexibility, while [7] Integrating mutagenesis techniques into ACO 
for DNA sequencing. Similarly, [12] improved task scheduling efficiency using a hybrid ACO 
for Multi-Depot Multiple TSP (MMTSP). The effectiveness of hybrid techniques in solving 
limited and multi-travel seller problems has been demonstrated by [3] and [11], demonstrating 
the flexibility of ACOs in dealing with difficult situations. By optimizing the competing 
objectives of unmanned underwater vehicle trajectories, Yan et al. (2024) developed a 
nondominated sorting multi-objective ACO (NSMOACO) which further developed this idea. 



 

 

Studies such as [2] and  [8]have shown how parallel ACO shortens execution times without 
sacrificing solution quality, making parallel computing another important issue. [13] and [9] 
have demonstrated how these advances have improved ACO's suitability for large-scale 
applications including supply chain optimization and logistics. In the literature, adaptive 
mechanisms are also frequently discussed. For example, [10]introduced the AAEPM for 
convergence evaluation, which offers reliable monitoring without directly improving 
pathfinding. Adaptive pheromone updates by[34] and dynamic heuristic algorithms by [27] also 
demonstrate the ability of ACO to manage dynamic and large-scale optimization problems. Even 
with these developments, there are still limitations. As shown by [7]and [6], because new 
technologies require significant resources, hybrid approaches often increase computational 
complexity. [8] point out that although parallel ACO increases scalability, its implementation 
may be hardware dependent. [4],[5] and [39] note that tuning parameters is still a great difficulty 
and that performance mostly depends on manual changes. While new approaches such as 
enhanced mutation techniques [19] and [10] address convergence, they do not immediately 
increase computing efficiency. According to [17], addressing these issues requires studying 
lightweight hybrid models in order to balance efficiency and solution quality. Studies such as 
[35] and [30] suggest that incorporating machine learning methods can automate parameter 
tuning and adjust ACO to real-time conditions. In addition, as suggested by potential works such 
as [15] and [16], using advances in quantum computing may create new opportunities to scale 
ACOs. Significant advances in hybridization, parallelism, and adaptability have been highlighted 
in the literature, confirming ACO's position as a reliable tool for solving challenging 
optimization problems in a variety of domains. 

 

Challenges and Future Directions 

ACO has made progress, but there are a number of barriers to its wider use. Although effective, 
hybrid models come with a computational cost and require advanced technology for parallel 
processing [8],[7]. Furthermore, parameter adjustment is critical to the effectiveness of an ACO, 
and less-than-optimal settings often lead to suboptimal results. While convergence evaluation is 
addressed by frameworks such as AAEPM [10], parameter selection is not automated. Future 
studies should investigate frameworks that rely on machine learning to adjust parameters to 
automate optimization, as well as lightweight hybrid models that strike a balance between 
computational efficiency and solution quality [15], [16]. ACO may be able to handle previously 
unheard-of problem sizes through the use of quantum computing [17]. 

Conclusion 

The traveling salesman problem (TSP) is the mainstay of combinatorial optimization, and is 
known for its complexity and wide range of practical applications in resource management, 
communications, and logistics. Inspired by the feeding habits of ants, ant colony optimization 
(ACO) has become a reliable and flexible way to address TSP. The program can efficiently find 
optimal or near-optimal solutions thanks to its iterative method, which relies on pheromone trails 
and heuristic information. Significant developments over time have improved ACO capabilities. 
By solving problems such as local optimal slack and scalability problems, hybrid models - which 
mix ACO with free algorithms - have enhanced their performance. These integrations have 
proven to produce high-quality solutions and faster convergence rates, especially in dynamic and 



 

 

multi-objective contexts. Moreover, the scalability of ACO has been transformed by parallel 
computing frameworks, which allow efficient processing of large data sets and solving 
scheduling and logistics problems at industrial scale. In dynamic routing applications, when 
variables such as traffic, time constraints, and resource availability change in real time, ACO has 
also shown remarkable adaptability. Their ability to adapt to these modifications shows how 
versatile they are at solving difficult problems in the real world. ACO has proven to be a useful 
and reliable solution to dynamic optimization problems, from emergency response and 
underwater navigation to vehicle routing in logistics. Even with its improvements, ACO still 
suffers from drawbacks, such as computational overhead in parallel and hybrid models, the need 
for human parameter adjustment, and scalability in contexts with limited resources. In order to 
improve scalability and efficiency, future research should focus on creating lightweight hybrid 
frameworks, including machine learning for automated parameter adjustments, and investigating 
quantum computing. The revolutionary importance that the ACO plays in the TSP solution and 
its changes is highlighted in this review. This article emphasizes the continuing importance and 
potential of ACOs by addressing current limitations and synthesizing important improvements. 
ACO is positioned to continue to be a pillar of optimization research as science and technology 
advance, solving more complex problems in a variety of fields. 
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